
The Java EE 5 Tutorial

For Sun Java System Application Server 9.1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–3669–11
October 2008

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

081104@21288

Contents

Preface ...29

Part I Introduction ...39

1 Overview ...41
Java EE Application Model ... 42
Distributed Multitiered Applications ... 42

Security .. 43
Java EE Components ... 44
Java EE Clients .. 44
Web Components .. 46
Business Components ... 47
Enterprise Information System Tier .. 48

Java EE Containers .. 48
Container Services ... 49
Container Types ... 49

Web Services Support ... 51
XML ... 51
SOAP Transport Protocol ... 52
WSDL Standard Format .. 52
UDDI and ebXML Standard Formats ... 52

Java EE Application Assembly and Deployment ... 52
Packaging Applications .. 53
Development Roles ... 54

Java EE Product Provider .. 55
Tool Provider .. 55
Application Component Provider ... 55

3

Application Assembler .. 56
Application Deployer and Administrator ... 56

Java EE 5 APIs .. 57
Enterprise JavaBeans Technology .. 57
Java Servlet Technology .. 58
JavaServer Pages Technology ... 58
JavaServer Pages Standard Tag Library ... 58
JavaServer Faces ... 59
Java Message Service API .. 59
Java Transaction API ... 59
JavaMail API ... 59
JavaBeans Activation Framework .. 60
Java API for XML Processing ... 60
Java API for XML Web Services (JAX-WS) .. 60
Java Architecture for XML Binding (JAXB) ... 61
SOAP with Attachments API for Java .. 61
Java API for XML Registries ... 61
J2EE Connector Architecture ... 61
Java Database Connectivity API ... 62
Java Persistence API ... 62
Java Naming and Directory Interface .. 62
Java Authentication and Authorization Service ... 63
Simplified Systems Integration ... 63

Sun Java System Application Server Platform Edition 9 ... 64
Tools .. 64

2 Using the Tutorial Examples ..67
Required Software ... 67

Tutorial Bundle .. 67
Java Platform, Standard Edition ... 68
Sun Java System Application Server 9.1 ... 68
NetBeans IDE ... 69
Apache Ant ... 69

Starting and Stopping the Application Server .. 69
Starting the Admin Console ... 70

Contents

The Java EE 5 Tutorial • October 20084

Starting and Stopping the Java DB Database Server .. 71
Building the Examples .. 71

Building the Examples Using NetBeans IDE .. 71
Building the Examples on the Command-Line Using Ant ... 72

Tutorial Example Directory Structure .. 73
Debugging Java EE Applications ... 73

Using the Server Log .. 73
Using a Debugger ... 74

Part II The Web Tier ... 75

3 Getting Started with Web Applications ... 77
Web Applications .. 77
Web Application Life Cycle .. 80
Web Modules ... 81

Packaging Web Modules ... 83
Deploying a WAR File ... 84
Testing Deployed Web Modules .. 85
Listing Deployed Web Modules ... 86
Updating Web Modules .. 86
Undeploying Web Modules .. 88

Configuring Web Applications .. 89
Mapping URLs to Web Components .. 89
Declaring Welcome Files .. 91
Setting Initialization Parameters .. 92
Mapping Errors to Error Screens ... 93
Declaring Resource References .. 94

Duke’s Bookstore Examples ... 96
Accessing Databases from Web Applications .. 97

Populating the Example Database ... 97
Creating a Data Source in the Application Server .. 98

Further Information about Web Applications ... 98

Contents

5

4 Java Servlet Technology ...99
What Is a Servlet? ... 99
The Example Servlets .. 100

Troubleshooting Duke's Bookstore Database Problems ... 102
Servlet Life Cycle .. 102

Handling Servlet Life-Cycle Events ... 103
Handling Servlet Errors ... 105

Sharing Information ... 105
Using Scope Objects .. 105
Controlling Concurrent Access to Shared Resources ... 106
Accessing Databases .. 107

Initializing a Servlet ... 109
Writing Service Methods .. 110

Getting Information from Requests .. 110
Constructing Responses .. 112

Filtering Requests and Responses .. 114
Programming Filters .. 115
Programming Customized Requests and Responses .. 117
Specifying Filter Mappings ... 119

Invoking Other Web Resources ... 122
Including Other Resources in the Response ... 122
Transferring Control to Another Web Component .. 124

Accessing the Web Context .. 124
Maintaining Client State ... 125

Accessing a Session .. 125
Associating Objects with a Session .. 126
Session Management ... 126
Session Tracking .. 127

Finalizing a Servlet ... 128
Tracking Service Requests .. 129
Notifying Methods to Shut Down .. 129
Creating Polite Long-Running Methods ... 130

Further Information about Java Servlet Technology .. 131

Contents

The Java EE 5 Tutorial • October 20086

5 JavaServer Pages Technology ...133
What Is a JSP Page? .. 133

A Simple JSP Page Example .. 134
The Example JSP Pages ... 136
The Life Cycle of a JSP Page .. 142

Translation and Compilation ... 142
Execution .. 143

Creating Static Content .. 144
Response and Page Encoding ... 145

Creating Dynamic Content .. 145
Using Objects within JSP Pages .. 145

Unified Expression Language .. 146
Immediate and Deferred Evaluation Syntax ... 148
Value and Method Expressions .. 150
Defining a Tag Attribute Type .. 156
Deactivating Expression Evaluation .. 157
Literal Expressions ... 158
Resolving Expressions ... 160
Implicit Objects .. 162
Operators .. 163
Reserved Words ... 163
Examples of EL Expressions ... 164
Functions .. 165

JavaBeans Components .. 167
JavaBeans Component Design Conventions .. 167
Creating and Using a JavaBeans Component ... 168
Setting JavaBeans Component Properties .. 169
Retrieving JavaBeans Component Properties .. 171

Using Custom Tags ... 172
Declaring Tag Libraries ... 172
Including the Tag Library Implementation .. 174

Reusing Content in JSP Pages .. 175
Transferring Control to Another Web Component ... 176

jsp:param Element .. 176
Including an Applet ... 176
Setting Properties for Groups of JSP Pages ... 179

Contents

7

Deactivating EL Expression Evaluation .. 180
Further Information about JavaServer Pages Technology ... 183

6 JavaServer Pages Documents ...185
The Example JSP Document .. 185
Creating a JSP Document ... 188

Declaring Tag Libraries ... 190
Including Directives in a JSP Document ... 191
Creating Static and Dynamic Content .. 193
Using the jsp:root Element .. 196
Using the jsp:output Element .. 196

Identifying the JSP Document to the Container .. 200

7 JavaServer Pages Standard Tag Library .. 201
The Example JSP Pages ... 201
Using JSTL .. 203

Tag Collaboration .. 204
Core Tag Library ... 205

Variable Support Tags ... 205
Flow Control Tags .. 206
URL Tags ... 210
Miscellaneous Tags .. 211

XML Tag Library ... 211
Core Tags .. 213
Flow Control Tags .. 214
Transformation Tags ... 215

Internationalization Tag Library ... 215
Setting the Locale ... 216
Messaging Tags .. 216
Formatting Tags ... 217

SQL Tag Library ... 218
query Tag Result Interface .. 220

JSTL Functions .. 222
Further Information about JSTL ... 223

Contents

The Java EE 5 Tutorial • October 20088

8 Custom Tags in JSP Pages ... 225
What Is a Custom Tag? ... 226
The Example JSP Pages ... 226
Types of Tags .. 229

Tags with Attributes ... 229
Tags with Bodies .. 232
Tags That Define Variables ... 232
Communication between Tags .. 233

Encapsulating Reusable Content Using Tag Files ... 233
Tag File Location .. 235
Tag File Directives .. 235
Evaluating Fragments Passed to Tag Files ... 242
Custom Tag Examples ... 243

Tag Library Descriptors .. 247
Top-Level Tag Library Descriptor Elements .. 248
Declaring Tag Files .. 249
Declaring Tag Handlers .. 251
Declaring Tag Attributes for Tag Handlers .. 252
Declaring Tag Variables for Tag Handlers .. 254

Programming Simple Tag Handlers ... 256
Including Tag Handlers in Web Applications .. 256
How Is a Simple Tag Handler Invoked? .. 256
Tag Handlers for Basic Tags ... 257
Tag Handlers for Tags with Attributes .. 257
Tag Handlers for Tags with Bodies .. 260
Tag Handlers for Tags That Define Variables .. 261
Cooperating Tags ... 263
Tag Handler Examples .. 265

9 Scripting in JSP Pages ...273
The Example JSP Pages ... 273
Using Scripting .. 275
Disabling Scripting .. 275
JSP Declarations .. 276

Initializing and Finalizing a JSP Page ... 276

Contents

9

JSP Scriptlets .. 277
JSP Expressions .. 277
Programming Tags That Accept Scripting Elements .. 278

TLD Elements ... 278
Tag Handlers .. 278
Tags with Bodies .. 280
Cooperating Tags ... 282
Tags That Define Variables ... 284

10 JavaServer Faces Technology ..285
JavaServer Faces Technology User Interface .. 285
JavaServer Faces Technology Benefits .. 286
What Is a JavaServer Faces Application? ... 287
A Simple JavaServer Faces Application ... 287

Steps in the Development Process ... 288
Mapping the FacesServlet Instance .. 289
Creating the Pages .. 290
Defining Page Navigation ... 296
Configuring Error Messages ... 297
Developing the Beans .. 298
Adding Managed Bean Declarations ... 298

User Interface Component Model .. 299
User Interface Component Classes .. 300
Component Rendering Model ... 302
Conversion Model ... 305
Event and Listener Model ... 306
Validation Model ... 307

Navigation Model .. 308
Backing Beans .. 310

Creating a Backing Bean Class ... 310
The Life Cycle of a JavaServer Faces Page ... 314

Restore View Phase .. 315
Further Information about JavaServer Faces Technology .. 319

Contents

The Java EE 5 Tutorial • October 200810

11 Using JavaServer Faces Technology in JSP Pages .. 321
The Example JavaServer Faces Application .. 321
Setting Up a Page ... 324
Using the Core Tags .. 327
Adding UI Components to a Page Using the HTML Component Tags 329

UI Component Tag Attributes ... 329
Adding a Form Component ... 331
Using Text Components ... 332
Using Command Components for Performing Actions and Navigation 337
Using Data-Bound Table Components .. 339
Adding Graphics and Images with the graphicImage Tag ... 343
Laying Out Components with the UIPanel Component .. 343
Rendering Components for Selecting One Value .. 346
Rendering Components for Selecting Multiple Values ... 348
The UISelectItem, UISelectItems, and UISelectItemGroup Components 349
Displaying Error Messages with the message and messages Tags 352

Using Localized Data .. 353
Loading a Resource Bundle .. 354
Referencing Localized Static Data .. 355
Referencing Error Messages ... 355

Using the Standard Converters .. 357
Converting a Component’s Value .. 358
Using DateTimeConverter ... 359
Using NumberConverter ... 360

Registering Listeners on Components .. 362
Registering a Value-Change Listener on a Component .. 362
Registering an Action Listener on a Component ... 363

Using the Standard Validators ... 364
Validating a Component’s Value ... 365
Using the LongRangeValidator .. 366

Binding Component Values and Instances to External Data Sources .. 367
Binding a Component Value to a Property ... 368
Binding a Component Value to an Implicit Object ... 369
Binding a Component Instance to a Bean Property .. 371

Binding Converters, Listeners, and Validators to Backing Bean Properties 372
Referencing a Backing Bean Method .. 373

Contents

11

Referencing a Method That Performs Navigation ... 374
Referencing a Method That Handles an Action Event .. 374
Referencing a Method That Performs Validation .. 375
Referencing a Method That Handles a Value-change Event .. 375

Using Custom Objects .. 376
Using a Custom Converter ... 377
Using a Custom Validator ... 378
Using a Custom Component .. 379

12 Developing with JavaServer Faces Technology ... 381
Writing Bean Properties ... 381

Writing Properties Bound to Component Values ... 382
Writing Properties Bound to Component Instances ... 390
Writing Properties Bound to Converters, Listeners, or Validators 391

Performing Localization ... 392
Creating a Resource Bundle .. 392
Localizing Dynamic Data .. 392
Localizing Messages ... 393

Creating a Custom Converter .. 395
Implementing an Event Listener ... 397

Implementing Value-Change Listeners .. 398
Implementing Action Listeners ... 399

Creating a Custom Validator ... 400
Implementing the Validator Interface ... 401
Creating a Custom Tag .. 404

Writing Backing Bean Methods .. 406
Writing a Method to Handle Navigation .. 406
Writing a Method to Handle an Action Event .. 408
Writing a Method to Perform Validation ... 408
Writing a Method to Handle a Value-Change Event ... 409

13 Creating Custom UI Components ...411
Determining Whether You Need a Custom Component or Renderer 412

When to Use a Custom Component .. 412
When to Use a Custom Renderer ... 413

Contents

The Java EE 5 Tutorial • October 200812

Component, Renderer, and Tag Combinations ... 414
Understanding the Image Map Example .. 415

Why Use JavaServer Faces Technology to Implement an Image Map? 415
Understanding the Rendered HTML .. 415
Understanding the JSP Page ... 416
Configuring Model Data ... 418
Summary of the Application Classes ... 419

Steps for Creating a Custom Component ... 420
Creating Custom Component Classes .. 421

Specifying the Component Family .. 423
Performing Encoding .. 424
Performing Decoding .. 426
Enabling Component Properties to Accept Expressions .. 426
Saving and Restoring State .. 428

Delegating Rendering to a Renderer ... 429
Creating the Renderer Class ... 429
Identifying the Renderer Type ... 431

Handling Events for Custom Components .. 431
Creating the Component Tag Handler ... 432

Retrieving the Component Type .. 433
Setting Component Property Values ... 433
Providing the Renderer Type ... 435
Releasing Resources ... 436

Defining the Custom Component Tag in a Tag Library Descriptor ... 436

14 Configuring JavaServer Faces Applications ..439
Application Configuration Resource File ... 439
Configuring Beans ... 441

Using the managed-bean Element .. 441
Initializing Properties Using the managed-property Element .. 443
Initializing Maps and Lists .. 449

Registering Custom Error Messages ... 450
Registering Custom Localized Static Text .. 451
Registering a Custom Validator ... 452
Registering a Custom Converter ... 453

Contents

13

Configuring Navigation Rules ... 453
Registering a Custom Renderer with a Render Kit .. 457
Registering a Custom Component .. 459
Basic Requirements of a JavaServer Faces Application ... 460

Configuring an Application with a Deployment Descriptor .. 461
Including the Required JAR Files ... 468
Including the Classes, Pages, and Other Resources ... 468

15 Internationalizing and Localizing Web Applications .. 469
Java Platform Localization Classes .. 469
Providing Localized Messages and Labels .. 470

Establishing the Locale .. 470
Setting the Resource Bundle ... 471
Retrieving Localized Messages ... 472

Date and Number Formatting ... 473
Character Sets and Encodings .. 474

Character Sets ... 474
Character Encoding ... 475

Further Information about Internationalizing Web Applications .. 477

Part III Web Services ..479

16 Building Web Services with JAX-WS ... 481
Setting the Port ... 482
Creating a Simple Web Service and Client with JAX-WS .. 482

Requirements of a JAX-WS Endpoint ... 483
Coding the Service Endpoint Implementation Class .. 484
Building, Packaging, and Deploying the Service .. 484
Testing the Service without a Client .. 486
A Simple JAX-WS Client ... 486

Types Supported by JAX-WS ... 489
Web Services Interoperability and JAX-WS .. 489
Further Information about JAX-WS ... 489

Contents

The Java EE 5 Tutorial • October 200814

17 Binding between XML Schema and Java Classes ... 491
JAXB Architecture ... 491

Architectural Overview ... 492
The JAXB Binding Process .. 492
More about Unmarshalling .. 494
More about Marshalling .. 494
More about Validation .. 494

Representing XML Content ... 494
Java Representation of XML Schema ... 494

Binding XML Schemas ... 495
Simple Type Definitions .. 495
Default Data Type Bindings ... 495

Customizing Generated Classes and Java Program Elements ... 497
Schema-to-Java .. 497
Java-to-Schema .. 498

JAXB Examples .. 503
JAXB Compiler Options ... 505
JAXB Schema Generator Option ... 507
About the Schema-to-Java Bindings .. 507
Schema-Derived JAXB Classes ... 510

Basic JAXB Examples .. 513
Modify Marshal Example .. 513
Unmarshal Validate Example ... 514

Customizing JAXB Bindings .. 516
Why Customize? .. 517
Customization Overview .. 517
Customize Inline Example .. 528
Datatype Converter Example ... 533
Binding Declaration Files .. 535
External Customize Example ... 538

Java-to-Schema Examples .. 538
Create Marshal Example ... 539
XmlAccessorOrder Example .. 540
XmlAdapter Field Example .. 542
XmlAttribute Field Example ... 545
XmlRootElement Example ... 546

Contents

15

XmlSchemaType Class Example .. 547
XmlType Example ... 548

Further Information about JAXB .. 550

18 Streaming API for XML ..551
Why StAX? ... 551

Streaming versus DOM ... 551
Pull Parsing versus Push Parsing .. 552
StAX Use Cases .. 553
Comparing StAX to Other JAXP APIs .. 553

StAX API .. 554
Cursor API .. 555
Iterator API ... 555
Choosing between Cursor and Iterator APIs .. 559

Using StAX ... 561
StAX Factory Classes ... 561
Resources, Namespaces, and Errors .. 563
Reading XML Streams ... 563
Writing XML Streams ... 566

Sun’s Streaming XML Parser Implementation .. 568
Reporting CDATA Events ... 568
Streaming XML Parser Factories Implementation .. 568

Example Code .. 569
Example Code Organization .. 569
Example XML Document ... 570
Cursor Example .. 570
Cursor-to-Event Example ... 573
Event Example .. 575
Filter Example .. 577
Read-and-Write Example ... 580
Writer Example .. 582

Further Information about StAX ... 585

19 SOAP with Attachments API for Java ... 587
Overview of SAAJ .. 588

Contents

The Java EE 5 Tutorial • October 200816

SAAJ Messages ... 588
SAAJ Connections ... 591

SAAJ Tutorial ... 592
Creating and Sending a Simple Message ... 593
Adding Content to the Header ... 601
Adding Content to the SOAPPart Object ... 602
Adding a Document to the SOAP Body .. 603
Manipulating Message Content Using SAAJ or DOM APIs .. 603
Adding Attachments .. 603
Adding Attributes .. 606
Using SOAP Faults ... 611

Code Examples .. 615
Request Example .. 615
Header Example ... 617
DOM and DOMSource Examples ... 620
Attachments Example ... 624
SOAP Fault Example ... 626

Further Information about SAAJ .. 629

Part IV Enterprise Beans ..631

20 Enterprise Beans ..633
What Is an Enterprise Bean? .. 633

Benefits of Enterprise Beans ... 633
When to Use Enterprise Beans ... 634
Types of Enterprise Beans ... 634

What Is a Session Bean? .. 635
State Management Modes ... 635
When to Use Session Beans .. 636

What Is a Message-Driven Bean? .. 636
What Makes Message-Driven Beans Different from Session Beans? 637
When to Use Message-Driven Beans ... 638

Defining Client Access with Interfaces ... 638
Remote Clients ... 638
Local Clients ... 639

Contents

17

Deciding on Remote or Local Access ... 640
Web Service Clients ... 641
Method Parameters and Access .. 641

The Contents of an Enterprise Bean ... 642
Naming Conventions for Enterprise Beans ... 643
The Life Cycles of Enterprise Beans .. 643

The Life Cycle of a Stateful Session Bean .. 644
The Life Cycle of a Stateless Session Bean ... 644
The Life Cycle of a Message-Driven Bean ... 645

Further Information about Enterprise Beans .. 646

21 Getting Started with Enterprise Beans .. 647
Creating the Enterprise Bean ... 647

Coding the Enterprise Bean .. 648
Compiling and Packaging the converter Example .. 649

Creating the converter Application Client ... 650
Coding the converter Application Client .. 650
Compiling the converter Application Client .. 652

Creating the converter Web Client ... 652
Coding the converter Web Client .. 652
Compiling the converter Web Client .. 654

Deploying the converter Java EE Application .. 654
Deploying the converter Example Using NetBeans IDE .. 654
Deploying the converter Example Using Ant .. 654

Running the converter Application Client ... 655
Running the converter Application Client Using NetBeans IDE 655
Running the converter Application Client Using Ant .. 655

Running the converter Web Client ... 656
Modifying the Java EE Application ... 656

Modifying a Class File .. 656

22 Session Bean Examples ..659
The cart Example ... 659

The Business Interface ... 660
Session Bean Class ... 660

Contents

The Java EE 5 Tutorial • October 200818

The Remove Method ... 664
Helper Classes ... 664
Building, Packaging, Deploying, and Running the cart Example 664
Undeploying the cart Example ... 667

A Web Service Example: helloservice ... 667
The Web Service Endpoint Implementation Class .. 668
Stateless Session Bean Implementation Class .. 668
Building, Packaging, Deploying, and Testing the helloservice Example 669

Using the Timer Service .. 671
The Timeout Method ... 671
Creating Timers ... 671
Canceling and Saving Timers ... 672
Getting Timer Information .. 672
Transactions and Timers .. 672
The timersession Example ... 673
Building, Packaging, Deploying, and Running the timersession Example 674

Handling Exceptions ... 676

23 A Message-Driven Bean Example ...677
simplemessage Example Application Overview ... 677
The simplemessage Application Client ... 678
The Message-Driven Bean Class ... 679

The onMessage Method ... 679
Packaging, Deploying, and Running the simplemessage Example .. 680

Creating the Administered Objects for the simplemessage Example 681
Building, Deploying, and Running the simplemessage Application Using NetBeans
IDE ... 681
Building, Deploying, and Running the simplemessage Application Using Ant 682
Removing the Administered Objects for the simplemessage Example 683

Creating Deployment Descriptors for Message-Driven Beans ... 684

Part V Persistence ..685

24 Introduction to the Java Persistence API .. 687
Entities .. 687

Contents

19

Requirements for Entity Classes .. 687
Persistent Fields and Properties in Entity Classes .. 688
Primary Keys in Entities .. 690
Multiplicity in Entity Relationships ... 691
Direction in Entity Relationships ... 692
Entity Inheritance .. 693

Managing Entities .. 698
The Persistence Context .. 698
The EntityManager Interface .. 698
Persistence Units .. 703

25 Persistence in the Web Tier .. 705
Accessing Databases from Web Applications .. 705

Defining the Persistence Unit ... 706
Creating an Entity Class .. 707
Obtaining Access to an Entity Manager .. 708
Accessing Data from the Database ... 710
Updating Data in the Database .. 710

26 Persistence in the EJB Tier .. 713
The order Application .. 713

Entity Relationships in the order Application ... 713
Primary Keys in the order Application ... 716
Entity Mapped to More Than One Database Table ... 719
Cascade Operations in the order Application ... 720
BLOB and CLOB Database Types in the order Application .. 720
Temporal Types in the order Application .. 721
Managing the order Application’s Entities ... 721
Building and Running the order Application .. 723

The roster Application .. 728
Relationships in the roster Application ... 728
Entity Inheritance in the roster Application ... 729
Automatic Table Generation in the roster Application .. 731
Building and Running the roster Application .. 731

Contents

The Java EE 5 Tutorial • October 200820

27 The Java Persistence Query Language .. 735
Query Language Terminology ... 735
Simplified Query Language Syntax ... 736

Select Statements .. 736
Update and Delete Statements ... 736

Example Queries .. 737
Simple Queries ... 737
Queries That Navigate to Related Entities .. 738
Queries with Other Conditional Expressions .. 740
Bulk Updates and Deletes ... 742

Full Query Language Syntax .. 742
BNF Symbols .. 742
BNF Grammar of the Java Persistence Query Language ... 743
FROM Clause ... 747
Path Expressions .. 751
WHERE Clause ... 753
SELECT Clause ... 761
ORDER BY Clause ... 763
The GROUP BY Clause ... 764

Part VI Services ...765

28 Introduction to Security in the Java EE Platform ... 767
Overview of Java EE Security ... 768

A Simple Security Example ... 768
Security Functions ... 771
Characteristics of Application Security ... 772

Security Implementation Mechanisms ... 773
Java SE Security Implementation Mechanisms .. 773
Java EE Security Implementation Mechanisms .. 774

Securing Containers .. 776
Using Deployment Descriptors for Declarative Security .. 776
Using Annotations ... 777
Using Programmatic Security .. 778

Securing the Application Server .. 779

Contents

21

Working with Realms, Users, Groups, and Roles .. 779
What Are Realms, Users, Groups, and Roles? .. 780
Managing Users and Groups on the Application Server ... 783
Setting Up Security Roles .. 784
Mapping Roles to Users and Groups ... 786

Establishing a Secure Connection Using SSL ... 787
Installing and Configuring SSL Support ... 787
Specifying a Secure Connection in Your Application Deployment Descriptor 788
Verifying SSL Support ... 789
Working with Digital Certificates .. 790
Enabling Mutual Authentication over SSL ... 795

Further Information about Security .. 797

29 Securing Java EE Applications ...799
Securing Enterprise Beans .. 800

Accessing an Enterprise Bean Caller’s Security Context ... 801
Declaring Security Role Names Referenced from Enterprise Bean Code 803
Defining a Security View of Enterprise Beans .. 806
Using Enterprise Bean Security Annotations ... 817
Using Enterprise Bean Security Deployment Descriptor Elements 818
Configuring IOR Security ... 819
Deploying Secure Enterprise Beans ... 821

Enterprise Bean Example Applications .. 822
Example: Securing an Enterprise Bean .. 822
Example: Using the isCallerInRole and getCallerPrincipal Methods 828
Discussion: Securing the Duke’s Bank Example ... 833

Securing Application Clients ... 834
Using Login Modules .. 834
Using Programmatic Login .. 835

Securing EIS Applications .. 836
Container-Managed Sign-On .. 836
Component-Managed Sign-On ... 836
Configuring Resource Adapter Security ... 837
Mapping an Application Principal to EIS Principals ... 839

Contents

The Java EE 5 Tutorial • October 200822

30 Securing Web Applications ..841
Overview of Web Application Security .. 842
Working with Security Roles ... 843

Declaring Security Roles ... 843
Mapping Security Roles to Application Server Groups ... 846

Checking Caller Identity Programmatically .. 847
Declaring and Linking Role References .. 848

Defining Security Requirements for Web Applications ... 850
Declaring Security Requirements Using Annotations .. 851
Declaring Security Requirements in a Deployment Descriptor ... 853
Specifying a Secure Connection ... 859
Specifying an Authentication Mechanism .. 860

Examples: Securing Web Applications ... 869
Example: Using Form-Based Authentication with a JSP Page ... 870
Example: Basic Authentication with a Servlet .. 879
Example: Basic Authentication with JAX-WS .. 888

31 The Java Message Service API ... 895
Overview of the JMS API .. 895

What Is Messaging? ... 895
What Is the JMS API? .. 896
When Can You Use the JMS API? ... 896
How Does the JMS API Work with the Java EE Platform? ... 898

Basic JMS API Concepts ... 898
JMS API Architecture .. 899
Messaging Domains ... 900
Message Consumption .. 902

The JMS API Programming Model ... 902
JMS Administered Objects ... 903
JMS Connections ... 905
JMS Sessions ... 906
JMS Message Producers .. 906
JMS Message Consumers .. 907
JMS Messages ... 909
JMS Queue Browsers ... 911

Contents

23

JMS Exception Handling ... 912
Writing Simple JMS Client Applications .. 913

A Simple Example of Synchronous Message Receives .. 913
A Simple Example of Asynchronous Message Consumption .. 922
A Simple Example of Browsing Messages in a Queue ... 928
Running JMS Client Programs on Multiple Systems ... 933

Creating Robust JMS Applications .. 937
Using Basic Reliability Mechanisms .. 938
Using Advanced Reliability Mechanisms ... 944

Using the JMS API in a Java EE Application .. 956
Using @Resource Annotations in Java EE Components ... 956
Using Session Beans to Produce and to Synchronously Receive Messages 957
Using Message-Driven Beans to Receive Messages Asynchronously 958
Managing Distributed Transactions .. 960
Using the JMS API with Application Clients and Web Components 962

Further Information about JMS ... 963

32 Java EE Examples Using the JMS API .. 965
A Java EE Application That Uses the JMS API with a Session Bean .. 966

Writing the Application Components for the clientsessionmdb Example 966
Creating Resources for the clientsessionmdb Example ... 969
Building, Deploying, and Running the clientsessionmdb Example Using NetBeans
IDE ... 969
Building, Deploying, and Running the clientsessionmdb Example Using Ant 971

A Java EE Application That Uses the JMS API with an Entity ... 972
Overview of the clientmdbentity Example Application .. 972
Writing the Application Components for the clientmdbentity Example 974
Creating Resources for the clientmdbentity Example ... 976
Building, Deploying, and Running the clientmdbentity Example Using NetBeans
IDE ... 977
Building, Deploying, and Running the clientmdbentity Example Using Ant 979

An Application Example That Consumes Messages from a Remote Server 981
Overview of the consumeremote Example Modules .. 981
Writing the Module Components for the consumeremote Example 982
Creating Resources for the consumeremote Example ... 983
Using Two Application Servers for the consumeremote Example 983

Contents

The Java EE 5 Tutorial • October 200824

Building, Deploying, and Running the consumeremoteModules Using NetBeans IDE ... 984
Building, Deploying, and Running the consumeremote Modules Using Ant 985

An Application Example That Deploys a Message-Driven Bean on Two Servers 987
Overview of the sendremote Example Modules .. 988
Writing the Module Components for the sendremote Example ... 989
Creating Resources for the sendremote Example .. 990
Using Two Application Servers for the sendremote Example ... 991
Building, Deploying, and Running the sendremote Modules Using NetBeans IDE 991
Building, Deploying, and Running the sendremote Modules Using Ant 994

33 Transactions .. 999
What Is a Transaction? ... 999
Container-Managed Transactions .. 1000

Transaction Attributes .. 1000
Rolling Back a Container-Managed Transaction .. 1004
Synchronizing a Session Bean’s Instance Variables ... 1005
Methods Not Allowed in Container-Managed Transactions ... 1005

Bean-Managed Transactions ... 1005
JTA Transactions ... 1006
Returning without Committing ... 1006
Methods Not Allowed in Bean-Managed Transactions .. 1007

Transaction Timeouts ... 1007
Updating Multiple Databases .. 1007
Transactions in Web Components ... 1009

34 Resource Connections ... 1011
Resources and JNDI Naming ... 1011
DataSource Objects and Connection Pools ... 1012
Resource Injection ... 1013

Field-Based Injection ... 1014
Method-Based Injection .. 1015
Class-Based Injection .. 1016

The confirmer Example Application ... 1016
Running the confirmer Example Application ... 1017

Further Information about Resources .. 1020

Contents

25

35 Connector Architecture ... 1021
About Resource Adapters ... 1021
Resource Adapter Contracts .. 1023

Management Contracts ... 1023
Outbound Contracts ... 1025
Inbound Contracts ... 1025

Common Client Interface .. 1026
Further Information about the Connector Architecture .. 1027

Part VII Case Studies ...1029

36 The Coffee Break Application ..1031
Overview of the Coffee Break Application ... 1031
Common Code .. 1033
JAX-WS Coffee Supplier Service ... 1033

Service Implementation .. 1033
SAAJ Coffee Supplier Service ... 1034

SAAJ Client ... 1035
SAAJ Service ... 1042

Coffee Break Server ... 1048
JSP Pages ... 1048
JavaBeans Components ... 1050
The RetailPriceListServlet Servlet ... 1052
Resource Configuration .. 1052

Building, Packaging, Deploying, and Running the Coffee Break Application 1053
Setting the Port ... 1054
Building, Packaging, and Deploying the JAX-WS Coffee Supplier Service 1054
Building, Packaging, and Deploying the SAAJ Coffee Supplier Service 1055
Building, Packaging, and Deploying the Coffee Break Server .. 1055
Running the Coffee Break Client ... 1056
Removing the Coffee Break Application ... 1058

37 The Duke’s Bank Application ...1059
Overview of the Duke’s Bank Application .. 1059

Contents

The Java EE 5 Tutorial • October 200826

Enterprise Beans .. 1060
Session Beans .. 1061
Java Persistence Entities .. 1063
Helper Classes ... 1063
Database Tables .. 1064
Protecting the Enterprise Beans ... 1065

Application Client ... 1066
The Classes and Their Relationships ... 1067
BankAdmin Class ... 1067

Web Client ... 1068
Design Strategies .. 1070
Client Components ... 1071
Request Processing .. 1073
Protecting the Web Client Resources .. 1075

Building, Packaging, Deploying, and Running the Duke's Bank Application 1077
Setting Up the Servers .. 1077
Building, Packaging, and Deploying Duke’s Bank Using NetBeans IDE 1078
Building, Packaging, and Deploying Duke’s Bank Using Ant .. 1079
Running the Duke's Bank Application Client Using NetBeans IDE 1079
Running the Duke's Bank Application Client Using Ant .. 1079
Running the Duke's Bank Web Client ... 1080

Part VIII Appendixes ...1083

A Java Encoding Schemes ..1085
Further Information about Character Encoding ... 1086

B Preparation for Java EE Certification Exams ... 1087
CX-310-083: Sun Certified Web Component Developer ... 1088
SL-351–EE5: Business Component Development with Enterprise JavaBeans Technology .. 1088

C About the Authors ...1091

Index ... 1093

Contents

27

28

Preface

This tutorial is a guide to developing enterprise applications for the JavaTM Platform, Enterprise
Edition 5 (Java EE 5).

This preface contains information about and conventions for the entire Sun Java System
Application Server documentation set.

Before You Read This Book
Before proceeding with this tutorial, you should have a good knowledge of the Java
programming language. A good way to get to that point is to work through The Java Tutorial,
Fourth Edition, Sharon Zakhour et al. (Addison-Wesley, 2006). You should also be familiar with
the Java DataBase Connectivity (JDBCTM) and relational database features described in JDBC
API Tutorial and Reference, Third Edition, Maydene Fisher et al. (Addison-Wesley, 2003).

How This Book Is Organized
The Java EE 5 platform is quite large, and this tutorial reflects this. However, you don’t have to
digest everything in it at once. The tutorial has been divided into parts to help you navigate the
content more easily.

This tutorial opens with an introductory chapter, which you should read before proceeding to
any specific technology area. Chapter 1, “Overview,” covers the Java EE 5 platform architecture
and APIs, the Sun Java System Application Server 9.1, and how to use the this tutorial's
examples.

When you have digested the basics, you can delve into one or more of the five main technology
areas listed next. Because there are dependencies between some of the chapters, Figure P–1
contains a roadmap for navigating through the tutorial.

■ The web-tier technology chapters in Part II cover the components used in developing the
presentation layer of a Java EE 5 or stand-alone web application:
■ Java Servlet
■ JavaServer PagesTM (JSPTM)
■ JavaServer Pages Standard Tag Library (JSTL)

29

■ JavaServerTM Faces
■ Web application internationalization and localization

■ The web services technology chapters in Part III cover the APIs used in developing standard
web services:
■ The Java API for XML-based Web Services (JAX-WS)
■ The Java API for XML Binding (JAXB)
■ The Streaming API for XML (StAX)
■ The SOAP with Attachments API for JavaTM (SAAJ)

■ The Enterprise JavaBeansTM (EJBTM) technology chapters in Part IV cover the components
used in developing the business logic of a Java EE 5 application:
■ Session beans
■ Message-driven beans

■ The persistence technology chapters in Part V cover the Java Persistence API, which is used
for accessing databases from Java EE applications:
■ Introduction to the Java Persistence API
■ Persistence in the Web Tier
■ Persistence in the EJB Tier
■ The Java Persistence Query Language

■ The platform services chapters in Part VI cover the system services used by all the Java EE 5
component technologies:
■ Security
■ Java Message Service
■ Transactions
■ Resource connections
■ The Java EE Connector Architecture

Preface

The Java EE 5 Tutorial • October 200830

After you have become familiar with some of the technology areas, you are ready to tackle the
case studies in Part VII, which tie together several of the technologies discussed in the tutorial.
The Coffee Break Application describes an application that uses the web application and web
services APIs. The Duke’s Bank Application describes an application that employs web
application technologies, enterprise beans, and the Java Persistence API.

Finally, Part VIII contains information about Java encoding schemes and Java EE certification
that may be helpful to the Java EE 5 application developer, and information about the tutorial's
authors.

Overview (1)

Getting Started with
Web Applications (3)

Building Web
Services with
JAX-WS (16)

Enterprise
Beans (20-23)

Security
(28-30)

SAAJ (19)JAXB (17)

Coffee Break
Case Study (36)

Servlets (4)

JSP (5-9)

JSF (10-14)

l18n and
L10n (15)

Duke’s Bank
Case Study (37)

JMS
(31-32)

Transactions
(33)

Resource
Connections

(34)

STAX (18)

Connectors
(35)

Persistence
(24-27)

Using the
Tutorial Examples

(2)

FIGURE P–1 Roadmap to This Tutorial

Preface

31

Application Server Documentation Set
The Application Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for Application Server documentation is
http://docs.sun.com/coll/1343.4. For an introduction to Application Server, refer to the
books in the order in which they are listed in the following table.

TABLE P–1 Books in the Application Server Documentation Set

Book Title Description

Documentation Center Application Server documentation topics organized by task and subject.

Release Notes Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating system, Java
Development Kit (JDKTM), and database drivers.

Quick Start Guide How to get started with the Application Server product.

Installation Guide Installing the software and its components.

Deployment Planning Guide Evaluating your system needs and enterprise to ensure that you deploy the Application Server
in a manner that best suits your site. General issues and concerns that you must be aware of
when deploying the server are also discussed.

Application Deployment Guide Deployment of applications and application components to the Application Server. Includes
information about deployment descriptors.

Developer’s Guide Creating and implementing Java Platform, Enterprise Edition (Java EE platform) applications
intended to run on the Application Server that follow the open Java standards model for Java
EE components and APIs. Includes information about developer tools, security, debugging,
and creating lifecycle modules.

Java EE 5 Tutorial Using Java EE 5 platform technologies and APIs to develop Java EE applications.

Java WSIT Tutorial Developing web applications using the Web Service Interoperability Technologies (WSIT).
Describes how, when, and why to use the WSIT technologies and the features and options
that each technology supports.

Administration Guide System administration for the Application Server, including configuration, monitoring,
security, resource management, and web services management.

High Availability Administration
Guide

Post-installation configuration and administration instructions for the high-availability
database.

Administration Reference Editing the Application Server configuration file, domain.xml.

Upgrade and Migration Guide Upgrading from an older version of Application Server or migrating Java EE applications
from competitive application servers. This guide also describes differences between adjacent
product releases and configuration options that can result in incompatibility with the product
specifications.

Preface

The Java EE 5 Tutorial • October 200832

http://docs.sun.com/coll/1343.4

TABLE P–1 Books in the Application Server Documentation Set (Continued)
Book Title Description

Performance Tuning Guide Tuning the Application Server to improve performance.

Troubleshooting Guide Solving Application Server problems.

Error Message Reference Solving Application Server error messages.

Reference Manual Utility commands available with the Application Server; written in man page style. Includes
the asadmin command line interface.

Related Documentation
Application Server can be purchased by itself or as a component of Sun Java Enterprise System
(Java ES), a software infrastructure that supports enterprise applications distributed across a
network or Internet environment. If you purchased Application Server as a component of
Java ES, you should be familiar with the system documentation at
http://docs.sun.com/coll/1286.3. The URL for all documentation about Java ES and its
components is http://docs.sun.com/prod/entsys.5.

For documentation about other stand-alone Sun Java System server products, go to the
following:

■ Message Queue documentation (http://docs.sun.com/coll/1343.4)
■ Directory Server documentation (http://docs.sun.com/coll/1224.1)
■ Web Server documentation (http://docs.sun.com/coll/1308.3)

A JavadocTM tool reference for packages provided with the Application Server is located at
http://glassfish.dev.java.net/nonav/javaee5/api/index.html. Additionally, the
following resources might be useful:

■ The Java EE 5 Specifications (http://java.sun.com/javaee/5/javatech.html)
■ The Java EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

For information on creating enterprise applications in the NetBeansTM Integrated Development
Environment (IDE), see http://www.netbeans.org/kb/55/index.html.

For information about the Java DB database included with the Application Server, see
http://developers.sun.com/javadb/.

The GlassFish Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The GlassFish Samples are bundled with the Java EE Software
Development Kit (SDK), and are also available from the GlassFish Samples project page at
https://glassfish-samples.dev.java.net/.

Preface

33

http://docs.sun.com/coll/1286.3
http://docs.sun.com/prod/entsys.5
http://docs.sun.com/coll/1343.4
http://docs.sun.com/coll/1224.1
http://docs.sun.com/coll/1308.3
http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://java.sun.com/javaee/5/javatech.html
http://java.sun.com/reference/blueprints/index.html
http://www.netbeans.org/kb/55/index.html
http://developers.sun.com/javadb/
https://glassfish-samples.dev.java.net/

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–2 Default Paths and File Names

Placeholder Description Default Value

tut-install Represents the base installation directory for
the Java EE Tutorial.

None. Install the tutorial in a directory without spaces in the path.

java-home Represents the base installation directory for
the Java Platform, Standard Edition (Java SE
platform).

None. Same value as the JAVA_HOME environment variable.

as-install Represents the base installation directory for
the Application Server or the Software
Development Kit (SDK) of which the
Application Server is a part.

Java ES installations on the SolarisTM operating system:

/opt/SUNWappserver/appserver

Java ES installations on the Linux operating system:

/opt/sun/appserver/

Other Solaris and Linux non-SDK installations, non-root user:

user’s-home-directory/SUNWappserver

Other Solaris and Linux non-SDK installations, root user:

/opt/SUNWappserver

Solaris and Linux SDK installations:

user’s-home-directory/SDK

Windows, all non-SDK installations:

SystemDrive:\Sun\AppServer

Windows, all SDK installations:

SystemDrive:\Sun\SDK

domain-root-dir Represents the directory containing all
Application Server domains.

Java ES Solaris installations:

/var/opt/SUNWappserver/domains/

Java ES Linux installations:

/var/opt/sun/appserver/domains/

All other installations:

as-install/domains/

Preface

The Java EE 5 Tutorial • October 200834

TABLE P–2 Default Paths and File Names (Continued)
Placeholder Description Default Value

domain-dir Represents the directory for a domain.

In configuration files, you might see
domain-dir represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-dir

instance-dir Represents the directory for a server instance. domain-dir/instance-dir

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

Preface

35

TABLE P–4 Symbol Conventions (Continued)
Symbol Description Example Meaning

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Preface

The Java EE 5 Tutorial • October 200836

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-3669.

Preface

37

http://docs.sun.com

38

Introduction
Part One introduces the tutorial and examples.

P A R T I

39

40

Overview

Developers today increasingly recognize the need for distributed, transactional, and portable
applications that leverage the speed, security, and reliability of server-side technology. In the
world of information technology, enterprise applications must be designed, built, and produced
for less money, with greater speed, and with fewer resources.

With the JavaTM Platform, Enterprise Edition (Java EE), development of Java enterprise
applications has never been easier or faster. The aim of the Java EE 5 platform is to provide
developers a powerful set of APIs while reducing development time, reducing application
complexity, and improving application performance.

The Java EE 5 platform introduces a simplified programming model. With Java EE 5
technology, XML deployment descriptors are now optional. Instead, a developer can simply
enter the information as an annotation directly into a Java source file, and the Java EE server will
configure the component at deployment and runtime. These annotations are generally used to
embed in a program data that would otherwise be furnished in a deployment descriptor. With
annotations, the specification information is put directly in your code next to the program
element that it affects.

In the Java EE platform, dependency injection can be applied to all resources that a component
needs, effectively hiding the creation and lookup of resources from application code.
Dependency injection can be used in EJB containers, web containers, and application clients.
Dependency injection allows the Java EE container to automatically insert references to other
required components or resources using annotations.

The Java Persistence API is new to the Java EE 5 platform. The Java Persistence API provides an
object/relational mapping for managing relational data in enterprise beans, web components,
and application clients. It can also be used in Java SE applications, outside of the Java EE
environment.

This tutorial uses examples to describe the features and functionalities available in the Java EE 5
platform for developing enterprise applications. Whether you are a new or experienced
Enterprise developer, you should find the examples and accompanying text a valuable and
accessible knowledge base for creating your own solutions.

1C H A P T E R 1

41

If you are new to Java EE enterprise application development, this chapter is a good place to
start. Here you will review development basics, learn about the Java EE architecture and APIs,
become acquainted with important terms and concepts, and find out how to approach Java EE
application programming, assembly, and deployment.

Java EE Application Model
The Java EE application model begins with the Java programming language and the Java virtual
machine. The proven portability, security, and developer productivity they provide forms the
basis of the application model. Java EE is designed to support applications that implement
enterprise services for customers, employees, suppliers, partners, and others who make
demands on or contributions to the enterprise. Such applications are inherently complex,
potentially accessing data from a variety of sources and distributing applications to a variety of
clients.

To better control and manage these applications, the business functions to support these
various users are conducted in the middle tier. The middle tier represents an environment that
is closely controlled by an enterprise’s information technology department. The middle tier is
typically run on dedicated server hardware and has access to the full services of the enterprise.

The Java EE application model defines an architecture for implementing services as multitier
applications that deliver the scalability, accessibility, and manageability needed by
enterprise-level applications. This model partitions the work needed to implement a multitier
service into two parts: the business and presentation logic to be implemented by the developer,
and the standard system services provided by the Java EE platform. The developer can rely on
the platform to provide solutions for the hard systems-level problems of developing a multitier
service.

Distributed Multitiered Applications
The Java EE platform uses a distributed multitiered application model for enterprise
applications. Application logic is divided into components according to function, and the
various application components that make up a Java EE application are installed on different
machines depending on the tier in the multitiered Java EE environment to which the
application component belongs.

Figure 1–1 shows two multitiered Java EE applications divided into the tiers described in the
following list. The Java EE application parts shown in Figure 1–1 are presented in “Java EE
Components” on page 44.

■ Client-tier components run on the client machine.
■ Web-tier components run on the Java EE server.
■ Business-tier components run on the Java EE server.

Java EE Application Model

The Java EE 5 Tutorial • October 200842

■ Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of the three or four tiers shown in Figure 1–1, Java
EE multitiered applications are generally considered to be three-tiered applications because
they are distributed over three locations: client machines, the Java EE server machine, and the
database or legacy machines at the back end. Three-tiered applications that run in this way
extend the standard two-tiered client and server model by placing a multithreaded application
server between the client application and back-end storage.

Security
While other enterprise application models require platform-specific security measures in each
application, the Java EE security environment enables security constraints to be defined at
deployment time. The Java EE platform makes applications portable to a wide variety of
security implementations by shielding application developers from the complexity of
implementing security features.

Application
Client

Java EE Application 1 Java EE Application 2

Dynamic
HTML Pages

Web Tier

Business TierEnterprise BeansEnterprise Beans

Database Database

JSP Pages

EIS Tier

Client Tier
Client
Machine

Java EE
Server

Database
Server

FIGURE 1–1 Multitiered Applications

Distributed Multitiered Applications

Chapter 1 • Overview 43

The Java EE platform provides standard declarative access control rules that are defined by the
developer and interpreted when the application is deployed on the server. Java EE also provides
standard login mechanisms so application developers do not have to implement these
mechanisms in their applications. The same application works in a variety of different security
environments without changing the source code.

Java EE Components
Java EE applications are made up of components. A Java EE component is a self-contained
functional software unit that is assembled into a Java EE application with its related classes and
files and that communicates with other components.

The Java EE specification defines the following Java EE components:

■ Application clients and applets are components that run on the client.
■ Java Servlet, JavaServer Faces, and JavaServer PagesTM (JSPTM) technology components are

web components that run on the server.
■ Enterprise JavaBeansTM (EJBTM) components (enterprise beans) are business components

that run on the server.

Java EE components are written in the Java programming language and are compiled in the
same way as any program in the language. The difference between Java EE components and
“standard” Java classes is that Java EE components are assembled into a Java EE application, are
verified to be well formed and in compliance with the Java EE specification, and are deployed to
production, where they are run and managed by the Java EE server.

Java EE Clients
A Java EE client can be a web client or an application client.

Web Clients
A web client consists of two parts: (1) dynamic web pages containing various types of markup
language (HTML, XML, and so on), which are generated by web components running in the
web tier, and (2) a web browser, which renders the pages received from the server.

A web client is sometimes called a thin client. Thin clients usually do not query databases,
execute complex business rules, or connect to legacy applications. When you use a thin client,
such heavyweight operations are off-loaded to enterprise beans executing on the Java EE server,
where they can leverage the security, speed, services, and reliability of Java EE server-side
technologies.

Distributed Multitiered Applications

The Java EE 5 Tutorial • October 200844

Applets
A web page received from the web tier can include an embedded applet. An applet is a small
client application written in the Java programming language that executes in the Java virtual
machine installed in the web browser. However, client systems will likely need the Java Plug-in
and possibly a security policy file for the applet to successfully execute in the web browser.

Web components are the preferred API for creating a web client program because no plug-ins
or security policy files are needed on the client systems. Also, web components enable cleaner
and more modular application design because they provide a way to separate applications
programming from web page design. Personnel involved in web page design thus do not need
to understand Java programming language syntax to do their jobs.

Application Clients
An application client runs on a client machine and provides a way for users to handle tasks that
require a richer user interface than can be provided by a markup language. It typically has a
graphical user interface (GUI) created from the Swing or the Abstract Window Toolkit (AWT)
API, but a command-line interface is certainly possible.

Application clients directly access enterprise beans running in the business tier. However, if
application requirements warrant it, an application client can open an HTTP connection to
establish communication with a servlet running in the web tier. Application clients written in
languages other than Java can interact with Java EE 5 servers, enabling the Java EE 5 platform to
interoperate with legacy systems, clients, and non-Java languages.

The JavaBeansTM Component Architecture
The server and client tiers might also include components based on the JavaBeans component
architecture (JavaBeans components) to manage the data flow between an application client or
applet and components running on the Java EE server, or between server components and a
database. JavaBeans components are not considered Java EE components by the Java EE
specification.

JavaBeans components have properties and have get and set methods for accessing the
properties. JavaBeans components used in this way are typically simple in design and
implementation but should conform to the naming and design conventions outlined in the
JavaBeans component architecture.

Java EE Server Communications
Figure 1–2 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the Java EE server either directly or, as in the
case of a client running in a browser, by going through JSP pages or servlets running in the web
tier.

Distributed Multitiered Applications

Chapter 1 • Overview 45

Your Java EE application uses a thin browser-based client or thick application client. In
deciding which one to use, you should be aware of the trade-offs between keeping functionality
on the client and close to the user (thick client) and off-loading as much functionality as
possible to the server (thin client). The more functionality you off-load to the server, the easier it
is to distribute, deploy, and manage the application; however, keeping more functionality on
the client can make for a better perceived user experience.

Web Components
Java EE web components are either servlets or pages created using JSP technology (JSP pages)
and/or JavaServer Faces technology. Servlets are Java programming language classes that
dynamically process requests and construct responses. JSP pages are text-based documents that
execute as servlets but allow a more natural approach to creating static content. JavaServer Faces
technology builds on servlets and JSP technology and provides a user interface component
framework for web applications.

Web Tier

Business Tier

Client Tier

Java EE
Server

> Web Browser, Web Pages,
 Applets, and Optional
 JavaBeans Components

> Application Client and
 Optional JavaBeans
 Components

FIGURE 1–2 Server Communication

Distributed Multitiered Applications

The Java EE 5 Tutorial • October 200846

Static HTML pages and applets are bundled with web components during application assembly
but are not considered web components by the Java EE specification. Server-side utility classes
can also be bundled with web components and, like HTML pages, are not considered web
components.

As shown in Figure 1–3, the web tier, like the client tier, might include a JavaBeans component
to manage the user input and send that input to enterprise beans running in the business tier for
processing.

Business Components
Business code, which is logic that solves or meets the needs of a particular business domain such
as banking, retail, or finance, is handled by enterprise beans running in the business tier.
Figure 1–4 shows how an enterprise bean receives data from client programs, processes it (if
necessary), and sends it to the enterprise information system tier for storage. An enterprise
bean also retrieves data from storage, processes it (if necessary), and sends it back to the client
program.

Web Tier

Business Tier

Client Tier

Java EE
Server

> Web Browser, Web Pages,
 Applets, and Optional
 JavaBeans Components

> Application Client and
 Optional JavaBeans
 Components

JavaBeans
Components

(Optional)
JSP Pages

Servlets

FIGURE 1–3 Web Tier and Java EE Applications

Distributed Multitiered Applications

Chapter 1 • Overview 47

Enterprise Information System Tier
The enterprise information system tier handles EIS software and includes enterprise
infrastructure systems such as enterprise resource planning (ERP), mainframe transaction
processing, database systems, and other legacy information systems. For example, Java EE
application components might need access to enterprise information systems for database
connectivity.

Java EE Containers
Normally, thin-client multitiered applications are hard to write because they involve many lines
of intricate code to handle transaction and state management, multithreading, resource
pooling, and other complex low-level details. The component-based and platform-independent
Java EE architecture makes Java EE applications easy to write because business logic is
organized into reusable components. In addition, the Java EE server provides underlying

Web Tier

Business Tier

Client Tier

Java EE
Server

> Web Browser, Web Pages,
 Applets, and Optional
 JavaBeans Components

> Application Client and
 Optional JavaBeans
 Components

JavaBeans
Components

(Optional)
JSP Pages

Servlets

Database
and Legacy

Systems
EIS Tier

Java Persistence Entities
Session Beans

Message-Driven
Beans

FIGURE 1–4 Business and EIS Tiers

Java EE Containers

The Java EE 5 Tutorial • October 200848

services in the form of a container for every component type. Because you do not have to
develop these services yourself, you are free to concentrate on solving the business problem at
hand.

Container Services
Containers are the interface between a component and the low-level platform-specific
functionality that supports the component. Before a web, enterprise bean, or application client
component can be executed, it must be assembled into a Java EE module and deployed into its
container.

The assembly process involves specifying container settings for each component in the Java EE
application and for the Java EE application itself. Container settings customize the underlying
support provided by the Java EE server, including services such as security, transaction
management, Java Naming and Directory InterfaceTM (JNDI) lookups, and remote connectivity.
Here are some of the highlights:

■ The Java EE security model lets you configure a web component or enterprise bean so that
system resources are accessed only by authorized users.

■ The Java EE transaction model lets you specify relationships among methods that make up a
single transaction so that all methods in one transaction are treated as a single unit.

■ JNDI lookup services provide a unified interface to multiple naming and directory services
in the enterprise so that application components can access these services.

■ The Java EE remote connectivity model manages low-level communications between clients
and enterprise beans. After an enterprise bean is created, a client invokes methods on it as if
it were in the same virtual machine.

Because the Java EE architecture provides configurable services, application components within
the same Java EE application can behave differently based on where they are deployed. For
example, an enterprise bean can have security settings that allow it a certain level of access to
database data in one production environment and another level of database access in another
production environment.

The container also manages nonconfigurable services such as enterprise bean and servlet life
cycles, database connection resource pooling, data persistence, and access to the Java EE
platform APIs (see “Java EE 5 APIs” on page 57).

Container Types
The deployment process installs Java EE application components in the Java EE containers as
illustrated in Figure 1–5.

Java EE Containers

Chapter 1 • Overview 49

■ Java EE server: The runtime portion of a Java EE product. A Java EE server provides EJB and
web containers.

■ Enterprise JavaBeans (EJB) container: Manages the execution of enterprise beans for Java
EE applications. Enterprise beans and their container run on the Java EE server.

■ Web container: Manages the execution of JSP page and servlet components for Java EE
applications. Web components and their container run on the Java EE server.

■ Application client container: Manages the execution of application client components.
Application clients and their container run on the client.

■ Applet container: Manages the execution of applets. Consists of a web browser and Java
Plug-in running on the client together.

Web Browser

Web
Container

EJB
Container

Enterprise
Bean

Database

Client
Machine

Java EE
Server

Application
Client

Application Client
Container

Servlet
JSP
Page

Enterprise
Bean

FIGURE 1–5 Java EE Server and Containers

Java EE Containers

The Java EE 5 Tutorial • October 200850

Web Services Support
Web services are web-based enterprise applications that use open, XML-based standards and
transport protocols to exchange data with calling clients. The Java EE platform provides the
XML APIs and tools you need to quickly design, develop, test, and deploy web services and
clients that fully interoperate with other web services and clients running on Java-based or
non-Java-based platforms.

To write web services and clients with the Java EE XML APIs, all you do is pass parameter data
to the method calls and process the data returned; or for document-oriented web services, you
send documents containing the service data back and forth. No low-level programming is
needed because the XML API implementations do the work of translating the application data
to and from an XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the following sections.

The translation of data to a standardized XML-based data stream is what makes web services
and clients written with the Java EE XML APIs fully interoperable. This does not necessarily
mean that the data being transported includes XML tags because the transported data can itself
be plain text, XML data, or any kind of binary data such as audio, video, maps, program files,
computer-aided design (CAD) documents and the like. The next section introduces XML and
explains how parties doing business can use XML tags and schemas to exchange data in a
meaningful way.

XML
XML is a cross-platform, extensible, text-based standard for representing data. When XML data
is exchanged between parties, the parties are free to create their own tags to describe the data, set
up schemas to specify which tags can be used in a particular kind of XML document, and use
XML stylesheets to manage the display and handling of the data.

For example, a web service can use XML and a schema to produce price lists, and companies
that receive the price lists and schema can have their own stylesheets to handle the data in a way
that best suits their needs. Here are examples:

■ One company might put XML pricing information through a program to translate the XML
to HTML so that it can post the price lists to its intranet.

■ A partner company might put the XML pricing information through a tool to create a
marketing presentation.

■ Another company might read the XML pricing information into an application for
processing.

Web Services Support

Chapter 1 • Overview 51

SOAP Transport Protocol
Client requests and web service responses are transmitted as Simple Object Access Protocol
(SOAP) messages over HTTP to enable a completely interoperable exchange between clients
and web services, all running on different platforms and at various locations on the Internet.
HTTP is a familiar request-and response standard for sending messages over the Internet, and
SOAP is an XML-based protocol that follows the HTTP request-and-response model.

The SOAP portion of a transported message handles the following:

■ Defines an XML-based envelope to describe what is in the message and how to process the
message

■ Includes XML-based encoding rules to express instances of application-defined data types
within the message

■ Defines an XML-based convention for representing the request to the remote service and
the resulting response

WSDL Standard Format
The Web Services Description Language (WSDL) is a standardized XML format for describing
network services. The description includes the name of the service, the location of the service,
and ways to communicate with the service. WSDL service descriptions can be stored in UDDI
registries or published on the web (or both). The Sun Java System Application Server Platform
Edition 8 provides a tool for generating the WSDL specification of a web service that uses
remote procedure calls to communicate with clients.

UDDI and ebXML Standard Formats
Other XML-based standards, such as Universal Description, Discovery and Integration (UDDI)
and ebXML, make it possible for businesses to publish information on the Internet about their
products and web services, where the information can be readily and globally accessed by
clients who want to do business.

Java EE Application Assembly and Deployment
A Java EE application is packaged into one or more standard units for deployment to any Java
EE platform-compliant system. Each unit contains:

■ A functional component or components (such as an enterprise bean, JSP page, servlet, or
applet)

■ An optional deployment descriptor that describes its content

Java EE Application Assembly and Deployment

The Java EE 5 Tutorial • October 200852

Once a Java EE unit has been produced, it is ready to be deployed. Deployment typically
involves using a platform’s deployment tool to specify location-specific information, such as a
list of local users that can access it and the name of the local database. Once deployed on a local
platform, the application is ready to run.

Packaging Applications
A Java EE application is delivered in an Enterprise Archive (EAR) file, a standard Java Archive
(JAR) file with an .ear extension. Using EAR files and modules makes it possible to assemble a
number of different Java EE applications using some of the same components. No extra coding
is needed; it is only a matter of assembling (or packaging) various Java EE modules into Java EE
EAR files.

An EAR file (see Figure 1–6) contains Java EE modules and deployment descriptors. A
deployment descriptor is an XML document with an .xml extension that describes the
deployment settings of an application, a module, or a component. Because deployment
descriptor information is declarative, it can be changed without the need to modify the source
code. At runtime, the Java EE server reads the deployment descriptor and acts upon the
application, module, or component accordingly.

There are two types of deployment descriptors: Java EE and runtime. A Java EE deployment
descriptor is defined by a Java EE specification and can be used to configure deployment settings
on any Java EE-compliant implementation. A runtime deployment descriptor is used to

application.xml
sun-application.xml

Assembly
Root

META-INF
Web

Module
EJB

Module

Application
Client Module

Resource
Adapter Module

FIGURE 1–6 EAR File Structure

Packaging Applications

Chapter 1 • Overview 53

configure Java EE implementation-specific parameters. For example, the Sun Java System
Application Server Platform Edition 9 runtime deployment descriptor contains information
such as the context root of a web application, the mapping of portable names of an application’s
resources to the server’s resources, and Application Server implementation-specific parameters,
such as caching directives. The Application Server runtime deployment descriptors are named
sun-moduleType.xml and are located in the same META-INF directory as the Java EE
deployment descriptor.

A Java EE module consists of one or more Java EE components for the same container type and
one component deployment descriptor of that type. An enterprise bean module deployment
descriptor, for example, declares transaction attributes and security authorizations for an
enterprise bean. A Java EE module without an application deployment descriptor can be
deployed as a stand-alone module.

The four types of Java EE modules are as follows:

■ EJB modules, which contain class files for enterprise beans and an EJB deployment
descriptor. EJB modules are packaged as JAR files with a .jar extension.

■ Web modules, which contain servlet class files, JSP files, supporting class files, GIF and
HTML files, and a web application deployment descriptor. Web modules are packaged as
JAR files with a .war (Web ARchive) extension.

■ Application client modules, which contain class files and an application client deployment
descriptor. Application client modules are packaged as JAR files with a .jar extension.

■ Resource adapter modules, which contain all Java interfaces, classes, native libraries, and
other documentation, along with the resource adapter deployment descriptor. Together,
these implement the Connector architecture (see “J2EE Connector Architecture” on
page 61) for a particular EIS. Resource adapter modules are packaged as JAR files with an
.rar (resource adapter archive) extension.

Development Roles
Reusable modules make it possible to divide the application development and deployment
process into distinct roles so that different people or companies can perform different parts of
the process.

The first two roles involve purchasing and installing the Java EE product and tools. After
software is purchased and installed, Java EE components can be developed by application
component providers, assembled by application assemblers, and deployed by application
deployers. In a large organization, each of these roles might be executed by different individuals
or teams. This division of labor works because each of the earlier roles outputs a portable file
that is the input for a subsequent role. For example, in the application component development
phase, an enterprise bean software developer delivers EJB JAR files. In the application assembly
role, another developer combines these EJB JAR files into a Java EE application and saves it in

Development Roles

The Java EE 5 Tutorial • October 200854

an EAR file. In the application deployment role, a system administrator at the customer site uses
the EAR file to install the Java EE application into a Java EE server.

The different roles are not always executed by different people. If you work for a small company,
for example, or if you are prototyping a sample application, you might perform the tasks in
every phase.

Java EE Product Provider
The Java EE product provider is the company that designs and makes available for purchase the
Java EE platform APIs, and other features defined in the Java EE specification. Product
providers are typically application server vendors who implement the Java EE platform
according to the Java EE 5 Platform specification.

Tool Provider
The tool provider is the company or person who creates development, assembly, and packaging
tools used by component providers, assemblers, and deployers.

Application Component Provider
The application component provider is the company or person who creates web components,
enterprise beans, applets, or application clients for use in Java EE applications.

Enterprise Bean Developer
An enterprise bean developer performs the following tasks to deliver an EJB JAR file that
contains one or more enterprise beans:

■ Writes and compiles the source code
■ Specifies the deployment descriptor
■ Packages the .class files and deployment descriptor into the EJB JAR file

Web Component Developer
A web component developer performs the following tasks to deliver a WAR file containing one
or more web components:

■ Writes and compiles servlet source code
■ Writes JSP, JavaServer Faces, and HTML files
■ Specifies the deployment descriptor
■ Packages the .class, .jsp, and.html files and deployment descriptor into the WAR file

Development Roles

Chapter 1 • Overview 55

Application Client Developer
An application client developer performs the following tasks to deliver a JAR file containing the
application client:
■ Writes and compiles the source code
■ Specifies the deployment descriptor for the client
■ Packages the .class files and deployment descriptor into the JAR file

Application Assembler
The application assembler is the company or person who receives application modules from
component providers and assembles them into a Java EE application EAR file. The assembler or
deployer can edit the deployment descriptor directly or can use tools that correctly add XML
tags according to interactive selections.

A software developer performs the following tasks to deliver an EAR file containing the Java EE
application:
■ Assembles EJB JAR and WAR files created in the previous phases into a Java EE application

(EAR) file
■ Specifies the deployment descriptor for the Java EE application
■ Verifies that the contents of the EAR file are well formed and comply with the Java EE

specification

Application Deployer and Administrator
The application deployer and administrator is the company or person who configures and
deploys the Java EE application, administers the computing and networking infrastructure
where Java EE applications run, and oversees the runtime environment. Duties include such
things as setting transaction controls and security attributes and specifying connections to
databases.

During configuration, the deployer follows instructions supplied by the application component
provider to resolve external dependencies, specify security settings, and assign transaction
attributes. During installation, the deployer moves the application components to the server
and generates the container-specific classes and interfaces.

A deployer or system administrator performs the following tasks to install and configure a Java
EE application:
■ Adds the Java EE application (EAR) file created in the preceding phase to the Java EE server
■ Configures the Java EE application for the operational environment by modifying the

deployment descriptor of the Java EE application

Development Roles

The Java EE 5 Tutorial • October 200856

■ Verifies that the contents of the EAR file are well formed and comply with the Java EE
specification

■ Deploys (installs) the Java EE application EAR file into the Java EE server

Java EE 5 APIs
Figure 1–7 illustrates the availability of the Java EE 5 platform APIs in each Java EE container
type. The following sections give a brief summary of the technologies required by the Java EE
platform, and the APIs used in Java EE applications.

Enterprise JavaBeans Technology
An Enterprise JavaBeansTM (EJB) component, or enterprise bean, is a body of code having fields
and methods to implement modules of business logic. You can think of an enterprise bean as a
building block that can be used alone or with other enterprise beans to execute business logic on
the Java EE server.

There are two kinds of enterprise beans: session beans and message-driven beans. A session
bean represents a transient conversation with a client. When the client finishes executing, the
session bean and its data are gone. A message-driven bean combines features of a session bean

Application
Client

Application Client
Container

J2SE

Applet
Container

J2SE

Applet

Web Container

J2SE

JSP Servlet

EJB Container

J2SE

EJB

HTTP
SSL

HTTP
SSL

JA
X

-R
P

C

SAAJ

JA
X

-W
S

JA
X

R

JM
S

W
eb S

ervices

W
S

 M
etadata

Java
 P

ersistence

S
tA

X

M
anagem

ent

JA
X

-R
P

C

SAAJ

JA
X

-W
S

JA
X

R

JA
C

C

W
eb S

ervices

W
S

 M
etadata

JM
S

C
onnectors

M
anagem

ent

JTA

Java
P

ersistence

S
tA

X

JavaS
erver

Faces

JS
T

L

Java
Mail

JAF

JA
X

-R
P

C

SAAJ

JA
X

-W
S

JA
X

R

JA
C

C

W
eb S

ervices

W
S

 M
etadata

JM
S

C
onnectors

M
anagem

ent

JTA

Java
P

ersistence

S
tA

X

Java
Mail

JAF

New in Java EE 5

Database

FIGURE 1–7 Java EE Platform APIs

Java EE 5 APIs

Chapter 1 • Overview 57

and a message listener, allowing a business component to receive messages asynchronously.
Commonly, these are Java Message Service (JMS) messages.

In Java EE 5, entity beans have been replaced by Java persistence API entities. An entity
represents persistent data stored in one row of a database table. If the client terminates, or if the
server shuts down, the persistence manager ensures that the entity data is saved.

Java Servlet Technology
Java servlet technology lets you define HTTP-specific servlet classes. A servlet class extends the
capabilities of servers that host applications that are accessed by way of a request-response
programming model. Although servlets can respond to any type of request, they are commonly
used to extend the applications hosted by web servers.

JavaServer Pages Technology
JavaServer PagesTM (JSP) technology lets you put snippets of servlet code directly into a
text-based document. A JSP page is a text-based document that contains two types of text: static
data (which can be expressed in any text-based format such as HTML, WML, and XML) and
JSP elements, which determine how the page constructs dynamic content.

JavaServer Pages Standard Tag Library
The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality common to
many JSP applications. Instead of mixing tags from numerous vendors in your JSP applications,
you employ a single, standard set of tags. This standardization allows you to deploy your
applications on any JSP container that supports JSTL and makes it more likely that the
implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating XML
documents, internationalization tags, tags for accessing databases using SQL, and commonly
used functions.

Java EE 5 APIs

The Java EE 5 Tutorial • October 200858

JavaServer Faces
JavaServer Faces technology is a user interface framework for building web applications. The
main components of JavaServer Faces technology are as follows:
■ A GUI component framework.
■ A flexible model for rendering components in different kinds of HTML or different markup

languages and technologies. A Renderer object generates the markup to render the
component and converts the data stored in a model object to types that can be represented
in a view.

■ A standard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:
■ Input validation
■ Event handling
■ Data conversion between model objects and components
■ Managed model object creation
■ Page navigation configuration

All this functionality is available using standard Java APIs and XML-based configuration files.

Java Message Service API
The Java Message Service (JMS) API is a messaging standard that allows Java EE application
components to create, send, receive, and read messages. It enables distributed communication
that is loosely coupled, reliable, and asynchronous.

Java Transaction API
The Java Transaction API (JTA) provides a standard interface for demarcating transactions.
The Java EE architecture provides a default auto commit to handle transaction commits and
rollbacks. An auto commit means that any other applications that are viewing data will see the
updated data after each database read or write operation. However, if your application performs
two separate database access operations that depend on each other, you will want to use the JTA
API to demarcate where the entire transaction, including both operations, begins, rolls back,
and commits.

JavaMail API
Java EE applications use the JavaMailTM API to send email notifications. The JavaMail API has
two parts: an application-level interface used by the application components to send mail, and a

Java EE 5 APIs

Chapter 1 • Overview 59

service provider interface. The Java EE platform includes JavaMail with a service provider that
allows application components to send Internet mail.

JavaBeans Activation Framework
The JavaBeans Activation Framework (JAF) is included because JavaMail uses it. JAF provides
standard services to determine the type of an arbitrary piece of data, encapsulate access to it,
discover the operations available on it, and create the appropriate JavaBeans component to
perform those operations.

Java API for XML Processing
The Java API for XML Processing (JAXP), part of the Java SE platform, supports the processing
of XML documents using Document Object Model (DOM), Simple API for XML (SAX), and
Extensible Stylesheet Language Transformations (XSLT). JAXP enables applications to parse
and transform XML documents independent of a particular XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that might otherwise
have naming conflicts. Designed to be flexible, JAXP lets you use any XML-compliant parser or
XSL processor from within your application and supports the W3C schema. You can find
information on the W3C schema at this URL: http://www.w3.org/XML/Schema.

Java API for XML Web Services (JAX-WS)
The JAX-WS specification provides support for web services that use the JAXB API for binding
XML data to Java objects. The JAX-WS specification defines client APIs for accessing web
services as well as techniques for implementing web service endpoints. The Web Services for
J2EE specification describes the deployment of JAX-WS-based services and clients. The EJB and
servlet specifications also describe aspects of such deployment. It must be possible to deploy
JAX-WS-based applications using any of these deployment models.

The JAX-WS specification describes the support for message handlers that can process message
requests and responses. In general, these message handlers execute in the same container and
with the same privileges and execution context as the JAX-WS client or endpoint component
with which they are associated. These message handlers have access to the same JNDI
java:comp/env namespace as their associated component. Custom serializers and deserializers,
if supported, are treated in the same way as message handlers.

Java EE 5 APIs

The Java EE 5 Tutorial • October 200860

http://www.w3.org/XML/Schema

Java Architecture for XML Binding (JAXB)
The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML
schema to a representation in Java language programs. JAXB can be used independently or in
combination with JAX-WS, where it provides a standard data binding for web service messages.
All Java EE application client containers, web containers, and EJB containers support the JAXB
API.

SOAP with Attachments API for Java
The SOAP with Attachments API for Java (SAAJ) is a low-level API on which JAX-WS and
JAXR depend. SAAJ enables the production and consumption of messages that conform to the
SOAP 1.1 specification and SOAP with Attachments note. Most developers do not use the SAAJ
API, instead using the higher-level JAX-WS API.

Java API for XML Registries
The Java API for XML Registries (JAXR) lets you access business and general-purpose registries
over the web. JAXR supports the ebXML Registry and Repository standards and the emerging
UDDI specifications. By using JAXR, developers can learn a single API and gain access to both
of these important registry technologies.

Additionally, businesses can submit material to be shared and search for material that others
have submitted. Standards groups have developed schemas for particular kinds of XML
documents; two businesses might, for example, agree to use the schema for their industry’s
standard purchase order form. Because the schema is stored in a standard business registry,
both parties can use JAXR to access it.

J2EE Connector Architecture
The J2EE Connector architecture is used by tools vendors and system integrators to create
resource adapters that support access to enterprise information systems that can be plugged in
to any Java EE product. A resource adapter is a software component that allows Java EE
application components to access and interact with the underlying resource manager of the EIS.
Because a resource adapter is specific to its resource manager, typically there is a different
resource adapter for each type of database or enterprise information system.

The J2EE Connector architecture also provides a performance-oriented, secure, scalable, and
message-based transactional integration of Java EE-based web services with existing EISs that
can be either synchronous or asynchronous. Existing applications and EISs integrated through
the J2EE Connector architecture into the Java EE platform can be exposed as XML-based web

Java EE 5 APIs

Chapter 1 • Overview 61

services by using JAX-WS and Java EE component models. Thus JAX-WS and the J2EE
Connector architecture are complementary technologies for enterprise application integration
(EAI) and end-to-end business integration.

Java Database Connectivity API
The Java Database Connectivity (JDBC) API lets you invoke SQL commands from Java
programming language methods. You use the JDBC API in an enterprise bean when you have a
session bean access the database. You can also use the JDBC API from a servlet or a JSP page to
access the database directly without going through an enterprise bean.

The JDBC API has two parts: an application-level interface used by the application components
to access a database, and a service provider interface to attach a JDBC driver to the Java EE
platform.

Java Persistence API
The Java Persistence API is a Java standards-based solution for persistence. Persistence uses an
object-relational mapping approach to bridge the gap between an object oriented model and a
relational database. Java Persistence consists of three areas:

■ The Java Persistence API
■ The query language
■ Object/relational mapping metadata

Java Naming and Directory Interface
The Java Naming and Directory InterfaceTM (JNDI) provides naming and directory
functionality, enabling applications to access multiple naming and directory services, including
existing naming and directory services such as LDAP, NDS, DNS, and NIS. It provides
applications with methods for performing standard directory operations, such as associating
attributes with objects and searching for objects using their attributes. Using JNDI, a Java EE
application can store and retrieve any type of named Java object, allowing Java EE applications
to coexist with many legacy applications and systems.

Java EE naming services provide application clients, enterprise beans, and web components
with access to a JNDI naming environment. A naming environment allows a component to be
customized without the need to access or change the component’s source code. A container
implements the component’s environment and provides it to the component as a JNDI naming
context.

Java EE 5 APIs

The Java EE 5 Tutorial • October 200862

A Java EE component can locate its environment naming context using JNDI interfaces. A
component can create a javax.naming.InitialContext object and looks up the environment
naming context in InitialContext under the name java:comp/env. A component’s naming
environment is stored directly in the environment naming context or in any of its direct or
indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects. The names
of system-provided objects, such as JTA UserTransaction objects, are stored in the
environment naming context, java:comp/env. The Java EE platform allows a component to
name user-defined objects, such as enterprise beans, environment entries, JDBC DataSource

objects, and message connections. An object should be named within a subcontext of the
naming environment according to the type of the object. For example, enterprise beans are
named within the subcontext java:comp/env/ejb, and JDBC DataSource references in the
subcontext java:comp/env/jdbc.

Java Authentication and Authorization Service
The Java Authentication and Authorization Service (JAAS) provides a way for a Java EE
application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable Authentication
Module (PAM) framework, which extends the Java Platform security architecture to support
user-based authorization.

Simplified Systems Integration
The Java EE platform is a platform-independent, full systems integration solution that creates
an open marketplace in which every vendor can sell to every customer. Such a marketplace
encourages vendors to compete, not by trying to lock customers into their technologies but
instead by trying to outdo each other in providing products and services that benefit customers,
such as better performance, better tools, or better customer support.

The Java EE 5 APIs enable systems and applications integration through the following:

■ Unified application model across tiers with enterprise beans
■ Simplified request-and-response mechanism with JSP pages and servlets
■ Reliable security model with JAAS
■ XML-based data interchange integration with JAXP, SAAJ, and JAX-WS
■ Simplified interoperability with the J2EE Connector architecture
■ Easy database connectivity with the JDBC API
■ Enterprise application integration with message-driven beans and JMS, JTA, and JNDI

Java EE 5 APIs

Chapter 1 • Overview 63

Sun Java System Application Server Platform Edition 9
The Sun Java System Application Server Platform Edition 9 is a fully compliant implementation
of the Java EE 5 platform. In addition to supporting all the APIs described in the previous
sections, the Application Server includes a number of Java EE tools that are not part of the Java
EE 5 platform but are provided as a convenience to the developer.

This section briefly summarizes the tools that make up the Application Server. Instructions for
starting and stopping the Application Server, starting the Admin Console, and starting and
stopping the Java DB database server are in Chapter 2, “Using the Tutorial Examples.”

Tools
The Application Server contains the tools listed in Table 1–1. Basic usage information for many
of the tools appears throughout the tutorial. For detailed information, see the online help in the
GUI tools.

TABLE 1–1 Application Server Tools

Tool Description

Admin Console A web-based GUI Application Server administration utility. Used to stop the
Application Server and manage users, resources, and applications.

asadmin A command-line Application Serveradministration utility. Used to start and
stop the Application Server and manage users, resources, and applications.

asant A portable command-line build tool that is an extension of the Ant tool
developed by the Apache Software Foundation (see http://ant.apache.org/).
asant contains additional tasks that interact with the Application Server
administration utility.

appclient A command-line tool that launches the application client container and invokes
the client application packaged in the application client JAR file.

capture-schema A command-line tool to extract schema information from a database, producing
a schema file that the Application Server can use for container-managed
persistence.

package-appclient A command-line tool to package the application client container libraries and
JAR files.

Java DB database A copy of the Java DB database server.

verifier A command-line tool to validate Java EE deployment descriptors.

xjc A command-line tool to transform, or bind, a source XML schema to a set of
JAXB content classes in the Java programming language.

Sun Java System Application Server Platform Edition 9

The Java EE 5 Tutorial • October 200864

http://ant.apache.org/

TABLE 1–1 Application Server Tools (Continued)
Tool Description

schemagen A command-line tool to create a schema file for each namespace referenced in
your Java classes.

wsimport A command-line tool to generate JAX-WS portable artifacts for a given WSDL
file. After generation, these artifacts can be packaged in a WAR file with the
WSDL and schema documents along with the endpoint implementation and
then deployed.

wsgen A command-line tool to read a web service endpoint class and generate all the
required JAX-WS portable artifacts for web service deployment and invocation.

Sun Java System Application Server Platform Edition 9

Chapter 1 • Overview 65

66

Using the Tutorial Examples

This chapter tells you everything you need to know to install, build, and run the examples. It
covers the following topics:

■ “Required Software” on page 67
■ “Starting and Stopping the Application Server” on page 69
■ “Starting the Admin Console” on page 70
■ “Starting and Stopping the Java DB Database Server” on page 71
■ “Building the Examples” on page 71
■ “Tutorial Example Directory Structure” on page 73
■ “Debugging Java EE Applications” on page 73

Required Software
The following software is required to run the examples.

■ “Tutorial Bundle” on page 67
■ “Java Platform, Standard Edition” on page 68
■ “Sun Java System Application Server 9.1” on page 68
■ “NetBeans IDE” on page 69
■ “Apache Ant” on page 69

Tutorial Bundle
The tutorial example source is contained in the tutorial bundle. To obtain the tutorial bundle,
go to http://java.sun.com/javaee/5/docs/tutorial/information/download.html. The
tutorial bundle is a zip file that you can unzip in a location of your choice.

2C H A P T E R 2

67

http://java.sun.com/javaee/5/docs/tutorial/information/download.html

After you have installed the tutorial bundle, the example source code is in the
tut-install/javaeetutorial5/examples/ directory, where tut-install is the directory where you
installed the tutorial. The examples directory contains subdirectories for each of the
technologies discussed in the tutorial.

Java Platform, Standard Edition
To build, deploy, and run the examples, you need a copy of Java Platform, Standard Edition 5.0
or Java Platform, Standard Edition 6.0 (J2SE 5.0 or JDK 6). You can download the J2SE 5.0
software from http://java.sun.com/javase/downloads/index_jdk5.jsp. You can
download the JDK 6 software from http://java.sun.com/javase/downloads/.

Download the current JDK update that does not include any other software (such as NetBeans
or Java EE).

Sun Java System Application Server 9.1
Sun Java System Application Server 9.1 is targeted as the build and runtime environment for the
tutorial examples. To build, deploy, and run the examples, you need a copy of the Application
Server and, optionally, NetBeans IDE. You can download the Application Server from
http://java.sun.com/javaee/downloads/.

Scroll down to the section entitled Download the Components Independently and click the
Download link next to Sun Java System Application Server 9.1 (based on GlassFish V2).

Note – You can also run the tutorial examples using Sun Java System Application Server 9.0, or
using GlassFish V2.

Refer to the Java EE Tutorial Compatibility Wiki page for information about the versions of the
Application Server and the Sun GlassFish Enterprise Server with which the tutorial examples
have been tested.

Application Server Installation Tips
During the installation of the Application Server:

■ Accept the default admin user name, and specify a password. The default user name is
admin. Remember the password you specify (for example, adminadmin). You will need this
user name and password.

■ Select the Don't Prompt for Admin User Name and Password radio button.

Required Software

The Java EE 5 Tutorial • October 200868

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/
http://java.sun.com/javaee/downloads/
http://wiki.glassfish.java.net/Wiki.jsp?page=FaqJavaEETutorialCompatibility

■ Note the HTTP port at which the server is installed. This tutorial assumes that you are
accepting the default port of 8080. If 8080 is in use during installation and the installer
chooses another port or if you decide to change it yourself, you will need to update the
common build properties file (described in the next section) and the configuration files for
some of the tutorial examples to reflect the correct port.

This tutorial refers to the directory where you install the Application Server as as-install. For
example, the default installation directory on Microsoft Windows is C:\Sun\AppServer, so
as-install is C:\Sun\AppServer.

After you install the Application Server, add the following directories to your PATH to avoid
having to specify the full path when you use commands:

as-install/bin
as-install/lib/ant/bin

NetBeans IDE
The NetBeans integrated development environment (IDE) is a free, open-source IDE for
developing Java applications, including enterprise applications. NetBeans IDE supports the Java
EE 5 platform. You can build, package, deploy, and run the tutorial examples from within
NetBeans IDE.

You can download NetBeans IDE from http://www.netbeans.org/.

Refer to the Java EE Tutorial Compatibility Wiki page for information about the versions of
NetBeans IDE with which the tutorial examples have been tested.

Apache Ant
Ant is a Java technology-based build tool developed by the Apache Software Foundation
(http://ant.apache.org/), and is used to build, package, and deploy the tutorial examples.
Ant is included with the Application Server. To use the ant command, add
as-install/lib/ant/bin to your PATH environment variable.

Starting and Stopping the Application Server
To start the Application Server, open a terminal window or command prompt and execute the
following:

asadmin start-domain --verbose domain1

Starting and Stopping the Application Server

Chapter 2 • Using the Tutorial Examples 69

http://www.netbeans.org/
http://wiki.glassfish.java.net/Wiki.jsp?page=FaqJavaEETutorialCompatibility
http://ant.apache.org/

A domain is a set of one or more Application Server instances managed by one administration
server. Associated with a domain are the following:

■ The Application Server’s port number. The default is 8080.
■ The administration server’s port number. The default is 4848.
■ An administration user name and password.

You specify these values when you install the Application Server. The examples in this tutorial
assume that you chose the default ports.

With no arguments, the start-domain command initiates the default domain, which is
domain1. The --verbose flag causes all logging and debugging output to appear on the terminal
window or command prompt (it will also go into the server log, which is located in
domain-dir/logs/server.log).

Or, on Windows, you can choose:

Programs → Sun Microsystems → Application Server PE 9 → Start Default Server

After the server has completed its startup sequence, you will see the following output:

Domain domain1 started.

To stop the Application Server, open a terminal window or command prompt and execute:

asadmin stop-domain domain1

Or, on Windows, choose:

Programs → Sun Microsystems → Application Server PE 9 → Stop Default Server

When the server has stopped you will see the following output:

Domain domain1 stopped.

Starting the Admin Console
To administer the Application Server and manage users, resources, and Java EE applications,
use the Admin Console tool. The Application Server must be running before you invoke the
Admin Console. To start the Admin Console, open a browser at
http://localhost:4848/asadmin/.

On Windows, from the Start menu, choose:

Programs → Sun Microsystems → Application Server PE 9 → Application Server

Starting the Admin Console

The Java EE 5 Tutorial • October 200870

Starting and Stopping the Java DB Database Server
The Application Server includes the Java DB database.

To start the Java DB database server, open a terminal window or command prompt and
execute:

asadmin start-database

On Windows, from the Start menu, choose:

Programs → Sun Microsystems → Application Server PE 9 → Start Java DB

To stop the Java DB server, open a terminal window or command prompt and execute:

asadmin stop-database

On Windows, from the Start menu, choose:

Programs → Sun Microsystems → Application Server PE 9 → Stop Java DB

For information about the Java DB database included with the Application Server, see
http://developers.sun.com/javadb/.

Building the Examples
The tutorial examples are distributed with a configuration file for either NetBeans IDE or Ant.
Directions for building the examples are provided in each chapter. Either NetBeans IDE or Ant
may be used to build, package, deploy, and run the examples.

Building the Examples Using NetBeans IDE
To run the tutorial examples in NetBeans IDE, you must register your Application Server
installation as a NetBeans Server Instance. Follow these instructions to register the Application
Server in NetBeans IDE.

1. Select Tools→Server Manager to open the Server Manager dialog.
2. Click Add Server.
3. Under Server, select Sun Java System Application Server and click Next.
4. Under Platform Location, enter the location of your Application Server installation.
5. Select Register Local Default Domain and click Next.
6. Under Admin Username and Admin Password, enter the admin name and password

created when you installed the Application Server.

Building the Examples

Chapter 2 • Using the Tutorial Examples 71

http://developers.sun.com/javadb/

7. Click Finish.

Building the Examples on the Command-Line Using
Ant
Build properties common to all the examples are specified in the build.properties file in the
tut-install/javaeetutorial5/examples/bp-project/ directory. You must create this file
before you can run the examples. Copy the file build.properties.sample to
build.properties and edit it to reflect your environment. The tutorial examples use the Java
BluePrints (http://java.sun.com/reference/blueprints/) build system and application
layout structure.

To run the Ant scripts, you must set common build properties in the file
tut-install/javaeetutorial5/examples/bp-project/build.properties as follows:
■ Set the javaee.home property to the location of your Application Server installation. The

build process uses the javaee.home property to include the libraries in as-install/lib/ in the
classpath. All examples that run on the Application Server include the Java EE library
archive, as-install/lib/javaee.jar. in the build classpath. Some examples use additional
libraries in as-install/lib/; the required libraries are enumerated in the individual
technology chapters.

Note – On Windows, you must escape any backslashes in the javaee.home property with
another backslash or use forward slashes as a path separator. So, if your Application Server
installation is C:\Sun\AppServer, you must set javaee.home to javaee.home =

C:\\Sun\\AppServer or javaee.home=C:/Sun/AppServer.

■ Set the javaee.tutorial.home property to the location of your tutorial. This property is
used for Ant deployment and undeployment.
For example, on UNIX:

javaee.tutorial.home=/home/username/javaeetutorial5

On Windows:

javaee.tutorial.home=C:/javaeetutorial5

Do not install the tutorial to a location with spaces in the path.
■ If you did not accept the default values for the admin user and password, set the admin.user

property to the value you specified when you installed the Application Server, and set the
admin user’s password in the admin-password.txt file in the
tut-install/javaeetutorial5/examples/common/ directory to the value you specified when
you installed the Application Server.

Building the Examples

The Java EE 5 Tutorial • October 200872

http://java.sun.com/reference/blueprints/
http://java.sun.com/reference/blueprints/

■ If you did not use port 8080, set the domain.resources.port property to the value specified
when you installed the Application Server.

Tutorial Example Directory Structure
To facilitate iterative development and keep application source separate from compiled files,
the tutorial examples use the Java BluePrints application directory structure.

Each application module has the following structure:
■ build.xml: Ant build file
■ src/java: Java source files for the module
■ src/conf: configuration files for the module, with the exception of web applications
■ web: JSP and HTML pages, style sheets, tag files, and images
■ web/WEB-INF: configuration files for web applications
■ nbproject: NetBeans project files

Examples that have multiple application modules packaged into an enterprise application
archive (or EAR) have submodule directories that use the following naming conventions:
■ example-name-app-client: Application clients
■ example-name-ejb: Enterprise bean JAR files
■ example-name-war: web applications

The Ant build files (build.xml) distributed with the examples contain targets to create a build
subdirectory and to copy and compile files into that directory; a dist subdirectory, which holds
the packaged module file; and a client-jar directory, which holds the retrieved application
client JAR.

Debugging Java EE Applications
This section describes how to determine what is causing an error in your application
deployment or execution.

Using the Server Log
One way to debug applications is to look at the server log in domain-dir/logs/server.log. The
log contains output from the Application Server and your applications. You can log messages
from any Java class in your application with System.out.println and the Java Logging APIs
(documented at
http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html) and from
web components with the ServletContext.log method.

Debugging Java EE Applications

Chapter 2 • Using the Tutorial Examples 73

http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

If you start the Application Server with the --verbose flag, all logging and debugging output
will appear on the terminal window or command prompt and the server log. If you start the
Application Server in the background, debugging information is only available in the log. You
can view the server log with a text editor or with the Admin Console log viewer.

To use the log viewer:

1. Select the Application Server node.
2. Select the Logging tab.
3. Click the Open Log Viewer button. The log viewer will open and display the last 40 entries.

If you wish to display other entries:

1. Click the Modify Search button.
2. Specify any constraints on the entries you want to see.
3. Click the Search button at the bottom of the log viewer.

Using a Debugger
The Application Server supports the Java Platform Debugger Architecture (JPDA). With JPDA,
you can configure the Application Server to communicate debugging information using a
socket.

To debug an application using a debugger:

1. Enable debugging in the Application Server using the Admin Console:
a. Select the Application Server node.
b. Select the JVM Settings tab. The default debug options are set to:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y, suspend=n,address=9009

As you can see, the default debugger socket port is 9009. You can change it to a port not
in use by the Application Server or another service.

c. Check the Enabled box of the Debug field.
d. Click the Save button.

2. Stop the Application Server and then restart it.

Debugging Java EE Applications

The Java EE 5 Tutorial • October 200874

The Web Tier
Part Two explores the technologies in the web tier.

P A R T I I

75

76

Getting Started with Web Applications

A web application is a dynamic extension of a web or application server. There are two types of
web applications:

■ Presentation-oriented: A presentation-oriented web application generates interactive web
pages containing various types of markup language (HTML, XML, and so on) and dynamic
content in response to requests. Chapters Chapter 4, “Java Servlet Technology,” through
Chapter 15, “Internationalizing and Localizing Web Applications,” cover how to develop
presentation-oriented web applications.

■ Service-oriented: A service-oriented web application implements the endpoint of a web
service. Presentation-oriented applications are often clients of service-oriented web
applications. Chapters Chapter 16, “Building Web Services with JAX-WS,” and Chapter 19,
“SOAP with Attachments API for Java,” cover how to develop service-oriented web
applications.

Web Applications
In the Java 2 platform, web components provide the dynamic extension capabilities for a web
server. Web components are either Java servlets, JSP pages, or web service endpoints. The
interaction between a web client and a web application is illustrated in Figure 3–1. The client
sends an HTTP request to the web server. A web server that implements Java Servlet and
JavaServer Pages technology converts the request into an HTTPServletRequest object. This
object is delivered to a web component, which can interact with JavaBeans components or a
database to generate dynamic content. The web component can then generate an
HTTPServletResponse or it can pass the request to another web component. Eventually a web
component generates a HTTPServletResponse object. The web server converts this object to an
HTTP response and returns it to the client.

3C H A P T E R 3

77

Servlets are Java programming language classes that dynamically process requests and construct
responses. JSP pages are text-based documents that execute as servlets but allow a more natural
approach to creating static content. Although servlets and JSP pages can be used
interchangeably, each has its own strengths. Servlets are best suited for service-oriented
applications (web service endpoints are implemented as servlets) and the control functions of a
presentation-oriented application, such as dispatching requests and handling nontextual data.
JSP pages are more appropriate for generating text-based markup such as HTML, Scalable
Vector Graphics (SVG), Wireless Markup Language (WML), and XML.

Since the introduction of Java Servlet and JSP technology, additional Java technologies and
frameworks for building interactive web applications have been developed. Figure 3–2
illustrates these technologies and their relationships.

Web
Client

HttpServlet
Request

HttpServlet
Response

Web Server

HTTP
Request

HTTP
Response

1

Web
ComponentsWeb
ComponentsWeb
Components

Web
ComponentsWeb
ComponentsJavaBeans
Components

2

3

4

5

4

6

FIGURE 3–1 Java Web Application Request Handling

Web Applications

The Java EE 5 Tutorial • October 200878

Notice that Java Servlet technology is the foundation of all the web application technologies, so
you should familiarize yourself with the material in Chapter 4, “Java Servlet Technology,” even
if you do not intend to write servlets. Each technology adds a level of abstraction that makes
web application prototyping and development faster and the web applications themselves more
maintainable, scalable, and robust.

Web components are supported by the services of a runtime platform called a web container. A
web container provides services such as request dispatching, security, concurrency, and
life-cycle management. It also gives web components access to APIs such as naming,
transactions, and email.

Certain aspects of web application behavior can be configured when the application is installed,
or deployed, to the web container. The configuration information is maintained in a text file in
XML format called a web application deployment descriptor (DD). A DD must conform to the
schema described in the Java Servlet Specification.

This chapter gives a brief overview of the activities involved in developing web applications.
First it summarizes the web application life cycle. Then it describes how to package and deploy
very simple web applications on the Application Server. It moves on to configuring web
applications and discusses how to specify the most commonly used configuration parameters. It
then introduces an example, Duke’s Bookstore, which illustrates all the Java EE web-tier
technologies, and describes how to set up the shared components of this example. Finally it
discusses how to access databases from web applications and set up the database resources
needed to run Duke’s Bookstore.

JavaServer Pages
Standard Tag Library

JavaServer Faces

JavaServer Pages

JavaServlet

FIGURE 3–2 Java Web Application Technologies

Web Applications

Chapter 3 • Getting Started with Web Applications 79

http://java.sun.com/products/servlet/download.html#specs

Web Application Life Cycle
A web application consists of web components, static resource files such as images, and helper
classes and libraries. The web container provides many supporting services that enhance the
capabilities of web components and make them easier to develop. However, because a web
application must take these services into account, the process for creating and running a web
application is different from that of traditional stand-alone Java classes.

The process for creating, deploying, and executing a web application can be summarized as
follows:

1. Develop the web component code.
2. Develop the web application deployment descriptor.
3. Compile the web application components and helper classes referenced by the components.
4. Optionally package the application into a deployable unit.
5. Deploy the application into a web container.
6. Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2 through 4 are
expanded on in the following sections and illustrated with a Hello, World-style
presentation-oriented application. This application allows a user to enter a name into an HTML
form (Figure 3–3) and then displays a greeting after the name is submitted (Figure 3–4).

FIGURE 3–3 Greeting Form

Web Application Life Cycle

The Java EE 5 Tutorial • October 200880

The Hello application contains two web components that generate the greeting and the
response. This chapter discusses two versions of the application: a JSP version called hello1, in
which the components are implemented by two JSP pages
(tut-install/javaeetutorial5/examples/web/hello1/web/index.jsp and
tut-install/javaeetutorial5/examples/web/hello1/web/response.jsp) and a servlet
version called hello2, in which the components are implemented by two servlet classes
(tut-install/javaeetutorial5/examples/web/hello2/src/servlets/GreetingServlet.java
and
tut-install/javaeetutorial5/examples/web/hello2/src/servlets/ResponseServlet.java).
The two versions are used to illustrate tasks involved in packaging, deploying, configuring, and
running an application that contains web components. The section Chapter 2, “Using the
Tutorial Examples,” explains how to get the code for these examples.

After you install the tutorial bundle, the source code for the examples is in the following
directories:

■ tut-install/javaeetutorial5/examples/web/hello1/
■ tut-install/javaeetutorial5/examples/web/hello2/

Web Modules
In the Java EE architecture, web components and static web content files such as images are
called web resources. A web module is the smallest deployable and usable unit of web resources.
A Java EE web module corresponds to a web application as defined in the Java Servlet
specification.

FIGURE 3–4 Response

Web Modules

Chapter 3 • Getting Started with Web Applications 81

In addition to web components and web resources, a web module can contain other files:

■ Server-side utility classes (database beans, shopping carts, and so on). Often these classes
conform to the JavaBeans component architecture.

■ Client-side classes (applets and utility classes).

A web module has a specific structure. The top-level directory of a web module is the document
root of the application. The document root is where JSP pages, client-side classes and archives,
and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB-INF, which contains the following files
and directories:

■ web.xml: The web application deployment descriptor
■ Tag library descriptor files (see “Tag Library Descriptors” on page 247)
■ classes: A directory that contains server-side classes: servlets, utility classes, and JavaBeans

components
■ tags: A directory that contains tag files, which are implementations of tag libraries (see “Tag

File Location” on page 235)
■ lib: A directory that contains JAR archives of libraries called by server-side classes

If your web module does not contain any servlets, filter, or listener components then it does not
need a web application deployment descriptor. In other words, if your web module only
contains JSP pages and static files then you are not required to include a web.xml file. The
hello1 example, first discussed in “Packaging Web Modules” on page 83, contains only JSP
pages and images and therefore does not include a deployment descriptor.

You can also create application-specific subdirectories (that is, package directories) in either the
document root or the WEB-INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a JAR file
known as a web archive (WAR) file. Because the contents and use of WAR files differ from those
of JAR files, WAR file names use a .war extension. The web module just described is portable;
you can deploy it into any web container that conforms to the Java Servlet Specification.

To deploy a WAR on the Application Server, the file must also contain a runtime deployment
descriptor. The runtime deployment descriptor is an XML file that contains information such
as the context root of the web application and the mapping of the portable names of an
application’s resources to the Application Server’s resources. The Application Server web
application runtime DD is named sun-web.xml and is located in the WEB-INF directory along
with the web application DD. The structure of a web module that can be deployed on the
Application Server is shown in Figure 3–5.

Web Modules

The Java EE 5 Tutorial • October 200882

Packaging Web Modules
A web module must be packaged into a WAR in certain deployment scenarios and whenever
you want to distribute the web module. You package a web module into a WAR by executing
the jar command in a directory laid out in the format of a web module, by using the Ant utility,
or by using the IDE tool of your choice. This tutorial shows you how to use NetBeans IDE or
Ant to build, package, and deploy the sample applications.

To build the hello1 application with NetBeans IDE, follow these instructions:

1. Select File→Open Project.
2. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

3. Select the hello1 folder.
4. Select the Open as Main Project check box.

web.xml
sun-web.xml

*.tld

JSP pages,
static HTML pages,
applet classes, etc.

Library
archive files

lib

Assembly
Root

WEB-INF

All server-side
.class files for

this web module

classes

All .tag files
for this

web module

tags

FIGURE 3–5 Web Module Structure

Web Modules

Chapter 3 • Getting Started with Web Applications 83

5. Click Open Project.
6. In the Projects tab, right-click the hello1 project and select Build.

To build the hello1 application using the Ant utility, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/hello1/.
2. Type ant. This command will spawn any necessary compilations, copy files to the

tut-install/javaeetutorial5/examples/web/hello1/build/ directory, create the WAR
file, and copy it to the tut-install/javaeetutorial5/examples/web/hello1/dist/
directory.

Deploying a WAR File
You can deploy a WAR file to the Application Server in a few ways:

■ Copying the WAR into the domain-dir/autodeploy/ directory.
■ Using the Admin Console.
■ By running asadmin or ant to deploy the WAR.
■ Using NetBeans IDE.

All these methods are described briefly in this chapter; however, throughout the tutorial, you
will use ant and NetBeans IDE for packaging and deploying.

Setting the Context Root
A context root identifies a web application in a Java EE server. You specify the context root when
you deploy a web module. A context root must start with a forward slash (/) and end with a
string.

In a packaged web module for deployment on the Application Server, the context root is stored
in sun-web.xml.

To edit the context root, do the following:

1. Expand your project tree in the Projects pane of NetBeans IDE.
2. Expand the Web Pages and WEB-INF nodes of your project.
3. Double-click sun-web.xml.
4. In the editor pane, click Edit As XML.
5. Edit the context root, which is enclosed by the context-root element.

Deploying a Packaged Web Module
If you have deployed the hello1 application, before proceeding with this section, undeploy the
application by following one of the procedures described in “Undeploying Web Modules” on
page 88.

Web Modules

The Java EE 5 Tutorial • October 200884

Deploying with the Admin Console

1. Expand the Applications node.
2. Select the Web Applications node.
3. Click the Deploy button.
4. Select the radio button labeled “Package file to be uploaded to the Application Server.”
5. Type the full path to the WAR file (or click on Browse to find it), and then click the OK

button.
6. Click Next.
7. Type the application name.
8. Type the context root.
9. Select the Enabled box.
10. Click the Finish button.

Deploying with asadmin

To deploy a WAR with asadmin, open a terminal window or command prompt and execute

asadmin deploy full-path-to-war-file

Deploying with Ant

To deploy a WAR with the Ant tool, open a terminal window or command prompt in the
directory where you built and packaged the WAR, and execute

ant deploy

Deploying with NetBeans IDE

To deploy a WAR with NetBeans IDE, do the following:

1. Select File→Open Project.
2. In the Open Project dialog, navigate to your project and open it.
3. In the Projects tab, right-click the project and select Undeploy and Deploy.

Testing Deployed Web Modules
Now that the web module is deployed, you can view it by opening the application in a web
browser. By default, the application is deployed to host localhost on port 8080. The context
root of the web application is hello1.

Web Modules

Chapter 3 • Getting Started with Web Applications 85

To test the application, follow these steps:

1. Open a web browser.
2. Enter the following URL in the web address box:

http://localhost:8080/hello1

3. Enter your name, and click Submit.

The application should display the name you submitted as shown in Figure 3–3 and Figure 3–4.

Listing Deployed Web Modules
The Application Server provides two ways to view the deployed web modules: the Admin
Console and the asadmin command.

To use the Admin Console:

1. Open the URL http://localhost:4848/asadmin in a browser.
2. Expand the nodes Applications→Web Applications.

Use the asadmin command as follows:

asadmin list-components

Updating Web Modules
A typical iterative development cycle involves deploying a web module and then making
changes to the application components. To update a deployed web module, you must do the
following:

1. Recompile any modified classes.
2. If you have deployed a packaged web module, update any modified components in the

WAR.
3. Redeploy the module.
4. Reload the URL in the client.

Updating a Packaged Web Module
This section describes how to update the hello1 web module that you packaged.

First, change the greeting in the file
tut-install/javaeetutorial5/examples/web/hello1/web/index.jsp to

<h2>Hi, my name is Duke. What’s yours?</h2>

Web Modules

The Java EE 5 Tutorial • October 200886

To update the project in NetBeans IDE:

■ Right-click on the project and select Build.
■ Right-click on the project and select Undeploy and Deploy.

To update the project using the Ant build tool:

■ Type ant to copy the modified JSP page into the build directory.
■ Type ant deploy to deploy the WAR file.

To view the modified module, reload the URL in the browser.

You should see the screen in Figure 3–6 in the browser.

Dynamic Reloading
If dynamic reloading is enabled, you do not have to redeploy an application or module when
you change its code or deployment descriptors. All you have to do is copy the changed JSP or
class files into the deployment directory for the application or module. The deployment
directory for a web module named context-root is
domain-dir/applications/j2ee-modules/context-root. The server checks for changes
periodically and redeploys the application, automatically and dynamically, with the changes.

This capability is useful in a development environment, because it allows code changes to be
tested quickly. Dynamic reloading is not recommended for a production environment,
however, because it may degrade performance. In addition, whenever a reload is done, the
sessions at that time become invalid and the client must restart the session.

FIGURE 3–6 New Greeting

Web Modules

Chapter 3 • Getting Started with Web Applications 87

To enable dynamic reloading, use the Admin Console:

1. Select the Applications Server node.
2. Select the Advanced tab.
3. Check the Reload Enabled box to enable dynamic reloading.
4. Enter a number of seconds in the Reload Poll Interval field to set the interval at which

applications and modules are checked for code changes and dynamically reloaded.
5. Click the Save button.

In addition, to load new servlet files or reload deployment descriptor changes, you must do the
following:

1. Create an empty file named .reload at the root of the module:

domain-dir/applications/j2ee-modules/context-root/.reload

2. Explicitly update the .reload file’s time stamp each time you make these changes. On
UNIX, execute

touch .reload

For JSP pages, changes are reloaded automatically at a frequency set in the Reload Poll Interval
field. To disable dynamic reloading of JSP pages, set the Reload Poll Interval field value to –1.

Undeploying Web Modules
You can undeploy web modules in four ways: you can use NetBeans IDE, the Admin Console,
the asadmin command, or the Ant tool.

To use NetBeans IDE:

1. Ensure the Sun Java System Application Server is running.
2. In the Runtime window, expand the Sun Java System Application Server instance and the

node containing the application or module.
3. Right-click the application or module and choose Undeploy.

To use the Admin Console:

1. Open the URL http://localhost:4848/asadmin in a browser.
2. Expand the Applications node.
3. Select Web Applications.
4. Click the check box next to the module you wish to undeploy.
5. Click the Undeploy button.

Use the asadmin command as follows:

Web Modules

The Java EE 5 Tutorial • October 200888

asadmin undeploy context-root

To use the Ant tool, execute the following command in the directory where you built and
packaged the WAR:

ant undeploy

Configuring Web Applications
Web applications are configured by means of elements contained in the web application
deployment descriptor.

The following sections give a brief introduction to the web application features you will usually
want to configure. A number of security parameters can be specified; these are covered in
Chapter 30, “Securing Web Applications.”

In the following sections, examples demonstrate procedures for configuring the Hello, World
application. If Hello, World does not use a specific configuration feature, the section gives
references to other examples that illustrate how to specify the deployment descriptor element.

Mapping URLs to Web Components
When a request is received by the web container it must determine which web component
should handle the request. It does so by mapping the URL path contained in the request to a
web application and a web component. A URL path contains the context root and an alias:

http://host:port/context-root/alias

Setting the Component Alias
The alias identifies the web component that should handle a request. The alias path must start
with a forward slash (/) and end with a string or a wildcard expression with an extension (for
example, *.jsp). Since web containers automatically map an alias that ends with *.jsp, you do
not have to specify an alias for a JSP page unless you wish to refer to the page by a name other
than its file name.

The hello2 application has two servlets that need to be mapped in the web.xml file. You can
edit a web application’s web.xml file in NetBeans IDE by doing the following:

1. Select File→Open Project.
2. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

3. Select the hello2 folder.

Configuring Web Applications

Chapter 3 • Getting Started with Web Applications 89

4. Select the Open as Main Project check box.

5. Click Open Project.

6. Expand the project tree in the Projects pane.

7. Expand the Web pages node and then the WEB-INF node in the project tree.

8. Double-click the web.xml file inside the WEB-INF node.

The following steps describe how to make the necessary edits to the web.xml file, including how
to set the display name and how to map the servlet components. Because the edits are already in
the file, you can just use the steps to view the settings.

To set the display name:

1. Click General at the top of the editor to open the general view.
2. Enter hello2 in the Display Name field.

To perform the servlet mappings:

1. Click Servlets at the top of the editor to open the servlets view.

2. Click Add Servlet.

3. In the Add Servlet dialog, enter GreetingServlet in the Servlet Name field.

4. Enter servlets.GreetingServlet in the Servlet Class field.

5. Enter /greeting in the URL Pattern field.

6. Click OK.

7. Repeat the preceding steps, except enter ResponseServlet as the servlet name,
servlets.ResponseServlet as the servlet class, and /response as the URL pattern.

If you are not using NetBeans IDE, you can add these settings using a text editor.

To package the example with NetBeans IDE, do the following:

1. Select File→Open Project.

2. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

3. Select the hello2 folder.

4. Select the Open as Main Project check box.

5. Click Open Project.

6. In the Projects tab, right-click the hello2 project and select Build.

Configuring Web Applications

The Java EE 5 Tutorial • October 200890

To package the example with the Ant utility, do the following:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/hello2/.
2. Type ant. This target will build the WAR file and copy it to the

tut-install/javaeetutorial5/examples/web/hello2/dist/ directory.

To deploy the example using NetBeans IDE, right-click on the project in the Projects pane and
select Undeploy and Deploy.

To deploy the example using Ant, type ant deploy. The deploy target in this case gives you an
incorrect URL to run the application. To run the application, please use the URL shown at the
end of this section.

To run the application, first deploy the web module, and then open the URL
http://localhost:8080/hello2/greeting in a browser.

Declaring Welcome Files
The welcome files mechanism allows you to specify a list of files that the web container will use
for appending to a request for a URL (called a valid partial request) that is not mapped to a web
component.

For example, suppose you define a welcome file welcome.html. When a client requests a URL
such as host:port/webapp/directory, where directory is not mapped to a servlet or JSP page, the
file host:port/webapp/directory/welcome.html is returned to the client.

If a web container receives a valid partial request, the web container examines the welcome file
list and appends to the partial request each welcome file in the order specified and checks
whether a static resource or servlet in the WAR is mapped to that request URL. The web
container then sends the request to the first resource in the WAR that matches.

If no welcome file is specified, the Application Server will use a file named index.XXX, where
XXX can be html or jsp, as the default welcome file. If there is no welcome file and no file
named index.XXX, the Application Server returns a directory listing.

To specify a welcome file in the web application deployment descriptor using NetBeans IDE, do
the following:

1. Open the project if you haven’t already.
2. Expand the project’s node in the Projects pane.
3. Expand the Web Pages node and then the WEB-INF node.
4. Double-click web.xml.
5. Do one of the following, making sure that the JSP pages you specify are actually included in

the WAR file:

Configuring Web Applications

Chapter 3 • Getting Started with Web Applications 91

a. Click Pages at the top of the editor pane and enter the names of the JSP pages that act as
welcome files in the Welcome Files field.

b. Click XML at the top of the editor pane, specify the JSP pages using welcome-file
elements and include these elements inside a welcome-file-list element. The
welcome-file element defines the JSP page to be used as the welcome page.
The example discussed in “Encapsulating Reusable Content Using Tag Files” on page 233
has a welcome file.

Setting Initialization Parameters
The web components in a web module share an object that represents their application context
(see “Accessing the Web Context” on page 124). You can pass initialization parameters to the
context or to a web component.

To add a context parameter using NetBeans IDE, do the following:

1. Open the project if you haven’t already.
2. Expand the project’s node in the Projects pane.
3. Expand the Web Pages node and then the WEB-INF node.
4. Double-click web.xml.
5. Click General at the top of the editor pane.
6. Select the Context Parameters node.
7. Click Add.
8. In the Add Context Parameter dialog, do the following:

a. Enter the name that specifies the context object in the Param Name field.
b. Enter the parameter to pass to the context object in the Param Value field.
c. Click OK.

Alternatively, you can edit the XML of the web.xml file directly by clicking XML at the top of the
editor pane and using the following elements to add a context parameter:
■ A param-name element that specifies the context object
■ A param-value element that specifies the parameter to pass to the context object
■ A context-param element that encloses the previous two elements

For a sample context parameter, see the example discussed in “The Example JSP Pages” on
page 136.

To add a web component initialization parameter using NetBeans IDE, do the following:

1. Open the project if you haven’t already.
2. Expand the project’s node in the Projects pane.

Configuring Web Applications

The Java EE 5 Tutorial • October 200892

3. Expand the Web Pages node and then the WEB-INF node.
4. Double-click web.xml.
5. Click Servlets at the top of the editor pane.
6. After entering the servlet’s name, class, and URL pattern, click the Add button under the

Initialization Parameters table.
7. In the Add Initialization Parameter dialog:

a. Enter the name of the parameter in the Param Name field.
b. Enter the parameter’s value in the Param Value Field.
c. Click OK.

Alternatively, you can edit the XML of the web.xml file directly by clicking XML at the top of the
editor pane and using the following elements to add a context parameter:
■ A param-name element that specifies the name of the initialization parameter
■ A param-value element that specifies the value of the initialization parameter
■ An init-param element that encloses the previous two elements

Mapping Errors to Error Screens
When an error occurs during execution of a web application, you can have the application
display a specific error screen according to the type of error. In particular, you can specify a
mapping between the status code returned in an HTTP response or a Java programming
language exception returned by any web component (see “Handling Servlet Errors” on
page 105) and any type of error screen.

To set up error mappings using NetBeans IDE, do the following:

1. Open the project if you haven’t already.
2. Expand the project’s node in the Projects pane.
3. Expand the Web Pages node and then the WEB-INF node.
4. Double-click web.xml.
5. Click Pages at the top of the editor pane.
6. Expand the Error Pages node.
7. Click Add.
8. In the Add Error Page dialog:

a. Click Browse to locate the page that you want to act as the error page.
b. Enter the HTTP status code that will cause the error page to be opened in the Error Code

field.
c. Enter the exception that will cause the error page to load in the Exception Type field.
d. Click OK.

Configuring Web Applications

Chapter 3 • Getting Started with Web Applications 93

Alternatively, you can click XML at the top of the editor pane and enter the error page mapping
by hand using the following elements:
■ An exception-type element specifying either the exception or the HTTP status code that

will cause the error page to be opened.
■ A location element that specifies the name of a web resource to be invoked when the status

code or exception is returned. The name should have a leading forward slash (/).
■ An error-page element that encloses the previous two elements.

You can have multiple error-page elements in your deployment descriptor. Each one of the
elements identifies a different error that causes an error page to open. This error page can be the
same for any number of error-page elements.

Note – You can also define error screens for a JSP page contained in a WAR. If error screens are
defined for both the WAR and a JSP page, the JSP page’s error page takes precedence. See
“Handling JSP Page Errors” on page 143.

For a sample error page mapping, see the example discussed in “The Example Servlets” on
page 100.

Declaring Resource References
If your web component uses objects such as enterprise beans, data sources, or web services, you
use Java EE annotations to inject these resources into your application. Annotations eliminate a
lot of the boilerplate lookup code and configuration elements that previous versions of Java EE
required.

Although resource injection using annotations can be more convenient for the developer, there
are some restrictions from using it in web applications. First, you can only inject resources into
container-managed objects. This is because a container must have control over the creation of a
component so that it can perform the injection into a component. As a result, you cannot inject
resources into objects such as simple JavaBeans components. However, JavaServer Faces
managed beans are managed by the container; therefore, they can accept resource injections.

Additionally, JSP pages cannot accept resource injections. This is because the information
represented by annotations must be available at deployment time, but the JSP page is compiled
after that; therefore, the annotation will not be seen when it is needed. Those components that
can accept resource injections are listed in Table 3–1.

This section describes how to use a couple of the annotations supported by a servlet container to
inject resources. Chapter 25, “Persistence in the Web Tier,” describes how web applications use
annotations supported by the Java Persistence API. Chapter 30, “Securing Web Applications,”
describes how to use annotations to specify information about securing web applications.

Configuring Web Applications

The Java EE 5 Tutorial • October 200894

TABLE 3–1 Web Components That Accept Resource Injections

Component Interface/Class

Servlets javax.servlet.Servlet

Servlet Filters javax.servlet.ServletFilter

Event Listeners javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributeListener

javax.servlet.ServletRequestListener

javax.servlet.ServletRequestAttributeListener

javax.servlet.http.HttpSessionListener

javax.servlet.http.HttpSessionAttributeListener

javax.servlet.http.HttpSessionBindingListener

Taglib Listeners Same as above

Taglib Tag Handlers javax.servlet.jsp.tagext.JspTag

Managed Beans Plain Old Java Objects

Declaring a Reference to a Resource
The @Resource annotation is used to declare a reference to a resource such as a data source, an
enterprise bean, or an environment entry. This annotation is equivalent to declaring a
resource-ref element in the deployment descriptor.

The @Resource annotation is specified on a class, method or field. The container is responsible
for injecting references to resources declared by the @Resource annotation and mapping it to
the proper JNDI resources. In the following example, the @Resource annotation is used to inject
a data source into a component that needs to make a connection to the data source, as is done
when using JDBC technology to access a relational database:

@Resource javax.sql.DataSource catalogDS;

public getProductsByCategory() {

// get a connection and execute the query

Connection conn = catalogDS.getConnection();

..

}

The container injects this data source prior to the component being made available to the
application. The data source JNDI mapping is inferred from the field name catalogDS and the
type, javax.sql.DataSource.

If you have multiple resources that you need to inject into one component, you need to use the
@Resources annotation to contain them, as shown by the following example:

Configuring Web Applications

Chapter 3 • Getting Started with Web Applications 95

@Resources ({

@Resource (name="myDB" type=java.sql.DataSource),

@Resource(name="myMQ" type=javax.jms.ConnectionFactory)

})

The web application examples in this tutorial use the Java Persistence API to access relational
databases. This API does not require you to explicitly create a connection to a data source.
Therefore, the examples do not use the @Resource annotation to inject a data source. However,
this API supports the @PersistenceUnit and @PersistenceContext annotations for injecting
EntityManagerFactory and EntityManager instances, respectively. Chapter 25, “Persistence in
the Web Tier,” describes these annotations and the use of the Java Persistence API in web
applications.

Declaring a Reference to a Web Service
The @WebServiceRef annotation provides a reference to a web service. The following example
shows uses the @WebServiceRef annotation to declare a reference to a web service.
WebServiceRef uses the wsdlLocation element to specify the URI of the deployed service’s
WSDL file:

...

import javax.xml.ws.WebServiceRef;

...

public class ResponseServlet extends HTTPServlet {

@WebServiceRef(wsdlLocation=

"http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

Duke’s Bookstore Examples
In Chapters Chapter 4, “Java Servlet Technology,” through Chapter 15, “Internationalizing and
Localizing Web Applications,” a common example, Duke’s Bookstore, is used to illustrate the
elements of Java Servlet technology, JavaServer Pages technology, the JSP Standard Tag Library,
and JavaServer Faces technology. The example emulates a simple online shopping application.
It provides a book catalog from which users can select books and add them to a shopping cart.
Users can view and modify the shopping cart. When users are finished shopping, they can
purchase the books in the cart.

The Duke’s Bookstore examples share common classes and a database schema. These files are
located in the directory tut-install/javaeetutorial5/examples/web/bookstore/. The
common classes are packaged into a JAR. Each of the Duke’s Bookstore examples must include
this JAR file in their WAR files. The process that builds and packages each application also
builds and packages the common JAR file and includes it in the example WAR file.

The next section describes how to create the bookstore database tables and resources required
to run the examples.

Duke’s Bookstore Examples

The Java EE 5 Tutorial • October 200896

Accessing Databases from Web Applications
Data that is shared between web components and is persistent between invocations of a web
application is usually maintained in a database. To maintain a catalog of books, the Duke’s
Bookstore examples described in Chapters Chapter 4, “Java Servlet Technology,” through
Chapter 15, “Internationalizing and Localizing Web Applications,” use the Java DB database
included with the Application Server.

To access the data in a database, web applications use the new Java Persistence API (see
Chapter 24, “Introduction to the Java Persistence API”). See Chapter 25, “Persistence in the
Web Tier,” to learn how the Duke’s Bookstore applications use this API to access the book data.

To run the Duke’s Bookstore applications, you need to first populate the database with the book
data and create a data source in the application server. The rest of this section explains how to
perform these tasks.

Populating the Example Database
When you deploy any of the Duke’s Bookstore applications using ant deploy, the database is
automatically populated at the same time. If you want to populate the database separately from
the deploy task or are using NetBeans IDE to deploy the application, follow these steps:

1. In a terminal window, go to the books directory or any one of the bookstore1 through
bookstore6 example directories.

2. Start the Java DB database server. For instructions, see “Starting and Stopping the Java DB
Database Server” on page 71. You don’t have to do this if you are using NetBeans IDE. It
starts the database server automatically.

3. Type ant create-tables. This task runs a command to read the file tutorial.sql and
execute the SQL commands contained in the file.

4. At the end of the processing, you should see the following output:

...

[sql] 181 of 181 SQL statements executed successfully

When you are running create-tables, don’t worry if you see a message that an SQL statement
failed. This usually happens the first time you run the command because it always tries to delete
an existing database table first before it creates a new one. The first time through, there is no
table yet, of course.

Accessing Databases from Web Applications

Chapter 3 • Getting Started with Web Applications 97

Creating a Data Source in the Application Server
A DataSource object has a set of properties that identify and describe the real world data source
that it represents. These properties include information such as the location of the database
server, the name of the database, the network protocol to use to communicate with the server,
and so on.

Data sources in the Application Server implement connection pooling. To define the Duke’s
Bookstore data source, you use the installed Derby connection pool named DerbyPool.

You create the data source using the Application Server Admin Console, following this
procedure:

1. Expand the Resources node.
2. Expand the JDBC node.
3. Select the JDBC Resources node.
4. Click the New... button.
5. Type jdbc/BookDB in the JNDI Name field.
6. Choose DerbyPool for the Pool Name.
7. Click OK.

Further Information about Web Applications
For more information on web applications, see:

■ The Java Servlet specification:
http://java.sun.com/products/servlet/download.html#specs

■ The Java Servlet web site:
http://java.sun.com/products/servlet

Further Information about Web Applications

The Java EE 5 Tutorial • October 200898

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet

Java Servlet Technology

As soon as the web began to be used for delivering services, service providers recognized the
need for dynamic content. Applets, one of the earliest attempts toward this goal, focused on
using the client platform to deliver dynamic user experiences. At the same time, developers also
investigated using the server platform for this purpose. Initially, Common Gateway Interface
(CGI) scripts were the main technology used to generate dynamic content. Although widely
used, CGI scripting technology has a number of shortcomings, including platform dependence
and lack of scalability. To address these limitations, Java Servlet technology was created as a
portable way to provide dynamic, user-oriented content.

What Is a Servlet?
A servlet is a Java programming language class that is used to extend the capabilities of servers
that host applications accessed by means of a request-response programming model. Although
servlets can respond to any type of request, they are commonly used to extend the applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-specific
servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and classes for writing
servlets. All servlets must implement the Servlet interface, which defines life-cycle methods.
When implementing a generic service, you can use or extend the GenericServlet class provided
with the Java Servlet API. The HttpServlet class provides methods, such as doGet and doPost,
for handling HTTP-specific services.

This chapter focuses on writing servlets that generate responses to HTTP requests.

4C H A P T E R 4

99

http://java.sun.com/javaee/5/docs/api/javax/servlet/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/Servlet.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/GenericServlet.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpServlet.html

The Example Servlets
This chapter uses the Duke’s Bookstore application to illustrate the tasks involved in
programming servlets. The source code for the bookstore application is located in the
tut-install/javaeetutorial5/examples/web/bookstore1/ directory, which is created when
you unzip the tutorial bundle (see “Building the Examples” on page 71).

Table 4–1 lists the servlets that handle each bookstore function. You can find these servlet
classes in
tut-install/javaeetutorial5/examples/web/bookstore1/src/java/com/sun/bookstore1/.
Each programming task is illustrated by one or more servlets. For example,
BookDetailsServlet illustrates how to handle HTTP GET requests, BookDetailsServlet and
CatalogServlet show how to construct responses, and CatalogServlet illustrates how to
track session information.

TABLE 4–1 Duke’s Bookstore Example Servlets

Function Servlet

Enter the bookstore BookStoreServlet

Create the bookstore banner BannerServlet

Browse the bookstore catalog CatalogServlet

Put a book in a shopping cart CatalogServlet,

BookDetailsServlet

Get detailed information on a specific book BookDetailsServlet

Display the shopping cart ShowCartServlet

Remove one or more books from the shopping cart ShowCartServlet

Buy the books in the shopping cart CashierServlet

Send an acknowledgment of the purchase ReceiptServlet

The data for the bookstore application is maintained in a database and accessed through the
database access class database.BookDBAO. The database package also contains the class Book
which represents a book. The shopping cart and shopping cart items are represented by the
classes cart.ShoppingCart and cart.ShoppingCartItem, respectively.

To deploy and run the application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

2. In NetBeans IDE, select File→Open Project.
3. In the Open Project dialog, navigate to:

The Example Servlets

The Java EE 5 Tutorial • October 2008100

tut-install/javaeetutorial5/examples/web/

4. Select the bookstore1 folder.

5. Select the Open as Main Project check box and the Open Required Projects check box.

6. Click Open Project.

7. In the Projects tab, right-click the bookstore1 project, and select Undeploy and Deploy.

8. To run the application, open the bookstore URL
http://localhost:8080/bookstore1/bookstore.

To deploy and run the application using Ant, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/bookstore1/.

2. Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/javaeetutorial5/examples/web/bookstore1/build/ directory, and create a
WAR file and copy it to the
tut-install/javaeetutorial5/examples/web/bookstore1/dist/ directory.

3. Start the Application Server.

4. Perform all the operations described in “Creating a Data Source in the Application Server”
on page 98.

5. To deploy the example, type ant deploy. The deploy target outputs a URL for running the
application. Ignore this URL, and instead use the one shown in the next step.

6. To run the application, open the bookstore URL
http://localhost:8080/bookstore1/bookstore.

To learn how to configure the example, refer to the deployment descriptor (the web.xml file),
which includes the following configurations:

■ A display-name element that specifies the name that tools use to identify the application.
■ A set of filter elements that identify servlet filters contained in the application.
■ A set of filter-mapping elements that identify which servlets will have their requests or

responses filtered by the filters identified by the filter elements. A filter-mapping

element can define more than one servlet mapping and more than one URL pattern for a
particular filter.

■ A set of servlet elements that identify all the servlet instances of the application.
■ A set of servlet-mapping elements that map the servlets to URL patterns. More than one

URL pattern can be defined for a particular servlet.
■ A set of error-page mappings that map exception types to an HTML page, so that the HTML

page opens when an exception of that type is thrown by the application.

The Example Servlets

Chapter 4 • Java Servlet Technology 101

Troubleshooting Duke's Bookstore Database
Problems
The Duke’s Bookstore database access object returns the following exceptions:

■ BookNotFoundException: Returned if a book can’t be located in the bookstore database.
This will occur if you haven’t loaded the bookstore database with data or the server has not
been started or has crashed. You can populate the database by running ant create-tables.

■ BooksNotFoundException: Returned if the bookstore data can’t be retrieved. This will occur
if you haven’t loaded the bookstore database with data or if the database server hasn’t been
started or it has crashed.

■ UnavailableException: Returned if a servlet can’t retrieve the web context attribute
representing the bookstore. This will occur if the database server hasn’t been started.

Because you have specified an error page, you will see the message

The application is unavailable. Please try later.

If you don’t specify an error page, the web container generates a default page containing the
message

A Servlet Exception Has Occurred

and a stack trace that can help you diagnose the cause of the exception. If you use
errorpage.html, you will have to look in the server log to determine the cause of the exception.

Servlet Life Cycle
The life cycle of a servlet is controlled by the container in which the servlet has been deployed.
When a request is mapped to a servlet, the container performs the following steps.

1. If an instance of the servlet does not exist, the web container
a. Loads the servlet class.
b. Creates an instance of the servlet class.
c. Initializes the servlet instance by calling the init method. Initialization is covered in

“Initializing a Servlet” on page 109.
2. Invokes the service method, passing request and response objects. Service methods are

discussed in “Writing Service Methods” on page 110.

If the container needs to remove the servlet, it finalizes the servlet by calling the servlet’s
destroy method. Finalization is discussed in “Finalizing a Servlet” on page 128.

Servlet Life Cycle

The Java EE 5 Tutorial • October 2008102

Handling Servlet Life-Cycle Events
You can monitor and react to events in a servlet’s life cycle by defining listener objects whose
methods get invoked when life-cycle events occur. To use these listener objects you must define
and specify the listener class.

Defining the Listener Class
You define a listener class as an implementation of a listener interface. Table 4–2 lists the events
that can be monitored and the corresponding interface that must be implemented. When a
listener method is invoked, it is passed an event that contains information appropriate to the
event. For example, the methods in the HttpSessionListener interface are passed an
HttpSessionEvent, which contains an HttpSession.

TABLE 4–2 Servlet Life-Cycle Events

Object Event Listener Interface and Event Class

Web context (see
“Accessing the Web
Context” on page 124)

Initialization and
destruction

javax.servlet.ServletContextListener and

ServletContextEvent

Attribute added,
removed, or replaced

javax.servlet.ServletContextAttributeListener and

ServletContextAttributeEvent

Session (See
“Maintaining Client
State” on page 125)

Creation,
invalidation,
activation,
passivation, and
timeout

javax.servlet.http.HttpSessionListener, javax.servlet.http.
HttpSessionActivationListener, and

HttpSessionEvent

Attribute added,
removed, or replaced

javax.servlet.http.HttpSessionAttributeListener and

HttpSessionBindingEvent

Request A servlet request has
started being
processed by web
components

javax.servlet.ServletRequestListener and

ServletRequestEvent

Attribute added,
removed, or replaced

javax.servlet.ServletRequestAttributeListener and

ServletRequestAttributeEvent

The
tut-install/javaeetutorial5/examples/web/bookstore1/src/java/com/sun/bookstore1/listeners/ContextListen
class creates and removes the database access and counter objects used in the Duke’s Bookstore
application. The methods retrieve the web context object from ServletContextEvent and then
store (and remove) the objects as servlet context attributes.

Servlet Life Cycle

Chapter 4 • Java Servlet Technology 103

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContextListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContextEvent.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContextAttributeListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContextAttributeEvent.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionActivationListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionActivationListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionEvent.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionAttributeListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionBindingEvent.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequestListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequestEvent.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequestAttributeListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequestAttributeEvent.html

import database.BookDBAO;

import javax.servlet.*;

import util.Counter;

import javax.ejb.*;

import javax.persistence.*;

public final class ContextListener

implements ServletContextListener {

private ServletContext context = null;

@PersistenceUnit

EntityManagerFactory emf;

public void contextInitialized(ServletContextEvent event) {

context = event.getServletContext();

try {

BookDBAO bookDB = new BookDBAO(emf);

context.setAttribute("bookDB", bookDB);

} catch (Exception ex) {

System.out.println(

"Couldn’t create database: " + ex.getMessage());

}

Counter counter = new Counter();

context.setAttribute("hitCounter", counter);

counter = new Counter();

context.setAttribute("orderCounter", counter);

}

public void contextDestroyed(ServletContextEvent event) {

context = event.getServletContext();

BookDBAO bookDB = context.getAttribute("bookDB");
bookDB.remove();

context.removeAttribute("bookDB");
context.removeAttribute("hitCounter");
context.removeAttribute("orderCounter");

}

}

Specifying Event Listener Classes
You specify an event listener class using the listener element of the deployment descriptor.
Review “The Example Servlets” on page 100 for information on how to specify the
ContextListener listener class.

Servlet Life Cycle

The Java EE 5 Tutorial • October 2008104

You can specify an event listener using the deployment descriptor editor of NetBeans IDE by
doing the following:

1. Expand your application’s project node.
2. Expand the project’s Web Pages and WEB-INF nodes.
3. Double-click web.xml.
4. Click General at the top of the web.xml editor.
5. Expand the Web Application Listeners node.
6. Click Add.
7. In the Add Listener dialog, click Browse to locate the listener class.
8. Click OK.

Handling Servlet Errors
Any number of exceptions can occur when a servlet executes. When an exception occurs, the
web container generates a default page containing the message

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for a given
exception. Review the deployment descriptor file included with the example to learn how to
map the exceptions exception.BookNotFound, exception.BooksNotFound, and
exception.OrderException returned by the Duke’s Bookstore application to errorpage.html.

See “Mapping Errors to Error Screens” on page 93 for instructions on how to specify error pages
using NetBeans IDE.

Sharing Information
Web components, like most objects, usually work with other objects to accomplish their tasks.
There are several ways they can do this. They can use private helper objects (for example,
JavaBeans components), they can share objects that are attributes of a public scope, they can use
a database, and they can invoke other web resources. The Java Servlet technology mechanisms
that allow a web component to invoke other web resources are described in “Invoking Other
Web Resources” on page 122.

Using Scope Objects
Collaborating web components share information by means of objects that are maintained as
attributes of four scope objects. You access these attributes using the [get|set]Attribute
methods of the class representing the scope. Table 4–3 lists the scope objects.

Sharing Information

Chapter 4 • Java Servlet Technology 105

TABLE 4–3 Scope Objects

Scope Object Class Accessible From

Web context javax.servlet.ServletContext Web components within a web context. See “Accessing the
Web Context” on page 124.

Session javax.servlet.http.HttpSession Web components handling a request that belongs to the
session. See “Maintaining Client State” on page 125.

Request subtype of javax.servlet.
ServletRequest

Web components handling the request.

Page javax.servlet.jsp.JspContext The JSP page that creates the object. See “Using Implicit
Objects” on page 145.

Figure 4–1 shows the scoped attributes maintained by the Duke’s Bookstore application.

Controlling Concurrent Access to Shared Resources
In a multithreaded server, it is possible for shared resources to be accessed concurrently. In
addition to scope object attributes, shared resources include in-memory data (such as instance
or class variables) and external objects such as files, database connections, and network
connections.

Concurrent access can arise in several situations:

■ Multiple web components accessing objects stored in the web context.
■ Multiple web components accessing objects stored in a session.

currency

Session
Attribute

cart

Session
Attribute

BookStoreServlet

BookDetailsServlet

CatalogServlet

ShowCartServlet

CashierServlet

ReceiptServlet

hitCounterFilter

OrderFilter

hitCounter
bookDB

orderCounter

Web
Context
Attribute

FIGURE 4–1 Duke’s Bookstore Scoped Attributes

Sharing Information

The Java EE 5 Tutorial • October 2008106

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContext.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSession.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequest.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequest.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/JspContext.html

■ Multiple threads within a web component accessing instance variables. A web container will
typically create a thread to handle each request. If you want to ensure that a servlet instance
handles only one request at a time, a servlet can implement the SingleThreadModel
interface. If a servlet implements this interface, you are guaranteed that no two threads will
execute concurrently in the servlet’s service method. A web container can implement this
guarantee by synchronizing access to a single instance of the servlet, or by maintaining a
pool of web component instances and dispatching each new request to a free instance. This
interface does not prevent synchronization problems that result from web components
accessing shared resources such as static class variables or external objects. In addition, the
Servlet 2.4 specification deprecates the SingleThreadModel interface.

When resources can be accessed concurrently, they can be used in an inconsistent fashion. To
prevent this, you must control the access using the synchronization techniques described in the
Threads lesson in The Java Tutorial, Fourth Edition, by Sharon Zakhour et al. (Addison-Wesley,
2006).

The preceding section showed five scoped attributes shared by more than one servlet: bookDB,
cart, currency, hitCounter, and orderCounter. The bookDB attribute is discussed in the next
section. The cart, currency, and counters can be set and read by multiple multithreaded servlets.
To prevent these objects from being used inconsistently, access is controlled by synchronized
methods. For example, here is the Counter class, located at
tut-install/javaeetutorial5/examples/web/bookstore1/src/java/com/sun/bookstore1/util/:

public class Counter {

private int counter;

public Counter() {

counter = 0;

}

public synchronized int getCounter() {

return counter;

}

public synchronized int setCounter(int c) {

counter = c;

return counter;

}

public synchronized int incCounter() {

return(++counter);

}

}

Accessing Databases
Data that is shared between web components and is persistent between invocations of a web
application is usually maintained by a database. Web components use the Java Persistence API
to access relational databases. The data for Duke’s Bookstore is maintained in a database and is

Sharing Information

Chapter 4 • Java Servlet Technology 107

http://java.sun.com/javaee/5/docs/api/javax/servlet/SingleThreadModel.html
http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html
http://java.sun.com/docs/books/tutorial/

accessed through the database access class
tut-install/javaeetutorial5/examples/web/bookstore1/src/java/com/sun/bookstore1/database/BookDBAO.
For example, ReceiptServlet invokes the BookDBAO.buyBooks method to update the book
inventory when a user makes a purchase. The buyBooks method invokes buyBook for each book
contained in the shopping cart, as shown in the following code.

public void buyBooks(ShoppingCart cart) throws OrderException{

Collection items = cart.getItems();

Iterator i = items.iterator();

try {

while (i.hasNext()) {

ShoppingCartItem sci = (ShoppingCartItem)i.next();

Book bd = (Book)sci.getItem();

String id = bd.getBookId();

int quantity = sci.getQuantity();

buyBook(id, quantity);

}

} catch (Exception ex) {

throw new OrderException("Commit failed: " +

ex.getMessage());

}

}

public void buyBook(String bookId, int quantity)

throws OrderException {

try {

Book requestedBook = em.find(Book.class, bookId);

if (requestedBook != null) {

int inventory = requestedBook.getInventory();

if ((inventory - quantity) >= 0) {

int newInventory = inventory - quantity;

requestedBook.setInventory(newInventory);

} else{

throw new OrderException("Not enough of "
+ bookId + " in stock to complete order.");

}

}

} catch (Exception ex) {

throw new OrderException("Couldn’t purchase book: "
+ bookId + ex.getMessage());

}

}

Sharing Information

The Java EE 5 Tutorial • October 2008108

To ensure that the order is processed in its entirety, the call to buyBooks is wrapped in a single
transaction. In the following code, the calls to the begin and commit methods of
UserTransaction mark the boundaries of the transaction. The call to the rollback method of
UserTransaction undoes the effects of all statements in the transaction so as to protect the
integrity of the data.

try {

utx.begin();

bookDB.buyBooks(cart);

utx.commit();

} catch (Exception ex) {

try {

utx.rollback();

} catch(Exception e) {

System.out.println("Rollback failed: "+e.getMessage());
}

System.err.println(ex.getMessage());

orderCompleted = false;}

}

Initializing a Servlet
After the web container loads and instantiates the servlet class and before it delivers requests
from clients, the web container initializes the servlet. To customize this process to allow the
servlet to read persistent configuration data, initialize resources, and perform any other
one-time activities, you override the init method of the Servlet interface. A servlet that
cannot complete its initialization process should throw UnavailableException.

All the servlets that access the bookstore database (BookStoreServlet, CatalogServlet,
BookDetailsServlet, and ShowCartServlet) initialize a variable in their init method that
points to the database access object created by the web context listener:

public class CatalogServlet extends HttpServlet {

private BookDBAO bookDB;

public void init() throws ServletException {

bookDB = (BookDBAO)getServletContext().

getAttribute("bookDB");
if (bookDB == null) throw new

UnavailableException("Couldn’t get database.");
}

}

Initializing a Servlet

Chapter 4 • Java Servlet Technology 109

Writing Service Methods
The service provided by a servlet is implemented in the service method of a GenericServlet,
in the doMethod methods (where Method can take the value Get, Delete, Options, Post, Put, or
Trace) of an HttpServlet object, or in any other protocol-specific methods defined by a class
that implements the Servlet interface. In the rest of this chapter, the term service method is
used for any method in a servlet class that provides a service to a client.

The general pattern for a service method is to extract information from the request, access
external resources, and then populate the response based on that information.

For HTTP servlets, the correct procedure for populating the response is to first retrieve an
output stream from the response, then fill in the response headers, and finally write any body
content to the output stream. Response headers must always be set before the response has been
committed. Any attempt to set or add headers after the response has been committed will be
ignored by the web container. The next two sections describe how to get information from
requests and generate responses.

Getting Information from Requests
A request contains data passed between a client and the servlet. All requests implement the
ServletRequest interface. This interface defines methods for accessing the following
information:

■ Parameters, which are typically used to convey information between clients and servlets
■ Object-valued attributes, which are typically used to pass information between the servlet

container and a servlet or between collaborating servlets
■ Information about the protocol used to communicate the request and about the client and

server involved in the request
■ Information relevant to localization

For example, in CatalogServlet the identifier of the book that a customer wishes to purchase is
included as a parameter to the request. The following code fragment illustrates how to use the
getParameter method to extract the identifier:

String bookId = request.getParameter("Add");
if (bookId != null) {

Book book = bookDB.getBook(bookId);

You can also retrieve an input stream from the request and manually parse the data. To read
character data, use the BufferedReader object returned by the request’s getReader method. To
read binary data, use the ServletInputStream returned by getInputStream.

HTTP servlets are passed an HTTP request object, HttpServletRequest, which contains the
request URL, HTTP headers, query string, and so on.

Writing Service Methods

The Java EE 5 Tutorial • October 2008110

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequest.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletInputStream.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpServletRequest.html

An HTTP request URL contains the following parts:

http://[host]:[port][request-path]?[query-string]

The request path is further composed of the following elements:

■ Context path: A concatenation of a forward slash (/) with the context root of the servlet’s
web application.

■ Servlet path: The path section that corresponds to the component alias that activated this
request. This path starts with a forward slash (/).

■ Path info: The part of the request path that is not part of the context path or the servlet path.

If the context path is /catalog and for the aliases listed in Table 4–4, Table 4–5 gives some
examples of how the URL will be parsed.

TABLE 4–4 Aliases

Pattern Servlet

/lawn/* LawnServlet

/*.jsp JSPServlet

TABLE 4–5 Request Path Elements

Request Path Servlet Path Path Info

/catalog/lawn/index.html /lawn /index.html

/catalog/help/feedback.jsp /help/feedback.jsp null

Query strings are composed of a set of parameters and values. Individual parameters are
retrieved from a request by using the getParameter method. There are two ways to generate
query strings:

■ A query string can explicitly appear in a web page. For example, an HTML page generated
by CatalogServlet could contain the link Add
To Cart. CatalogServlet extracts the parameter named Add as follows:

String bookId = request.getParameter("Add");

■ A query string is appended to a URL when a form with a GET HTTP method is submitted. In
the Duke’s Bookstore application, CashierServlet generates a form, then a user name
input to the form is appended to the URL that maps to ReceiptServlet, and finally
ReceiptServlet extracts the user name using the getParameter method.

Writing Service Methods

Chapter 4 • Java Servlet Technology 111

Constructing Responses
A response contains data passed between a server and the client. All responses implement the
ServletResponse interface. This interface defines methods that allow you to:

■ Retrieve an output stream to use to send data to the client. To send character data, use the
PrintWriter returned by the response’s getWriter method. To send binary data in a MIME
body response, use the ServletOutputStream returned by getOutputStream. To mix binary
and text data (as in a multipart response), use a ServletOutputStream and manage the
character sections manually.

■ Indicate the content type (for example, text/html) being returned by the response with the
setContentType(String) method. This method must be called before the response is
committed. A registry of content type names is kept by the Internet Assigned Numbers
Authority (IANA) at http://www.iana.org/assignments/media-types/.

■ Indicate whether to buffer output with the setBufferSize(int) method. By default, any
content written to the output stream is immediately sent to the client. Buffering allows
content to be written before anything is actually sent back to the client, thus providing the
servlet with more time to set appropriate status codes and headers or forward to another
web resource. The method must be called before any content is written or before the
response is committed.

■ Set localization information such as locale and character encoding. See Chapter 15,
“Internationalizing and Localizing Web Applications,” for details.

HTTP response objects, HttpServletResponse, have fields representing HTTP headers such as
the following:

■ Status codes, which are used to indicate the reason a request is not satisfied or that a request
has been redirected.

■ Cookies, which are used to store application-specific information at the client. Sometimes
cookies are used to maintain an identifier for tracking a user’s session (see “Session
Tracking” on page 127).

In Duke’s Bookstore, BookDetailsServlet generates an HTML page that displays information
about a book that the servlet retrieves from a database. The servlet first sets response headers:
the content type of the response and the buffer size. The servlet buffers the page content because
the database access can generate an exception that would cause forwarding to an error page. By
buffering the response, the servlet prevents the client from seeing a concatenation of part of a
Duke’s Bookstore page with the error page should an error occur. The doGet method then
retrieves a PrintWriter from the response.

To fill in the response, the servlet first dispatches the request to BannerServlet, which
generates a common banner for all the servlets in the application. This process is discussed in
“Including Other Resources in the Response” on page 122. Then the servlet retrieves the book
identifier from a request parameter and uses the identifier to retrieve information about the

Writing Service Methods

The Java EE 5 Tutorial • October 2008112

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletResponse.html
http://java.sun.com/javase/6/docs/api/java/io/PrintWriter.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletOutputStream.html
http://www.iana.org/assignments/media-types/
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpServletResponse.html

book from the bookstore database. Finally, the servlet generates HTML markup that describes
the book information and then commits the response to the client by calling the close method
on the PrintWriter.

public class BookDetailsServlet extends HttpServlet {

...

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

...

// set headers before accessing the Writer

response.setContentType("text/html");
response.setBufferSize(8192);

PrintWriter out = response.getWriter();

// then write the response

out.println("<html>" +

"<head><title>+
messages.getString("TitleBookDescription")
+</title></head>");

// Get the dispatcher; it gets the banner to the user

RequestDispatcher dispatcher =

getServletContext().

getRequestDispatcher("/banner");
if (dispatcher != null)

dispatcher.include(request, response);

// Get the identifier of the book to display

String bookId = request.getParameter("bookId");
if (bookId != null) {

// and the information about the book

try {

Book bd =

bookDB.getBook(bookId);

...

// Print the information obtained

out.println("<h2>" + bd.getTitle() + "</h2>" +

...

} catch (BookNotFoundException ex) {

response.resetBuffer();

throw new ServletException(ex);

}

}

out.println("</body></html>");
out.close();

}

}

Writing Service Methods

Chapter 4 • Java Servlet Technology 113

BookDetailsServlet generates a page that looks like Figure 4–2.

Filtering Requests and Responses
A filter is an object that can transform the header and content (or both) of a request or response.
Filters differ from web components in that filters usually do not themselves create a response.
Instead, a filter provides functionality that can be “attached” to any kind of web resource.
Consequently, a filter should not have any dependencies on a web resource for which it is acting
as a filter; this way it can be composed with more than one type of web resource.

The main tasks that a filter can perform are as follows:

■ Query the request and act accordingly.
■ Block the request-and-response pair from passing any further.

FIGURE 4–2 Book Details

Filtering Requests and Responses

The Java EE 5 Tutorial • October 2008114

■ Modify the request headers and data. You do this by providing a customized version of the
request.

■ Modify the response headers and data. You do this by providing a customized version of the
response.

■ Interact with external resources.

Applications of filters include authentication, logging, image conversion, data compression,
encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, or more filters in a
specific order. This chain is specified when the web application containing the component is
deployed and is instantiated when a web container loads the component.

In summary, the tasks involved in using filters are

■ Programming the filter
■ Programming customized requests and responses
■ Specifying the filter chain for each web resource

Programming Filters
The filtering API is defined by the Filter, FilterChain, and FilterConfig interfaces in the
javax.servlet package. You define a filter by implementing the Filter interface.

The most important method in this interface is doFilter, which is passed request, response,
and filter chain objects. This method can perform the following actions:

■ Examine the request headers.
■ Customize the request object if the filter wishes to modify request headers or data.
■ Customize the response object if the filter wishes to modify response headers or data.
■ Invoke the next entity in the filter chain. If the current filter is the last filter in the chain that

ends with the target web component or static resource, the next entity is the resource at the
end of the chain; otherwise, it is the next filter that was configured in the WAR. The filter
invokes the next entity by calling the doFilter method on the chain object (passing in the
request and response it was called with, or the wrapped versions it may have created).
Alternatively, it can choose to block the request by not making the call to invoke the next
entity. In the latter case, the filter is responsible for filling out the response.

■ Examine response headers after it has invoked the next filter in the chain.
■ Throw an exception to indicate an error in processing.

In addition to doFilter, you must implement the init and destroy methods. The init
method is called by the container when the filter is instantiated. If you wish to pass initialization
parameters to the filter, you retrieve them from the FilterConfig object passed to init.

Filtering Requests and Responses

Chapter 4 • Java Servlet Technology 115

http://java.sun.com/javaee/5/docs/api/javax/servlet/Filter.html

The Duke’s Bookstore application uses the filters HitCounterFilter and OrderFilter, located
at
tut-install/javaeetutorial5/examples/web/bookstore1/src/java/com/sun/bookstore1/filters/,
to increment and log the value of counters when the entry and receipt servlets are accessed.

In the doFilter method, both filters retrieve the servlet context from the filter configuration
object so that they can access the counters stored as context attributes. After the filters have
completed application-specific processing, they invoke doFilter on the filter chain object
passed into the original doFilter method. The elided code is discussed in the next section.

public final class HitCounterFilter implements Filter {

private FilterConfig filterConfig = null;

public void init(FilterConfig filterConfig)

throws ServletException {

this.filterConfig = filterConfig;

}

public void destroy() {

this.filterConfig = null;

}

public void doFilter(ServletRequest request,

ServletResponse response, FilterChain chain)

throws IOException, ServletException {

if (filterConfig == null)

return;

StringWriter sw = new StringWriter();

PrintWriter writer = new PrintWriter(sw);

Counter counter = (Counter)filterConfig.

getServletContext().

getAttribute("hitCounter");
writer.println();

writer.println("===============");
writer.println("The number of hits is: " +

counter.incCounter());

writer.println("===============");
// Log the resulting string

writer.flush();

System.out.println(sw.getBuffer().toString());

...

chain.doFilter(request, wrapper);

...

}

}

Filtering Requests and Responses

The Java EE 5 Tutorial • October 2008116

Programming Customized Requests and Responses
There are many ways for a filter to modify a request or response. For example, a filter can add an
attribute to the request or can insert data in the response. In the Duke’s Bookstore example,
HitCounterFilter inserts the value of the counter into the response.

A filter that modifies a response must usually capture the response before it is returned to the
client. To do this, you pass a stand-in stream to the servlet that generates the response. The
stand-in stream prevents the servlet from closing the original response stream when it
completes and allows the filter to modify the servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper that overrides
the getWriter or getOutputStream method to return this stand-in stream. The wrapper is
passed to the doFilter method of the filter chain. Wrapper methods default to calling through
to the wrapped request or response object. This approach follows the well-known Wrapper or
Decorator pattern described in Design Patterns, Elements of Reusable Object-Oriented Software,
by Erich Gamma et al. (Addison-Wesley, 1995). The following sections describe how the hit
counter filter described earlier and other types of filters use wrappers.

To override request methods, you wrap the request in an object that extends
ServletRequestWrapper or HttpServletRequestWrapper. To override response methods, you
wrap the response in an object that extends ServletResponseWrapper or
HttpServletResponseWrapper.

HitCounterFilter wraps the response in a
tut-install/javaeetutorial5/examples/web/bookstore1/src/java/com/sun/bookstore1/filters/CharResponseWra
The wrapped response is passed to the next object in the filter chain, which is
BookStoreServlet. Then BookStoreServlet writes its response into the stream created by
CharResponseWrapper. When chain.doFilter returns, HitCounterFilter retrieves the
servlet’s response from PrintWriter and writes it to a buffer. The filter inserts the value of the
counter into the buffer, resets the content length header of the response, and then writes the
contents of the buffer to the response stream.

PrintWriter out = response.getWriter();

CharResponseWrapper wrapper = new CharResponseWrapper(

(HttpServletResponse)response);

chain.doFilter(request, wrapper);

CharArrayWriter caw = new CharArrayWriter();

caw.write(wrapper.toString().substring(0,

wrapper.toString().indexOf("</body>")-1));
caw.write("<p>\n<center>" +

messages.getString("Visitor") + "" +

counter.getCounter() + "</center>");
caw.write("\n</body></html>");
response.setContentLength(caw.toString().getBytes().length);

out.write(caw.toString());

Filtering Requests and Responses

Chapter 4 • Java Servlet Technology 117

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequestWrapper.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpServletRequestWrapper.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletResponseWrapper.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpServletResponseWrapper.html

out.close();

public class CharResponseWrapper extends

HttpServletResponseWrapper {

private CharArrayWriter output;

public String toString() {

return output.toString();

}

public CharResponseWrapper(HttpServletResponse response){

super(response);

output = new CharArrayWriter();

}

public PrintWriter getWriter(){

return new PrintWriter(output);

}

}

Figure 4–3 shows the entry page for Duke’s Bookstore with the hit counter.

Filtering Requests and Responses

The Java EE 5 Tutorial • October 2008118

Specifying Filter Mappings
A web container uses filter mappings to decide how to apply filters to web resources. A filter
mapping matches a filter to a web component by name, or to web resources by URL pattern.
The filters are invoked in the order in which filter mappings appear in the filter mapping list of a
WAR. You specify a filter mapping list for a WAR in its deployment descriptor, either with
NetBeans IDE or by coding the list by hand with XML.

To declare the filter and map it to a web resource using NetBeans IDE, do the following:

1. Expand the application’s project node in the Project pane.

2. Expand the Web Pages and WEB-INF nodes under the project node.

3. Double-click web.xml.

4. Click Filters at the top of the editor pane.

5. Expand the Servlet Filters node in the editor pane.

FIGURE 4–3 Duke’s Bookstore with Hit Counter

Filtering Requests and Responses

Chapter 4 • Java Servlet Technology 119

6. Click Add Filter Element to map the filter to a web resource by name or by URL pattern.
7. In the Add Servlet Filter dialog, enter the name of the filter in the Filter Name field.
8. Click Browse to locate the servlet class to which the filter applies. You can include wildcard

characters so that you can apply the filter to more than one servlet.
9. Click OK.

To constrain how the filter is applied to requests, do the following:

1. Expand the Filter Mappings node in the Filters tab of the editor pane.
2. Select the filter from the list of filters.
3. Click Add.
4. In the Add Filter Mapping dialog, select one of the following dispatcher types:

■ REQUEST: Only when the request comes directly from the client
■ FORWARD: Only when the request has been forwarded to a component (see “Transferring

Control to Another Web Component” on page 124)
■ INCLUDE: Only when the request is being processed by a component that has been

included (see “Including Other Resources in the Response” on page 122)
■ ERROR: Only when the request is being processed with the error page mechanism (see

“Handling Servlet Errors” on page 105)
You can direct the filter to be applied to any combination of the preceding situations by
selecting multiple dispatcher types. If no types are specified, the default option is
REQUEST.

You can declare, map, and constrain the filter by editing the XML in the web application
deployment descriptor directly by following these steps:

1. While in the web.xml editor pane in NetBeans IDE, click XML at the top of the editor pane.
2. Declare the filter by adding a filter element right after the display-name element. The

filter element creates a name for the filter and declares the filter’s implementation class
and initialization parameters.

3. Map the filter to a web resource by name or by URL pattern using the filter-mapping
element:
a. Include a filter-name element that specifies the name of the filter as defined by the

filter element.
b. Include a servlet-name element that specifies to which servlet the filter applies. The

servlet-name element can include wildcard characters so that you can apply the filter to
more than one servlet.

4. Constrain how the filter will be applied to requests by specifying one of the enumerated
dispatcher options (described in step 4 of the preceding set of steps) with the dispatcher
element and adding the dispatcher element to the filter-mapping element.

Filtering Requests and Responses

The Java EE 5 Tutorial • October 2008120

You can direct the filter to be applied to any combination of the preceding situations by
including multiple dispatcher elements. If no elements are specified, the default option is
REQUEST.

If you want to log every request to a web application, you map the hit counter filter to the URL
pattern /*. Table 4–6 summarizes the filter definition and mapping list for the Duke’s Bookstore
application. The filters are matched by servlet name, and each filter chain contains only one
filter.

TABLE 4–6 Duke’s Bookstore Filter Definition and Mapping List

Filter Class Servlet

HitCounterFilter filters.HitCounterFilter BookStoreServlet

OrderFilter filters.OrderFilter ReceiptServlet

You can map a filter to one or more web resources and you can map more than one filter to a
web resource. This is illustrated in Figure 4–4, where filter F1 is mapped to servlets S1, S2, and
S3, filter F2 is mapped to servlet S2, and filter F3 is mapped to servlets S1 and S2.

Recall that a filter chain is one of the objects passed to the doFilter method of a filter. This
chain is formed indirectly by means of filter mappings. The order of the filters in the chain is the
same as the order in which filter mappings appear in the web application deployment
descriptor.

S1

S2

S3

F1 F2
F3

FIGURE 4–4 Filter-to-Servlet Mapping

Filtering Requests and Responses

Chapter 4 • Java Servlet Technology 121

When a filter is mapped to servlet S1, the web container invokes the doFilter method of F1.
The doFilter method of each filter in S1’s filter chain is invoked by the preceding filter in the
chain by means of the chain.doFilter method. Because S1’s filter chain contains filters F1 and
F3, F1’s call to chain.doFilter invokes the doFilter method of filter F3. When F3’s doFilter
method completes, control returns to F1’s doFilter method.

Invoking Other Web Resources
Web components can invoke other web resources in two ways: indirectly and directly. A web
component indirectly invokes another web resource when it embeds a URL that points to
another web component in content returned to a client. In the Duke’s Bookstore application,
most web components contain embedded URLs that point to other web components. For
example, ShowCartServlet indirectly invokes the CatalogServlet through the following
embedded URL:

/bookstore1/catalog

A web component can also directly invoke another resource while it is executing. There are two
possibilities: The web component can include the content of another resource, or it can forward
a request to another resource.

To invoke a resource available on the server that is running a web component, you must first
obtain a RequestDispatcher object using the getRequestDispatcher("URL") method.

You can get a RequestDispatcher object from either a request or the web context; however, the
two methods have slightly different behavior. The method takes the path to the requested
resource as an argument. A request can take a relative path (that is, one that does not begin with
a /), but the web context requires an absolute path. If the resource is not available or if the server
has not implemented a RequestDispatcher object for that type of resource,
getRequestDispatcher will return null. Your servlet should be prepared to deal with this
condition.

Including Other Resources in the Response
It is often useful to include another web resource (for example, banner content or copyright
information) in the response returned from a web component. To include another resource,
invoke the include method of a RequestDispatcher object:

include(request, response);

Invoking Other Web Resources

The Java EE 5 Tutorial • October 2008122

http://java.sun.com/javaee/5/docs/api/javax/servlet/RequestDispatcher.html

If the resource is static, the include method enables programmatic server-side includes. If the
resource is a web component, the effect of the method is to send the request to the included web
component, execute the web component, and then include the result of the execution in the
response from the containing servlet. An included web component has access to the request
object, but it is limited in what it can do with the response object:
■ It can write to the body of the response and commit a response.
■ It cannot set headers or call any method (for example, setCookie) that affects the headers of

the response.

The banner for the Duke’s Bookstore application is generated by BannerServlet. Note that
both doGet and doPost are implemented because BannerServlet can be dispatched from either
method in a calling servlet.

public class BannerServlet extends HttpServlet {

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

output(request, response);

}

public void doPost (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

output(request, response);

}

private void output(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

PrintWriter out = response.getWriter();

out.println("<body bgcolor=\"#ffffff\">" +

"<center>" + "<hr>
 " + "<h1>" +

"Duke’s " +

<img src=\"" + request.getContextPath() +

"/duke.books.gif\">" +

"Bookstore" +

"</h1>" + "</center>" + "
 <hr>
 ");
}

}

Each servlet in the Duke’s Bookstore application includes the result from BannerServlet using
the following code:

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/banner");
if (dispatcher != null)

dispatcher.include(request, response);

}

Invoking Other Web Resources

Chapter 4 • Java Servlet Technology 123

Transferring Control to Another Web Component
In some applications, you might want to have one web component do preliminary processing of
a request and have another component generate the response. For example, you might want to
partially process a request and then transfer to another component depending on the nature of
the request.

To transfer control to another web component, you invoke the forward method of a
RequestDispatcher. When a request is forwarded, the request URL is set to the path of the
forwarded page. The original URI and its constituent parts are saved as request attributes
javax.servlet.forward.[request-uri|context-path|servlet-path|path-info|query-string].
The
tut-install/javaeetutorial5/examples/web/bookstore2/src/java/com/sun/bookstore2/dispatcher/Dispatcher
servlet, used by a version of the Duke’s Bookstore application described in “The Example JSP
Pages” on page 226, saves the path information from the original URL, retrieves a
RequestDispatcher from the request, and then forwards to the JSP page,
tut-install/javaeetutorial5/examples/web/bookstore3/web/template/template.jsp.

public class Dispatcher extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response) {

RequestDispatcher dispatcher = request.

getRequestDispatcher("/template.jsp");
if (dispatcher != null)

dispatcher.forward(request, response);

}

public void doPost(HttpServletRequest request,

...

}

The forward method should be used to give another resource responsibility for replying to the
user. If you have already accessed a ServletOutputStream or PrintWriter object within the
servlet, you cannot use this method; doing so throws an IllegalStateException.

Accessing the Web Context
The context in which web components execute is an object that implements the ServletContext
interface. You retrieve the web context using the getServletContext method. The web context
provides methods for accessing:

■ Initialization parameters
■ Resources associated with the web context
■ Object-valued attributes
■ Logging capabilities

Accessing the Web Context

The Java EE 5 Tutorial • October 2008124

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContext.html

The web context is used by the Duke’s Bookstore filters HitCounterFilter and OrderFilter,
which are discussed in “Filtering Requests and Responses” on page 114. Each filter stores a
counter as a context attribute. Recall from “Controlling Concurrent Access to Shared
Resources” on page 106 that the counter’s access methods are synchronized to prevent
incompatible operations by servlets that are running concurrently. A filter retrieves the counter
object using the context’s getAttribute method. The incremented value of the counter is
recorded in the log.

public final class HitCounterFilter implements Filter {

private FilterConfig filterConfig = null;

public void doFilter(ServletRequest request,

ServletResponse response, FilterChain chain)

throws IOException, ServletException {

...

StringWriter sw = new StringWriter();

PrintWriter writer = new PrintWriter(sw);

ServletContext context = filterConfig.

getServletContext();

Counter counter = (Counter)context.

getAttribute("hitCounter");
...

writer.println("The number of hits is: " +

counter.incCounter());

...

System.out.println(sw.getBuffer().toString());

...

}

}

Maintaining Client State
Many applications require that a series of requests from a client be associated with one another.
For example, the Duke’s Bookstore application saves the state of a user’s shopping cart across
requests. Web-based applications are responsible for maintaining such state, called a session,
because HTTP is stateless. To support applications that need to maintain state, Java Servlet
technology provides an API for managing sessions and allows several mechanisms for
implementing sessions.

Accessing a Session
Sessions are represented by an HttpSession object. You access a session by calling the
getSession method of a request object. This method returns the current session associated
with this request, or, if the request does not have a session, it creates one.

Maintaining Client State

Chapter 4 • Java Servlet Technology 125

http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSession.html

Associating Objects with a Session
You can associate object-valued attributes with a session by name. Such attributes are accessible
by any web component that belongs to the same web context and is handling a request that is
part of the same session.

The Duke’s Bookstore application stores a customer’s shopping cart as a session attribute. This
allows the shopping cart to be saved between requests and also allows cooperating servlets to
access the cart. CatalogServlet adds items to the cart; ShowCartServlet displays, deletes
items from, and clears the cart; and CashierServlet retrieves the total cost of the books in the
cart.

public class CashierServlet extends HttpServlet {

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Get the user’s session and shopping cart

HttpSession session = request.getSession();

ShoppingCart cart =

(ShoppingCart)session.

getAttribute("cart");
...

// Determine the total price of the user’s books

double total = cart.getTotal();

Notifying Objects That Are Associated with a Session
Recall that your application can notify web context and session listener objects of servlet
life-cycle events (“Handling Servlet Life-Cycle Events” on page 103). You can also notify objects
of certain events related to their association with a session such as the following:

■ When the object is added to or removed from a session. To receive this notification, your
object must implement the javax.servlet.http.HttpSessionBindingListener interface.

■ When the session to which the object is attached will be passivated or activated. A session
will be passivated or activated when it is moved between virtual machines or saved to and
restored from persistent storage. To receive this notification, your object must implement
the javax.servlet.http.HttpSessionActivationListener interface.

Session Management
Because there is no way for an HTTP client to signal that it no longer needs a session, each
session has an associated timeout so that its resources can be reclaimed. The timeout period can
be accessed by using a session’s [get|set]MaxInactiveInterval methods.

Maintaining Client State

The Java EE 5 Tutorial • October 2008126

http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionBindingListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionActivationListener.html

You can also set the timeout period in the deployment descriptor using NetBeans IDE:

1. Open the web.xml file in the web.xml editor.
2. Click General at the top of the editor.
3. Enter an integer value in the Session Timeout field. The integer value represents the number

of minutes of inactivity that must pass before the session times out.

To ensure that an active session is not timed out, you should periodically access the session by
using service methods because this resets the session’s time-to-live counter.

When a particular client interaction is finished, you use the session’s invalidate method to
invalidate a session on the server side and remove any session data. The bookstore application’s
ReceiptServlet is the last servlet to access a client’s session, so it has the responsibility to
invalidate the session:

public class ReceiptServlet extends HttpServlet {

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Get the user’s session and shopping cart

HttpSession session = request.getSession();

// Payment received -- invalidate the session

session.invalidate();

...

Session Tracking
A web container can use several methods to associate a session with a user, all of which involve
passing an identifier between the client and the server. The identifier can be maintained on the
client as a cookie, or the web component can include the identifier in every URL that is returned
to the client.

If your application uses session objects, you must ensure that session tracking is enabled by
having the application rewrite URLs whenever the client turns off cookies. You do this by
calling the response’s encodeURL(URL) method on all URLs returned by a servlet. This method
includes the session ID in the URL only if cookies are disabled; otherwise, it returns the URL
unchanged.

The doGet method of ShowCartServlet encodes the three URLs at the bottom of the shopping
cart display page as follows:

out.println("<p> <p><a href=\"" +

response.encodeURL(request.getContextPath() +

"/bookcatalog") +

"\">" + messages.getString("ContinueShopping") +

Maintaining Client State

Chapter 4 • Java Servlet Technology 127

" " +

"<a href=\"" +

response.encodeURL(request.getContextPath() +

"/bookcashier") +

"\">" + messages.getString("Checkout") +

" " +

"<a href=\"" +

response.encodeURL(request.getContextPath() +

"/bookshowcart?Clear=clear") +

"\">" + messages.getString("ClearCart") +

"");

If cookies are turned off, the session is encoded in the Check Out URL as follows:

http://localhost:8080/bookstore1/cashier;jsessionid=c0o7fszeb1

If cookies are turned on, the URL is simply

http://localhost:8080/bookstore1/cashier

Finalizing a Servlet
When a servlet container determines that a servlet should be removed from service (for
example, when a container wants to reclaim memory resources or when it is being shut down),
the container calls the destroy method of the Servlet interface. In this method, you release
any resources the servlet is using and save any persistent state. The following destroy method
releases the database object created in the init method described in “Initializing a Servlet” on
page 109:

public void destroy() {

bookDB = null;

}

All of a servlet’s service methods should be complete when a servlet is removed. The server tries
to ensure this by calling the destroy method only after all service requests have returned or
after a server-specific grace period, whichever comes first. If your servlet has operations that
take a long time to run (that is, operations that may run longer than the server’s grace period),
the operations could still be running when destroy is called. You must make sure that any
threads still handling client requests complete; the remainder of this section describes how to
do the following:
■ Keep track of how many threads are currently running the service method.
■ Provide a clean shutdown by having the destroy method notify long-running threads of the

shutdown and wait for them to complete.
■ Have the long-running methods poll periodically to check for shutdown and, if necessary,

stop working, clean up, and return.

Finalizing a Servlet

The Java EE 5 Tutorial • October 2008128

Tracking Service Requests
To track service requests, include in your servlet class a field that counts the number of service
methods that are running. The field should have synchronized access methods to increment,
decrement, and return its value.

public class ShutdownExample extends HttpServlet {

private int serviceCounter = 0;

...

// Access methods for serviceCounter

protected synchronized void enteringServiceMethod() {

serviceCounter++;

}

protected synchronized void leavingServiceMethod() {

serviceCounter--;

}

protected synchronized int numServices() {

return serviceCounter;

}

}

The service method should increment the service counter each time the method is entered and
should decrement the counter each time the method returns. This is one of the few times that
your HttpServlet subclass should override the service method. The new method should call
super.service to preserve the functionality of the original service method:

protected void service(HttpServletRequest req,

HttpServletResponse resp)

throws ServletException,IOException {

enteringServiceMethod();

try {

super.service(req, resp);

} finally {

leavingServiceMethod();

}

}

Notifying Methods to Shut Down
To ensure a clean shutdown, your destroy method should not release any shared resources
until all the service requests have completed. One part of doing this is to check the service
counter. Another part is to notify the long-running methods that it is time to shut down. For
this notification, another field is required. The field should have the usual access methods:

public class ShutdownExample extends HttpServlet {

private boolean shuttingDown;

Finalizing a Servlet

Chapter 4 • Java Servlet Technology 129

...

//Access methods for shuttingDown

protected synchronized void setShuttingDown(boolean flag) {

shuttingDown = flag;

}

protected synchronized boolean isShuttingDown() {

return shuttingDown;

}

}

Here is an example of the destroy method using these fields to provide a clean shutdown:

public void destroy() {

/* Check to see whether there are still service methods /*

/* running, and if there are, tell them to stop. */

if (numServices() > 0) {

setShuttingDown(true);

}

/* Wait for the service methods to stop. */

while(numServices() > 0) {

try {

Thread.sleep(interval);

} catch (InterruptedException e) {

}

}

}

Creating Polite Long-Running Methods
The final step in providing a clean shutdown is to make any long-running methods behave
politely. Methods that might run for a long time should check the value of the field that notifies
them of shutdowns and should interrupt their work, if necessary.

public void doPost(...) {

...

for(i = 0; ((i < lotsOfStuffToDo) &&

!isShuttingDown()); i++) {

try {

partOfLongRunningOperation(i);

} catch (InterruptedException e) {

...

}

}

}

Finalizing a Servlet

The Java EE 5 Tutorial • October 2008130

Further Information about Java Servlet Technology
For more information on Java Servlet technology, see:

■ Java Servlet 2.4 specification:
http://java.sun.com/products/servlet/download.html#specs

■ The Java Servlet web site:
http://java.sun.com/products/servlet

Further Information about Java Servlet Technology

Chapter 4 • Java Servlet Technology 131

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet

132

JavaServer Pages Technology

JavaServer Pages (JSP) technology allows you to easily create web content that has both static
and dynamic components. JSP technology makes available all the dynamic capabilities of Java
Servlet technology but provides a more natural approach to creating static content.

The main features of JSP technology are as follows:

■ A language for developing JSP pages, which are text-based documents that describe how to
process a request and construct a response

■ An expression language for accessing server-side objects
■ Mechanisms for defining extensions to the JSP language

JSP technology also contains an API that is used by developers of web containers, but this API is
not covered in this tutorial.

What Is a JSP Page?
A JSP page is a text document that contains two types of text: static data, which can be expressed
in any text-based format (such as HTML, SVG, WML, and XML), and JSP elements, which
construct dynamic content.

The recommended file extension for the source file of a JSP page is .jsp. The page can be
composed of a top file that includes other files that contain either a complete JSP page or a
fragment of a JSP page. The recommended extension for the source file of a fragment of a JSP
page is .jspf.

The JSP elements in a JSP page can be expressed in two syntaxes, standard and XML, though
any given file can use only one syntax. A JSP page in XML syntax is an XML document and can
be manipulated by tools and APIs for XML documents. This chapter and Chapters Chapter 7,
“JavaServer Pages Standard Tag Library,” through Chapter 9, “Scripting in JSP Pages,”
document only the standard syntax. The XML syntax is covered in Chapter 6, “JavaServer Pages
Documents.”

5C H A P T E R 5

133

http://www.w3.org/MarkUp/
http://www.w3.org/TR/SVG
http://xml.coverpages.org/wap-wml.html
http://www.w3.org/TR/REC-xml/

A Simple JSP Page Example
The web page in Figure 5–1 is a form that allows you to select a locale and displays the date in a
manner appropriate to the locale.

The source code for this example is in the tut-install/javaeetutorial5/examples/web/date/
directory. The JSP page, index.jsp, appears below; it is a typical mixture of static HTML
markup and JSP elements. If you have developed web pages, you are probably familiar with the
HTML document structure statements (<head>, <body>, and so on) and the HTML statements
that create a form (<form>) and a menu (<select>).

The lines in bold in the example code contain the following types of JSP constructs:
■ A page directive (<%@page ... %>) sets the content type returned by the page.
■ Tag library directives (<%@taglib ... %>) import custom tag libraries.
■ jsp:useBean is a standard element that creates an object containing a collection of locales

and initializes an identifier that points to that object.
■ JSP expression language expressions (${ }) retrieve the value of object properties. The

values are used to set custom tag attribute values and create dynamic content.
■ Custom tags (see Chapter 8, “Custom Tags in JSP Pages”) set a variable (c:set), iterate over

a collection of locale names (c:forEach), and conditionally insert HTML text into the
response (c:if, c:choose, c:when, c:otherwise).

■ jsp:setProperty is another standard element that sets the value of an object property.
■ A function (f:equals) tests the equality of an attribute and the current item of a collection.

(A built-in == operator is usually used to test equality.)

Here is the JSP page:

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core

FIGURE 5–1 Localized Date Form

What Is a JSP Page?

The Java EE 5 Tutorial • October 2008134

"
prefix="c" %>

<%@ taglib uri="/functions" prefix="f" %>

<html>

<head><title>Localized Dates</title></head>

<body bgcolor="white">
<jsp:useBean id="locales" scope="application"

class="mypkg.MyLocales"/>

<form name="localeForm" action="index.jsp" method="post">
<c:set var="selectedLocaleString" value="${param.locale}" />

<c:set var="selectedFlag"
value="${!empty selectedLocaleString}" />

Locale:

<select name=locale>

<c:forEach var="localeString" items="${locales.localeNames}" >

<c:choose>

<c:when test="${selectedFlag}">
<c:choose>

<c:when

test="${f:equals(selectedLocaleString, localeString)}" >

<option selected>${localeString}</option>

</c:when>

<c:otherwise>

<option>${localeString}</option>

</c:otherwise>

</c:choose>

</c:when>

<c:otherwise>

<option>${localeString}</option>

</c:otherwise>

</c:choose>

</c:forEach>

</select>

<input type="submit" name="Submit" value="Get Date">
</form>

<c:if test="${selectedFlag}" >

<jsp:setProperty name="locales"
property="selectedLocaleString"
value="${selectedLocaleString}" />

<jsp:useBean id="date" class="mypkg.MyDate"/>
<jsp:setProperty name="date" property="locale"

value="${locales.selectedLocale}"/>
Date: ${date.date}</c:if>

</body>

</html>

What Is a JSP Page?

Chapter 5 • JavaServer Pages Technology 135

To deploy the date application with NetBeans IDE, follow these steps:

1. Start the Application Server.

2. In NetBeans IDE, select File→Open Project.

3. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

4. Select the date folder.

5. Select the Open as Main Project check box.

6. Click Open Project.

7. In the Projects tab, right-click the date project, and select Undeploy and Deploy.

To deploy the date application with the Ant tool, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/date/.

2. Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/javaeetutorial5/examples/web/date/build/ directory, and create a WAR
file.

3. Start the Application Server.

4. Type ant deploy.

To run the example, do the following:

1. Set the character encoding in your browser to UTF-8.

2. Open your browser to http://localhost:8080/date.

3. You will see a combo box whose entries are locales. Select a locale and click Get Date. You
will see the date expressed in a manner appropriate for that locale.

Some of the characters might not display properly if you don’t have the appropriate language
files installed on your machine. Consult the user guide or online help for your operating system
to determine how you can install these language files.

The Example JSP Pages
To illustrate JSP technology, this chapter rewrites each servlet in the Duke’s Bookstore
application introduced in “The Example Servlets” on page 100 as a JSP page (see Table 5–1).

The Example JSP Pages

The Java EE 5 Tutorial • October 2008136

TABLE 5–1 Duke’s Bookstore Example JSP Pages

Function JSP Pages

Enter the bookstore. bookstore.jsp

Create the bookstore banner. banner.jsp

Browse the books offered for sale. bookcatalog.jsp

Add a book to the shopping cart. bookcatalog.jsp and bookdetails.jsp

Get detailed information on a specific book. bookdetails.jsp

Display the shopping cart. bookshowcart.jsp

Remove one or more books from the shopping cart. bookshowcart.jsp

Buy the books in the shopping cart. bookcashier.jsp

Receive an acknowledgment for the purchase. bookreceipt.jsp

The data for the bookstore application is still maintained in a database and is accessed through
tut-install/javaeetutorial5/examples/web/bookstore2/src/java/com/sun/bookstore2/database/BookDBAO.java.
However, the JSP pages access BookDBAO through the JavaBeans component
tut-install/javaeetutorial5/examples/web/bookstore2/src/java/com/sun/bookstore2/database/BookDB.java.
This class allows the JSP pages to use JSP elements designed to work with JavaBeans
components (see “JavaBeans Component Design Conventions” on page 167).

The implementation of the database bean follows. The bean has two instance variables: the
current book and the data access object.

package database;

public class BookDB {

private String bookId = "0";
private BookDBAO database = null;

public BookDB () throws Exception {

}

public void setBookId(String bookId) {

this.bookId = bookId;

}

public void setDatabase(BookDAO database) {

this.database = database;

}

public Book getBook()

throws Exception {

return (Book)database.getBook(bookId);

}

...

}

The Example JSP Pages

Chapter 5 • JavaServer Pages Technology 137

This version of the Duke’s Bookstore application is organized along the Model-View-Controller
(MVC) architecture. The MVC architecture is a widely used architectural approach for
interactive applications that distributes functionality among application objects so as to
minimize the degree of coupling between the objects. To achieve this, it divides applications
into three layers: model, view, and controller. Each layer handles specific tasks and has
responsibilities to the other layers:
■ The model represents business data, along with business logic or operations that govern

access and modification of this business data. The model notifies views when it changes and
lets the view query the model about its state. It also lets the controller access application
functionality encapsulated by the model. In the Duke’s Bookstore application, the shopping
cart and database access object contain the business logic for the application.

■ The view renders the contents of a model. It gets data from the model and specifies how that
data should be presented. It updates data presentation when the model changes. A view also
forwards user input to a controller. The Duke’s Bookstore JSP pages format the data stored
in the session-scoped shopping cart and the page-scoped database bean.

■ The controller defines application behavior. It dispatches user requests and selects views for
presentation. It interprets user inputs and maps them into actions to be performed by the
model. In a web application, user inputs are HTTP GET and POST requests. A controller
selects the next view to display based on the user interactions and the outcome of the model
operations. In the Duke’s Bookstore application, the Dispatcher servlet is the controller. It
examines the request URL, creates and initializes a session-scoped JavaBeans component
(the shopping cart), and dispatches requests to view JSP pages.

Note – When employed in a web application, the MVC architecture is often referred to as a
Model-2 architecture. The bookstore example discussed in Chapter 4, “Java Servlet
Technology,” which intermixes presentation and business logic, follows what is known as a
Model-1 architecture. The Model-2 architecture is the recommended approach to designing
web applications.

In addition, this version of the application uses several custom tags from the JavaServer Pages
Standard Tag Library (JSTL), described in Chapter 7, “JavaServer Pages Standard Tag Library”:
■ c:if, c:choose, c:when, and c:otherwise for flow control
■ c:set for setting scoped variables
■ c:url for encoding URLs
■ fmt:message, fmt:formatNumber, and fmt:formatDate for providing locale-sensitive

messages, numbers, and dates

Custom tags are the preferred mechanism for performing a wide variety of dynamic processing
tasks, including accessing databases, using enterprise services such as email and directories, and
implementing flow control. In earlier versions of JSP technology, such tasks were performed
with JavaBeans components in conjunction with scripting elements (discussed in Chapter 9,

The Example JSP Pages

The Java EE 5 Tutorial • October 2008138

“Scripting in JSP Pages”). Although still available in JSP 2.0 technology, scripting elements tend
to make JSP pages more difficult to maintain because they mix presentation and logic,
something that is discouraged in page design. Custom tags are introduced in “Using Custom
Tags” on page 172 and described in detail in Chapter 8, “Custom Tags in JSP Pages.”

Finally, this version of the example contains an applet to generate a dynamic digital clock in the
banner. See “Including an Applet” on page 176 for a description of the JSP element that
generates HTML for downloading the applet.

To deploy and run the application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

2. In NetBeans IDE, select File→Open Project.

3. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

4. Select the bookstore2 folder.

5. Select the Open as Main Project check box and the Open Required Projects check box.

6. Click Open Project.

7. In the Projects tab, right-click the bookstore2 project, and select Undeploy and Deploy.

8. To run the application, open the bookstore URL
http://localhost:8080/bookstore2/books/bookstore.

To deploy and run the application using Ant, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/bookstore2/.

2. Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/javaeetutorial5/examples/web/bookstore2/build/ directory, and create a
WAR file and copy it to the
tut-install/javaeetutorial5/examples/web/bookstore2/dist/ directory.

3. Start the Application Server.

4. Perform all the operations described in “Creating a Data Source in the Application Server”
on page 98.

5. To deploy the example, type ant deploy. The deploy target outputs a URL for running the
application. Ignore this URL, and instead use the one shown in the next step.

6. To run the application, open the bookstore URL
http://localhost:8080/bookstore2/books/bookstore.

The Example JSP Pages

Chapter 5 • JavaServer Pages Technology 139

To learn how to configure the example, refer to the deployment descriptor (the web.xml file),
which includes the following configurations:

■ A display-name element that specifies the name that tools use to identify the application.
■ A context-param element that specifies the JSTL resource bundle base name.
■ A listener element that identifies the ContextListener class used to create and remove

the database access.
■ A servlet element that identifies the Dispatcher servlet instance.
■ A set of servlet-mapping elements that map Dispatcher to URL patterns for each of the

JSP pages in the application.
■ Nested inside a jsp-config element are two jsp-property-group elements, which define

the preludes and coda to be included in each page. See “Setting Properties for Groups of JSP
Pages” on page 179 for more information.

Figure 5–2 shows the bookcatalog.jsp page from the Duke’s Bookstore application. This page
displays a list of all the books that are available for purchase.

The Example JSP Pages

The Java EE 5 Tutorial • October 2008140

See “Troubleshooting Duke's Bookstore Database Problems” on page 102 for help with
diagnosing common problems related to the database server. If the messages in your pages
appear as strings of the form ??? Key ???, the likely cause is that you have not provided the
correct resource bundle base name as a context parameter.

FIGURE 5–2 Book Catalog

The Example JSP Pages

Chapter 5 • JavaServer Pages Technology 141

The Life Cycle of a JSP Page
A JSP page services requests as a servlet. Thus, the life cycle and many of the capabilities of JSP
pages (in particular the dynamic aspects) are determined by Java Servlet technology. You will
notice that many sections in this chapter refer to classes and methods described in Chapter 4,
“Java Servlet Technology.”

When a request is mapped to a JSP page, the web container first checks whether the JSP page’s
servlet is older than the JSP page. If the servlet is older, the web container translates the JSP page
into a servlet class and compiles the class. During development, one of the advantages of JSP
pages over servlets is that the build process is performed automatically.

Translation and Compilation
During the translation phase each type of data in a JSP page is treated differently. Static data is
transformed into code that will emit the data into the response stream. JSP elements are treated
as follows:
■ Directives are used to control how the web container translates and executes the JSP page.
■ Scripting elements are inserted into the JSP page’s servlet class. See Chapter 9, “Scripting in

JSP Pages,” for details.
■ Expression language expressions are passed as parameters to calls to the JSP expression

evaluator.
■ jsp:[set|get]Property elements are converted into method calls to JavaBeans

components.
■ jsp:[include|forward]elements are converted into invocations of the Java Servlet API.
■ The jsp:plugin element is converted into browser-specific markup for activating an applet.
■ Custom tags are converted into calls to the tag handler that implements the custom tag.

In the Application Server, the source for the servlet created from a JSP page named pageName is
in this file:

domain-dir/generated/jsp/j2ee-modules/WAR-NAME/pageName_jsp.java

For example, the source for the index page (named index.jsp) for the date localization
example discussed at the beginning of the chapter would be named:

domain-dir/generated/jsp/j2ee-modules/date/index_jsp.java

Both the translation and the compilation phases can yield errors that are observed only when
the page is requested for the first time. If an error is encountered during either phase, the server
will return JasperException and a message that includes the name of the JSP page and the line
where the error occurred.

The Life Cycle of a JSP Page

The Java EE 5 Tutorial • October 2008142

After the page has been translated and compiled, the JSP page’s servlet (for the most part)
follows the servlet life cycle described in “Servlet Life Cycle” on page 102:

1. If an instance of the JSP page’s servlet does not exist, the container:
a. Loads the JSP page’s servlet class
b. Instantiates an instance of the servlet class
c. Initializes the servlet instance by calling the jspInit method

2. The container invokes the _jspService method, passing request and response objects.

If the container needs to remove the JSP page’s servlet, it calls the jspDestroy method.

Execution
You can control various JSP page execution parameters by using page directives. The directives
that pertain to buffering output and handling errors are discussed here. Other directives are
covered in the context of specific page-authoring tasks throughout the chapter.

Buffering
When a JSP page is executed, output written to the response object is automatically buffered.
You can set the size of the buffer using the following page directive:

<%@ page buffer="none|xxxkb" %>

A larger buffer allows more content to be written before anything is actually sent back to the
client, thus providing the JSP page with more time to set appropriate status codes and headers
or to forward to another web resource. A smaller buffer decreases server memory load and
allows the client to start receiving data more quickly.

Handling JSP Page Errors
Any number of exceptions can arise when a JSP page is executed. To specify that the web
container should forward control to an error page if an exception occurs, include the following
page directive at the beginning of your JSP page:

<%@ page errorPage="file-name" %>

The Duke’s Bookstore application page
tut-install/javaeetutorial5/examples/web/bookstore2/web/template/preludeErrorPage.jspf
contains the directive:

<%@ page errorPage="errorpage.jsp"%>

The following page directive at the beginning of
tut-install/javaeetutorial5/examples/web/bookstore2/web/error/errorpage.jsp
indicates that it is serving as an error page:

The Life Cycle of a JSP Page

Chapter 5 • JavaServer Pages Technology 143

<%@ page isErrorPage="true" %>

This directive makes an object of type javax.servlet.jsp.ErrorData available to the error page so
that you can retrieve, interpret, and possibly display information about the cause of the
exception in the error page. You access the error data object in an EL (see “Unified Expression
Language” on page 146) expression by way of the page context. Thus,
${pageContext.errorData.statusCode} retrieves the status code, and
${pageContext.errorData.throwable} retrieves the exception. You can retrieve the cause of
the exception using this expression:

${pageContext.errorData.throwable.cause}

For example, the error page for Duke’s Bookstore is as follows:

<%@ page isErrorPage="true" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt"
prefix="fmt" %>

<html>

<head>

<title><fmt:message key="ServerError"/></title>
</head>

<body bgcolor="white">
<h3>

<fmt:message key="ServerError"/>
</h3>

<p>

: ${pageContext.errorData.throwable.cause}

</body>

</html>

Note – You can also define error pages for the WAR that contains a JSP page. If error pages are
defined for both the WAR and a JSP page, the JSP page’s error page takes precedence.

Creating Static Content
You create static content in a JSP page simply by writing it as if you were creating a page that
consisted only of that content. Static content can be expressed in any text-based format, such as
HTML, Wireless Markup Language (WML), and XML. The default format is HTML. If you
want to use a format other than HTML, at the beginning of your JSP page you include a page
directive with the contentType attribute set to the content type. The purpose of the
contentType directive is to allow the browser to correctly interpret the resulting content. So if
you wanted a page to contain data expressed in WML, you would include the following
directive:

Creating Static Content

The Java EE 5 Tutorial • October 2008144

http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/ErrorData.html

<%@ page contentType="text/vnd.wap.wml"%>

A registry of content type names is kept by the IANA at
http://www.iana.org/assignments/media-types/.

Response and Page Encoding
You also use the contentType attribute to specify the encoding of the response. For example,
the date application specifies that the page should be encoded using UTF-8, an encoding that
supports almost all locales, using the following page directive:

<%@ page contentType="text/html; charset=UTF-8" %>

If the response encoding weren’t set, the localized dates would not be rendered correctly.

To set the source encoding of the page itself, you would use the following page directive:

<%@ page pageEncoding="UTF-8" %>

You can also set the page encoding of a set of JSP pages. The value of the page encoding varies
depending on the configuration specified in the JSP configuration section of the web
application deployment descriptor (see “Declaring Page Encodings” on page 181).

Creating Dynamic Content
You create dynamic content by accessing Java programming language object properties.

Using Objects within JSP Pages
You can access a variety of objects, including enterprise beans and JavaBeans components,
within a JSP page. JSP technology automatically makes some objects available, and you can also
create and access application-specific objects.

Using Implicit Objects
Implicit objects are created by the web container and contain information related to a particular
request, page, session, or application. Many of the objects are defined by the Java servlet
technology underlying JSP technology and are discussed at length in Chapter 4, “Java Servlet
Technology.” The section “Implicit Objects” on page 162 explains how you access implicit
objects using the JSP expression language.

Creating Dynamic Content

Chapter 5 • JavaServer Pages Technology 145

http://www.iana.org/assignments/media-types/

Using Application-Specific Objects
When possible, application behavior should be encapsulated in objects so that page designers
can focus on presentation issues. Objects can be created by developers who are proficient in the
Java programming language and in accessing databases and other services. The main way to
create and use application-specific objects within a JSP page is to use JSP standard tags
(discussed in “JavaBeans Components” on page 167) to create JavaBeans components and set
their properties, and EL expressions to access their properties. You can also access JavaBeans
components and other objects in scripting elements, which are described in Chapter 9,
“Scripting in JSP Pages.”

Using Shared Objects
The conditions affecting concurrent access to shared objects (described in “Controlling
Concurrent Access to Shared Resources” on page 106) apply to objects accessed from JSP pages
that run as multithreaded servlets. You can use the following page directive to indicate how a
web container should dispatch multiple client requests:

<%@ page isThreadSafe="true|false" %>

When the isThreadSafe attribute is set to true, the web container can choose to dispatch
multiple concurrent client requests to the JSP page. This is the default setting. If using true, you
must ensure that you properly synchronize access to any shared objects defined at the page
level. This includes objects created within declarations, JavaBeans components with page scope,
and attributes of the page context object (see “Implicit Objects” on page 162).

If isThreadSafe is set to false, requests are dispatched one at a time in the order they were
received, and access to page-level objects does not have to be controlled. However, you still
must ensure that access is properly synchronized to attributes of the application or session
scope objects and to JavaBeans components with application or session scope. Furthermore, it
is not recommended to set isThreadSafe to false. The JSP page’s generated servlet will
implement the javax.servlet.SingleThreadModel interface, and because the Servlet 2.4
specification deprecates SingleThreadModel, the generated servlet will contain deprecated
code.

Unified Expression Language
The primary new feature of JSP 2.1 is the unified expression language (unified EL), which
represents a union of the expression language offered by JSP 2.0 and the expression language
created for JavaServer Faces technology (see Chapter 10, “JavaServer Faces Technology”)
version 1.0.

The expression language introduced in JSP 2.0 allows page authors to use simple expressions to
dynamically read data from JavaBeans components. For example, the test attribute of the
following conditional tag is supplied with an EL expression that compares the number of items
in the session-scoped bean named cart with 0.

Unified Expression Language

The Java EE 5 Tutorial • October 2008146

<c:if test="${sessionScope.cart.numberOfItems > 0}">
...

</c:if>

As explained in “The Life Cycle of a JSP Page” on page 142, JSP supports a simple
request/response life cycle, during which a page is executed and the HTML markup is rendered
immediately. Therefore, the simple, read-only expression language offered by JSP 2.0 was well
suited to the needs of JSP applications.

JavaServer Faces technology, on the other hand, features a multiphase life cycle designed to
support its sophisticated UI component model, which allows for converting and validating
component data, propagating component data to objects, and handling component events. To
facilitate these functions, JavaServer Faces technology introduced its own expression language
that included the following functionality:

■ Deferred evaluation of expressions
■ The ability to set data as well as get data
■ The ability to invoke methods

See “Using the Unified EL to Reference Backing Beans” on page 312 for more information on
how to use the unified EL in JavaServer Faces applications.

These two expression languages have been unified for a couple reasons. One reason is so that
page authors can mix JSP content with JavaServer Faces tags without worrying about conflicts
caused by the different life cycles these technologies support. Another reason is so that other
JSP-based technologies could make use of the additional features similarly to the way JavaServer
Faces technology uses them. In fact, although the standard JSP tags and static content continue
to use only those features present in JSP 2.0, authors of JSP custom tags can create tags that take
advantage of the new set of features in the unified expression language.

To summarize, the new, unified expression language allows page authors to use simple
expressions to perform the following tasks:

■ Dynamically read application data stored in JavaBeans components, various data structures,
and implicit objects

■ Dynamically write data, such as user input into forms, to JavaBeans components
■ Invoke arbitrary static and public methods
■ Dynamically perform arithmetic operations

Unified Expression Language

Chapter 5 • JavaServer Pages Technology 147

The unified EL also allows custom tag developers to specify which of the following kinds of
expressions that a custom tag attribute will accept:
■ Immediate evaluation expressions or deferred evaluation expressions. An immediate

evaluation expression is evaluated immediately by the JSP engine. A deferred evaluation
expression can be evaluated later by the underlying technology using the expression
language.

■ Value expression or method expression. A value expression references data, whereas a
method expression invokes a method.

■ Rvalue expression or Lvalue expression. An rvalue expression can only read a value, whereas
an lvalue expression can both read and write that value to an external object.

Finally, the unified EL also provides a pluggable API for resolving expressions so that
application developers can implement their own resolvers that can handle expressions not
already supported by the unified EL.

This section gives an overview of the unified expression language features by explaining the
following topics:
■ “Immediate and Deferred Evaluation Syntax” on page 148
■ “Value and Method Expressions” on page 150
■ “Defining a Tag Attribute Type” on page 156
■ “Deactivating Expression Evaluation” on page 157
■ “Literal Expressions” on page 158
■ “Resolving Expressions” on page 160
■ “Implicit Objects” on page 162
■ “Operators” on page 163
■ “Reserved Words” on page 163
■ “Examples of EL Expressions” on page 164
■ “Functions” on page 165

Immediate and Deferred Evaluation Syntax
The unified EL supports both immediate and deferred evaluation of expressions. Immediate
evaluation means that the JSP engine evaluates the expression and returns the result
immediately when the page is first rendered. Deferred evaluation means that the technology
using the expression language can employ its own machinery to evaluate the expression
sometime later during the page’s life cycle, whenever it is appropriate to do so.

Those expressions that are evaluated immediately use the ${} syntax, which was introduced
with the JSP 2.0 expression language. Expressions whose evaluation is deferred use the #{}
syntax, which was introduced by JavaServer Faces technology.

Because of its multiphase life cycle, JavaServer Faces technology uses deferred evaluation
expressions. During the life cycle, component events are handled, data is validated, and other

Unified Expression Language

The Java EE 5 Tutorial • October 2008148

tasks are performed, all done in a particular order. Therefore, it must defer evaluation of
expressions until the appropriate point in the life cycle.

Other technologies using the unified EL might have different reasons for using deferred
expressions.

Immediate Evaluation
All expressions using the ${} syntax are evaluated immediately. These expressions can only be
used within template text or as the value of a JSP tag attribute that can accept runtime
expressions.

The following example shows a tag whose value attribute references an immediate evaluation
expression that gets the total price from the session-scoped bean named cart:

<fmt:formatNumber value="${sessionScope.cart.total}"/>

The JSP engine evaluates the expression, ${sessionScope.cart.total}, converts it, and passes
the returned value to the tag handler.

Immediate evaluation expressions are always read-only value expressions. The expression
shown above can only get the total price from the cart bean; it cannot set the total price.

Deferred Evaluation
Deferred evaluation expressions take the form #{expr} and can be evaluated at other phases of
a page life cycle as defined by whatever technology is using the expression. In the case of
JavaServer Faces technology, its controller can evaluate the expression at different phases of the
life cycle depending on how the expression is being used in the page.

The following example shows a JavaServer Faces inputText tag, which represents a text field
component into which a user enters a value. The inputText tag’s value attribute references a
deferred evaluation expression that points to the name property of the customer bean.

<h:inputText id="name" value="#{customer.name}" />

For an initial request of the page containing this tag, the JavaServer Faces implementation
evaluates the #{customer.name} expression during the render response phase of the life cycle.
During this phase, the expression merely accesses the value of name from the customer bean, as
is done in immediate evaluation.

For a postback, the JavaServer Faces implementation evaluates the expression at different
phases of the life cycle, during which the value is retrieved from the request, validated, and
propagated to the customer bean.

As shown in this example, deferred evaluation expressions can be value expressions that can be
used to both read and write data. They can also be method expressions. Value expressions (both
immediate and deferred) and method expressions are explained in the next section.

Unified Expression Language

Chapter 5 • JavaServer Pages Technology 149

Value and Method Expressions
The unified EL defines two kinds of expressions: value expressions and method expressions.
Value expressions can either yield a value or set a value. Method expressions reference methods
that can be invoked and can return a value.

Value Expressions
Value expressions can be further categorized into rvalue and lvalue expressions. Rvalue
expressions are those that can read data, but cannot write it. Lvalue expressions can both read
and write data.

All expressions that are evaluated immediately use the ${} delimiters and are always rvalue
expressions. Expressions whose evaluation can be deferred use the #{} delimiters and can act as
both rvalue and lvalue expressions. Consider these two value expressions:

<taglib:tag value="${customer.name}" />

<taglib:tag value="#{customer.name}" />

The former uses immediate evaluation syntax, whereas the latter uses deferred evaluation
syntax. The first expression accesses the name property, gets its value, and the value is added to
the response and rendered on the page. The same thing can happen with the second expression.
However, the tag handler can defer the evaluation of this expression to a later time in the page
life cycle, if the technology using this tag allows it.

In the case of JavaServer Faces technology, the latter tag’s expression is evaluated immediately
during an initial request for the page. In this case, this expression acts as an rvalue expression.
During a postback, this expression can be used to set the value of the name property with user
input. In this situation, the expression acts as an lvalue expression.

Referencing Objects Using Value Expressions

Both rvalue and lvalue expressions can refer to the following objects and their properties or
attributes:
■ JavaBeans components
■ Collections
■ Java SE enumerated types
■ Implicit objects

See “Implicit Objects” on page 162 for more detail on the implicit objects available with JSP
technology.

To refer to these objects, you write an expression using a variable name with which you created
the object. The following expression references a JavaBeans component called customer.

${customer}

Unified Expression Language

The Java EE 5 Tutorial • October 2008150

The web container evaluates a variable that appears in an expression by looking up its value
according to the behavior of PageContext.findAttribute(String), where the String
argument is the name of the variable. For example, when evaluating the expression
${customer}, the container will look for customer in the page, request, session, and application
scopes and will return its value. If customer is not found, null is returned. A variable that
matches one of the implicit objects described in “Implicit Objects” on page 162 will return that
implicit object instead of the variable’s value.

You can alter the way variables are resolved with a custom EL resolver, which is a new feature of
the unified EL. For instance, you can provide an EL resolver that intercepts objects with the
name customer, so that ${customer} returns a value in the EL resolver instead. However, you
cannot override implicit objects in this way. See “EL Resolvers” on page 161 for more
information on EL resolvers.

You can set the variable name, customer, when you declare the bean. See “Creating and Using a
JavaBeans Component” on page 168 for information on how to declare a JavaBeans component
for use in your JSP pages.

To declare beans in JavaServer Faces applications, you use the managed bean facility. See
“Backing Beans” on page 310 for information on how to declare beans for use in JavaServer
Faces applications.

When referencing an enum constant with an expression, you use a String literal. For example,
consider this Enum class:

public enum Suit {hearts, spades, diamonds, clubs}

To refer to the Suit constant, Suit.hearts with an expression, you use the String literal,
"hearts". Depending on the context, the String literal is converted to the enum constant
automatically. For example, in the following expression in which mySuit is an instance of Suit,
"hearts" is first converted to a Suit.hearts before it is compared to the instance.

${mySuit == "hearts"}

Referring to Object Properties Using Value Expressions

To refer to properties of a bean or an Enum instance, items of a collection, or attributes of an
implicit object, you use the . or [] notation, which is similar to the notation used by
ECMAScript.

So, if you wanted to reference the name property of the customer bean, you could use either the
expression ${customer.name} or the expression ${customer["name"]}. The part inside the
square brackets is a String literal that is the name of the property to reference.

You can use double or single quotes for the String literal. You can also combine the [] and .

notations, as shown here:

Unified Expression Language

Chapter 5 • JavaServer Pages Technology 151

${customer.address["street"]}

Properties of an enum can also be referenced in this way. However, as with JavaBeans
component properties, the Enum class’s properties must follow JavaBeans component
conventions. This means that a property must at least have an accessor method called
get<Property> (where <Property> is the name of the property) so that an expression can
reference it.

For example, say you have an Enum class that encapsulates the names of the planets of our
galaxy and includes a method to get the mass of a planet. You can use the following expression
to reference the method getMass of the Planet Enum class:

${myPlanet.mass}

If you are accessing an item in an array or list, you must use either a literal value that can be
coerced to int or the [] notation with an int and without quotes. The following examples could
all resolve to the same item in a list or array, assuming that socks can be coerced to int:

■ ${customer.orders[1]}

■ ${customer.orders.socks}

In contrast, an item in a Map can be accessed using a string literal key; no coercion is required:

${customer.orders["socks"]}

An rvalue expression also refers directly to values that are not objects, such as the result of
arithmetic operations and literal values, as shown by these examples:

■ ${"literal"}
■ ${customer.age + 20}

■ ${true}

■ ${57}

The unified expression language defines the following literals:

■ Boolean: true and false

■ Integer: as in Java
■ Floating point: as in Java
■ String: with single and double quotes; " is escaped as \", ’ is escaped as \’, and \ is escaped as

\\

■ Null: null

You can also write expressions that perform operations on an enum constant. For example,
consider the following Enum class:

public enum Suit {club, diamond, heart, spade }

Unified Expression Language

The Java EE 5 Tutorial • October 2008152

After declaring an enum constant called mySuit, you can write the following expression to test if
mySuit is spade:

${mySuit == "spade"}

When the EL resolving mechanism resolves this expression it will invoke the valueOf method
of the Enum class with the Suit class and the spade type, as shown here:

mySuit.valueOf(Suit.class, "spade"}

See “JavaBeans Components” on page 167 for more information on using expressions to
reference JavaBeans components and their properties.

Where Value Expressions Can Be Used

Value expressions using the ${} delimiters can be used in the following places:

■ In static text
■ In any standard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current output. Here
is an example of an expression embedded in static text:

<some:tag>

some text ${expr} some text

</some:tag>

If the static text appears in a tag body, note that an expression will not be evaluated if the body is
declared to be tagdependent (see “Tags with Attributes” on page 229).

Lvalue expressions can only be used in tag attributes that can accept lvalue expressions.

Unified Expression Language

Chapter 5 • JavaServer Pages Technology 153

There are three ways to set a tag attribute value using either an rvalue or lvalue expression:

■ With a single expression construct:

<some:tag value="${expr}"/>

<another:tag value="#{expr}"/>

These expressions are evaluated and the result is coerced to the attribute’s expected type.
■ With one or more expressions separated or surrounded by text:

<some:tag value="some${expr}${expr}text${expr}"/>

<another:tag value="some#{expr}#{expr}text#{expr}"/>

These kinds of expression are called a composite expressions. They are evaluated from left to
right. Each expression embedded in the composite expression is coerced to a String and
then concatenated with any intervening text. The resulting String is then coerced to the
attribute’s expected type.

■ With text only:

<some:tag value="sometext"/>

This expression is called a literal expression. In this case, the attribute’s String value is
coerced to the attribute’s expected type. Literal value expressions have special syntax rules.
See “Literal Expressions” on page 158 for more information. When a tag attribute has an
enum type, the expression that the attribute uses must be a literal expression. For example,
the tag attribute can use the expression "hearts" to mean Suit.hearts. The literal is
coerced to Suit and the attribute gets the value Suit.hearts.

All expressions used to set attribute values are evaluated in the context of an expected type. If
the result of the expression evaluation does not match the expected type exactly, a type
conversion will be performed. For example, the expression ${1.2E4} provided as the value of
an attribute of type float will result in the following conversion:

Float.valueOf("1.2E4").floatValue()

See section 1.18 of the JavaServer Pages 2.1 Expression Language Specification (available from
http://jcp.org/aboutJava/communityprocess/final/jsr245/) for the complete type
conversion rules.

Method Expressions
Another feature of the unified expression language is its support of deferred method
expressions. A method expression is used to invoke an arbitrary public method, which can

Unified Expression Language

The Java EE 5 Tutorial • October 2008154

http://jcp.org/aboutJava/communityprocess/final/jsr245/

return a result. A similar feature of the unified EL is functions. Method expressions differ from
functions in many ways. “Functions” on page 165 explains more about the differences between
functions and method expressions.

Method expressions primarily benefit JavaServer Faces technology, but they are available to any
technology that can support the unified expression language. Let’s take a look at how JavaServer
Faces technology employs method expressions.

In JavaServer Faces technology, a component tag represents a UI component on a page. The
component tag uses method expressions to invoke methods that perform some processing for
the component. These methods are necessary for handling events that the components generate
and validating component data, as shown in this example:

<h:form>

<h:inputText

id="name"
value="#{customer.name}"
validator="#{customer.validateName}"/>

<h:commandButton

id="submit"
action="#{customer.submit}" />

</h:form>

The inputText tag displays a UIInput component as a text field. The validator attribute of
this inputText tag references a method, called validateName, in the bean, called customer. The
TLD (see “Tag Library Descriptors” on page 247) that defines the inputText tag specifies what
signature the method referred to by the validator attribute must have. The same is true of the
customer.submit method referenced by the action attribute of the commandButton tag. The
TLD specifies that the submit method must return an Object instance that specifies which page
to navigate to next after the button represented by the commandButton tag is clicked.

The validation method is invoked during the process validation phase of the life cycle,
whereas the submit method is invoked during the invoke application phase of the life cycle.
Because a method can be invoked during different phases of the life cycle, method expressions
must always use the deferred evaluation syntax.

Similarly to lvalue expressions, method expressions can use the . and [] operators. For example,
#{object.method} is equivalent to #{object["method"]}. The literal inside the [] is coerced to
String and is used to find the name of the method that matches it. Once the method is found, it
is invoked or information about the method is returned.

Unified Expression Language

Chapter 5 • JavaServer Pages Technology 155

Method expressions can be used only in tag attributes and only in the following ways:

■ With a single expression construct, where bean refers to a JavaBeans component and method

refers to a method of the JavaBeans component:

<some:tag value="#{bean.method}"/>

The expression is evaluated to a method expression, which is passed to the tag handler. The
method represented by the method expression can then be invoked later.

■ With text only:

<some:tag value="sometext"/>

Method expressions support literals primarily to support action attributes in JavaServer
Faces technology. When the method referenced by this method expression is invoked, it
returns the String literal, which is then coerced to the expected return type, as defined in
the tag’s TLD.

Defining a Tag Attribute Type
As explained in the previous section, all kinds of expressions can be used in tag attributes.
Which kind of expression and how that expression is evaluated (whether immediately or
deferred) is determined by the type attribute of the tag’s definition in the TLD (see “Tag Library
Descriptors” on page 247) file that defines the tag.

If you plan to create custom tags (see Chapter 8, “Custom Tags in JSP Pages”), you need to
specify for each tag in the TLD what kind of expression it accepts. Table 5–2 shows the three
different kinds of tag attributes that accept EL expressions, and gives examples of expressions
they accept and the type definitions of the attributes that must be added to the TLD. You cannot
use #{} syntax for a dynamic attribute, meaning an attribute that accepts
dynamically-calculated values at runtime. Section 2.3.2 of the JavaServer Pages 2.1 specification
refers to these attributes. Neither can you use the ${} syntax for a deferred attribute.

TABLE 5–2 Definitions of Tag Attributes That Accept EL Expressions

Attribute Type Example Expression Type Attribute Definition

dynamic "literal" <rtexprvalue>true</rtexprvalue>

${literal} <rtexprvalue>true</rtexprvalue>

Unified Expression Language

The Java EE 5 Tutorial • October 2008156

TABLE 5–2 Definitions of Tag Attributes That Accept EL Expressions (Continued)
Attribute Type Example Expression Type Attribute Definition

deferred value "literal" <deferred-value>

<type>java.lang.String</type>

</deferred-value>

#{customer.age} <deferred-value>

<type>int</type>

</deferred-value>

deferred method "literal" <deferred-method>

<method-signature>

java.lang.String submit()

</method-signature>

<deferred-method>

#{customer.calcTotal} <deferred-method>

<method-signature>

double calcTotal(int, double)

</method-signature>

</deferred-method>

In addition to the tag attribute types shown in Table 5–2, you can also define an attribute to
accept both dynamic and deferred expressions. In this case, the tag attribute definition contains
both an rtexprvalue definition set to true and either a deferred-value or deferred-method
definition.

Deactivating Expression Evaluation
Because the patterns that identify EL expressions, ${ } and #{ }, were not reserved in the JSP
specifications before JSP 2.0, there might exist applications in which such patterns are intended
to pass through verbatim. To prevent the patterns from being evaluated, you can deactivate EL
evaluation using one of the following methods:
■ Escape the #{ or ${ characters in the page.
■ Configure the application with a JSP Property Group.
■ Configure the page with the page directive.

To escape the #{ or ${ characters in the page, you use the \ character as follows:

some text \#{ some more\${ text

<my:tag someAttribute="sometext\#{more\${text" />

Another way to deactivate EL evaluation is by using a JSP property group to either allow the #{
characters as a String literal using the deferred-syntax-allowed-as-literal subelement, or
to treat all expressions as literals using the el-ignored subelement:

Unified Expression Language

Chapter 5 • JavaServer Pages Technology 157

<jsp-property-group>

<deferred-syntax-allowed-as-literal>

true

</deferred-syntax-allowed-as-literal>

</jsp-property-group>

or

<jsp-property-group>

<el-ignored>true</el-ignored>

</jsp-property-group>

Finally, you can configure the page with the page directive to either accept the #{ characters as
String literals with the deferredSyntaxAllowedAsLiteral attribute, or to ignore all EL
expressions using the isELIgnored attribute:

<%@page ... deferredSyntaxAllowedAsLiteral="true" %>

or

<%@ page isELIgnored ="true" %>

The valid values of these attributes are true and false. If isELIgnored is true, EL expressions
are ignored when they appear in static text or tag attributes. If it is false, EL expressions are
evaluated by the container only if the attribute has rtexprvalue set to true or the expression is
a deferred expression.

The default value of isELIgnored varies depending on the version of the web application
deployment descriptor. The default mode for JSP pages delivered with a Servlet 2.4 descriptor is
to evaluate EL expressions; this automatically provides the default that most applications want.
The default mode for JSP pages delivered using a descriptor from Servlet 2.3 or before is to
ignore EL expressions; this provides backward compatibility.

Literal Expressions
A literal expression evaluates to the text of the expression, which is of type String. It does not
use the ${} or #{} delimiters.

Unified Expression Language

The Java EE 5 Tutorial • October 2008158

If you have a literal expression that includes the reserved ${} or #{} syntax, you need to escape
these characters as follows.

■ By creating a composite expression as shown here:

${’${’}exprA}

#{’#{’}exprB}

The resulting values would then be the strings ${exprA} and #{exprB}.
■ The escape characters \$ and \# can be used to escape what would otherwise be treated as an

eval-expression:

\${exprA}

\#{exprB}

The resulting values would again be the strings ${exprA} and #{exprB}.

When a literal expression is evaluated, it can be converted to another type. Table 5–3 shows
examples of various literal expressions and their expected types and resulting values.

TABLE 5–3 Literal Expressions

Expression Expected Type Result

Hi String Hi

true Boolean Boolean.TRUE

42 int 42

Literal expressions can be evaluated immediately or deferred and can be either value or method
expressions. At what point a literal expression is evaluated depends on where it is being used. If
the tag attribute that uses the literal expression is defined as accepting a deferred value
expression, then the literal expression references a value and is evaluated at a point in the life
cycle that is determined by where the expression is being used and to what it is referring.

In the case of a method expression, the method that is referenced is invoked and returns the
specified String literal. The commandButton tag of the Guess Number application uses a literal
method expression as a logical outcome to tell the JavaServer Faces navigation system which
page to display next. See “Navigation Model” on page 308 for more information on this example.

Unified Expression Language

Chapter 5 • JavaServer Pages Technology 159

Resolving Expressions
The unified EL introduces a new, pluggable API for resolving expressions. The main pieces of
this API are:

■ The ValueExpression class, which defines a value expression
■ The MethodExpression class, which defines a method expression
■ An ELResolver class that defines a mechanism for resolving expressions
■ A set of ELResolver implementations, in which each implementation is responsible for

resolving expressions that reference a particular type of object or property
■ An ELContext object that saves state relating to EL resolution, holds references to EL

resolvers, and contains context objects (such as JspContext) needed by the underlying
technology to resolve expressions

Most application developers will not need to use these classes directly unless they plan to write
their own custom EL resolvers. Those writing JavaServer Faces custom components will
definitely need to use ValueExpression and MethodExpression. This section details how
expressions are resolved for the benefit of these developers. It does not explain how to create a
custom resolver. For more information on creating custom resolvers, see the article The Unified
Expression Language, Ryan Lubke et al., located at
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html. You can also
refer to “Request Processing” on page 1073, which explains how the Duke’s Bank application uses
a custom resolver.

Process of Expression Evaluation
When a value expression that is included in a page is parsed during an initial request for the
page, a ValueExpression object is created to represent the expression. Then, the
ValueExpression object’s getValue method is invoked. This method will in turn invoke the
getValue method of the appropriate resolver. A similar process occurs during a postback when
setValue is called if the expression is an lvalue expression.

In the case of a method expression, a BeanELResolver is used to find the object that implements
the method to be invoked or queried. Similarly to the process for evaluating value expressions,
when a method expression is encountered, a MethodExpression object is created.
Subsequently, either the invoke or getMethodInfo method of the MethodExpression object is
called. This method in turn invokes the BeanELResolver object’s getValue method. The
getMethodInfo is mostly for use by tools.

After a resolver completes resolution of an expression, it sets the propertyResolved flag of the
ELContext to true so that no more resolvers are consulted.

Unified Expression Language

The Java EE 5 Tutorial • October 2008160

http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

EL Resolvers
At the center of the EL machinery is the extensible ELResolver class. A class that implements
ELResolver defines how to resolve expressions referring to a particular type of object or
property. In terms of the following expression, a BeanELResolver instance is called the first
time to find the base object, employee, which is a JavaBeans component. Once the resolver finds
the object, it is called again to resolve the property, lName of the employee object.

${employee.lName}

The unified EL includes a set of standard resolver implementations. Table 5–4 lists these
standard resolvers and includes example expressions that they can resolve.

TABLE 5–4 Standard EL Resolvers

Resolver Example Expression Description

ArrayELResolver ${myArray[1]} Returns the value at index 1 in the array called
myArray

BeanELResolver ${employee.lName} Returns the value of the lName property of the
employee bean

ListELResolver ${myList[5]} Returns the value at index 5 of myList list

MapELResolver ${myMap.someKey} Returns the value stored at the key, someKey, in
the Map, myMap

ResourceBundleELResolver ${myRB.myKey} Returns the message at myKey in the resource
bundle called myRB

Depending on the technology using the unified EL, other resolvers might be available. In
addition, application developers can add their own implementations of ELResolver to support
resolution of expressions not already supported by the unified EL by registering them with an
application.

All of the standard and custom resolvers available to a particular application are collected in a
chain in a particular order. This chain of resolvers is represented by a CompositeELResolver
instance. When an expression is encountered, the CompositeELResolver instance iterates over
the list of resolvers and consults each resolver until it finds one that can handle the expression.

If an application is using JSP technology, the chain of resolvers includes the
ImplicitObjectELResolver and the ScopedAttributeELResolver. These are described in the
following section.

See section JSP 2.9 of the JavaServer Pages 2.1 specification to find out the order in which
resolvers are chained together in a CompositeELResolver instance.

To learn how to create a custom EL resolver, see The Unified Expression Language
(http://java.sun.com/products/jsp/reference/techart/unifiedEL.html) .

Unified Expression Language

Chapter 5 • JavaServer Pages Technology 161

http://java.sun.com/products/jsp/reference/techart/unifiedEL.html
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

Implicit Objects
The JSP expression language defines a set of implicit objects:

■ pageContext: The context for the JSP page. Provides access to various objects including:
■ servletContext: The context for the JSP page’s servlet and any web components

contained in the same application. See “Accessing the Web Context” on page 124.
■ session: The session object for the client. See “Maintaining Client State” on page 125.
■ request: The request triggering the execution of the JSP page. See “Getting Information

from Requests” on page 110.
■ response: The response returned by the JSP page. See “Constructing Responses” on

page 112.
■ In addition, several implicit objects are available that allow easy access to the following

objects:
■ param: Maps a request parameter name to a single value
■ paramValues: Maps a request parameter name to an array of values
■ header: Maps a request header name to a single value
■ headerValues: Maps a request header name to an array of values
■ cookie: Maps a cookie name to a single cookie
■ initParam: Maps a context initialization parameter name to a single value

■ Finally, there are objects that allow access to the various scoped variables described in
“Using Scope Objects” on page 105.
■ pageScope: Maps page-scoped variable names to their values
■ requestScope: Maps request-scoped variable names to their values
■ sessionScope: Maps session-scoped variable names to their values
■ applicationScope: Maps application-scoped variable names to their values

JSP 2.1 provides two EL resolvers to handle expressions that reference these objects:
ImplicitObjectELResolver and ScopedAttributeELResolver.

A variable that matches one of the implicit objects is evaluated by ImplicitObjectResolver,
which returns the implicit object. This resolver only handles expressions with a base of null.
What this means for the following expression is that the ImplicitObjectResolver resolves the
sessionScope implicit object only. Once the implicit object is found, the MapELResolver
instance resolves the profile attribute because the profile object represents a map.

${sessionScope.profile}

ScopedAttributeELResolver evaluates a single object that is stored in scope. Like
ImplicitObjectELResolver, it also only evaluates expressions with a base of null. This
resolver essentially looks for an object in all of the scopes until it finds it, according to the
behavior of PageContext.findAttribute(String). For example, when evaluating the

Unified Expression Language

The Java EE 5 Tutorial • October 2008162

expression ${product}, the resolver will look for product in the page, request, session, and
application scopes and will return its value. If product is not found, null is returned.

When an expression references one of the implicit objects by name, the appropriate object is
returned instead of the corresponding attribute. For example, ${pageContext} returns the
PageContext object, even if there is an existing pageContext attribute containing some other
value.

Operators
In addition to the . and [] operators discussed in “Value and Method Expressions” on
page 150, the JSP expression language provides the following operators, which can be used in
rvalue expressions only:

■ Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)
■ Logical: and, &&, or, ||, not, !
■ Relational: ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le. Comparisons can be made against other

values, or against boolean, string, integer, or floating point literals.
■ Empty: The empty operator is a prefix operation that can be used to determine whether a

value is null or empty.
■ Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of A.

The precedence of operators highest to lowest, left to right is as follows:

■ [] .

■ () (used to change the precedence of operators)
■ - (unary) not ! empty

■ * / div % mod

■ + - (binary)
■ < > <= >= lt gt le ge

■ == != eq ne

■ && and

■ || or

■ ? :

Reserved Words
The following words are reserved for the JSP expression language and should not be used as
identifiers.

Unified Expression Language

Chapter 5 • JavaServer Pages Technology 163

and or not eq

ne lt gt le

ge true false null

instanceof empty div mod

Note that many of these words are not in the language now, but they may be in the future, so
you should avoid using them.

Examples of EL Expressions
Table 5–5 contains example EL expressions and the result of evaluating them.

TABLE 5–5 Example Expressions

EL Expression Result

${1 > (4/2)} false

${4.0 >= 3} true

${100.0 == 100} true

${(10*10) ne 100} false

${’a’ < ’b’} true

${’hip’ gt ’hit’} false

${4 > 3} true

${1.2E4 + 1.4} 12001.4

${3 div 4} 0.75

${10 mod 4} 2

${!empty param.Add} False if the request parameter named Add is null or an empty
string.

${pageContext.request.contextPath} The context path.

${sessionScope.cart.numberOfItems} The value of the numberOfItems property of the
session-scoped attribute named cart.

${param[’mycom.productId’]} The value of the request parameter named mycom.productId.

${header["host"]} The host.

Unified Expression Language

The Java EE 5 Tutorial • October 2008164

TABLE 5–5 Example Expressions (Continued)
EL Expression Result

${departments[deptName]} The value of the entry named deptName in the departments
map.

${requestScope[’javax.servlet.forward.
servlet_path’]}

The value of the request-scoped attribute named
javax.servlet.forward.servlet_path.

#{customer.lName} Gets the value of the property lName from the customer bean
during an initial request. Sets the value of lName during a
postback.

#{customer.calcTotal} The return value of the method calcTotal of the customer
bean.

Functions
The JSP expression language allows you to define a function that can be invoked in an
expression. Functions are defined using the same mechanisms as custom tags (see “Using
Custom Tags” on page 172 and Chapter 8, “Custom Tags in JSP Pages”).

At first glance, functions seem similar to method expressions, but they are different in the
following ways:
■ Functions refer to static methods that return a value. Method expressions refer to non-static,

arbitrary public methods on objects.
■ Functions are identified statically at translation time, whereas methods are identified

dynamically at runtime.
■ Function parameters and invocations are specified as part of an EL expression. A method

expression only identifies a particular method. The invocation of that method is not
specified by the EL expression; rather, it is specified in the tag attribute definition of the
attribute using the method expression, as described in “Defining a Tag Attribute Type” on
page 156.

Using Functions
Functions can appear in static text and tag attribute values.

To use a function in a JSP page, you use a taglib directive to import the tag library containing
the function. Then you preface the function invocation with the prefix declared in the directive.

For example, the date example page index.jsp imports the /functions library and invokes the
function equals in an expression:

<%@ taglib prefix="f" uri="/functions"%>
...

Unified Expression Language

Chapter 5 • JavaServer Pages Technology 165

<c:when

test="${f:equals(selectedLocaleString,
localeString)}" >

In this example, the expression referencing the function is using immediate evaluation syntax.
A page author can also use deferred evaluation syntax to reference a function in an expression,
assuming that the attribute that is referencing the function can accept deferred expressions.

If an attribute references a function with a deferred expression then the function is not invoked
immediately; rather, it is invoked whenever the underlying technology using the function
determines it should be invoked.

Defining Functions
To define a function, program it as a public static method in a public class. The
mypkg.MyLocales class in the date example defines a function that tests the equality of two
Strings as follows:

package mypkg;

public class MyLocales {

...

public static boolean equals(String l1, String l2) {

return l1.equals(l2);

}

}

Then map the function name as used in the EL expression to the defining class and function
signature in a TLD (see Chapter 8, “Custom Tags in JSP Pages”). The following functions.tld
file in the date example maps the equals function to the class containing the implementation of
the function equals and the signature of the function:

<function>

<name>equals</name>

<function-class>mypkg.MyLocales</function-class>

<function-signature>boolean equals(java.lang.String,

java.lang.String)</function-signature>

</function>

No two functions within a tag library can have the same name.

Unified Expression Language

The Java EE 5 Tutorial • October 2008166

JavaBeans Components
JavaBeans components are Java classes that can be easily reused and composed together into
applications. Any Java class that follows certain design conventions is a JavaBeans component.

JavaServer Pages technology directly supports using JavaBeans components with standard JSP
language elements. You can easily create and initialize beans and get and set the values of their
properties.

JavaBeans Component Design Conventions
JavaBeans component design conventions govern the properties of the class and govern the
public methods that give access to the properties.

A JavaBeans component property can be:
■ Read/write, read-only, or write-only
■ Simple, which means it contains a single value, or indexed, which means it represents an

array of values

A property does not have to be implemented by an instance variable. It must simply be
accessible using public methods that conform to the following conventions:
■ For each readable property, the bean must have a method of the form:

PropertyClass getProperty() { ... }

■ For each writable property, the bean must have a method of the form:

setProperty(PropertyClass pc) { ... }

In addition to the property methods, a JavaBeans component must define a constructor that
takes no parameters.

The Duke’s Bookstore application JSP pages bookstore.jsp, bookdetails.jsp, catalog.jsp,
and showcart.jsp, all located at
tut-install/javaeetutorial5/examples/web/bookstore2/web, use the
tut-install/javaeetutorial5/examples/web/bookstore2/src/java/com/sun/bookstore2/database/BookDB.java
JavaBeans component.

BookDB provides a JavaBeans component front end to the access object BookDBAO. The JSP pages
showcart.jsp and cashier.jsp access the bean
tut-install/javaeetutorial5/examples/web/bookstore/src/com/sun/bookstore/cart/ShoppingCart.java,
which represents a user’s shopping cart.

The BookDB bean has two writable properties, bookId and database, and three readable
properties: bookDetails, numberOfBooks, and books. These latter properties do not correspond
to any instance variables but rather are a function of the bookId and database properties.

JavaBeans Components

Chapter 5 • JavaServer Pages Technology 167

package database;

public class BookDB {

private String bookId = "0";
private BookDBAO database = null;

public BookDB () {

}

public void setBookId(String bookId) {

this.bookId = bookId;

}

public void setDatabase(BookDBAO database) {

this.database = database;

}

public Book getBook() throws

BookNotFoundException {

return (Book)database.getBook(bookId);

}

public List getBooks() throws BooksNotFoundException {

return database.getBooks();

}

public void buyBooks(ShoppingCart cart)

throws OrderException {

database.buyBooks(cart);

}

public int getNumberOfBooks() throws BooksNotFoundException {

return database.getNumberOfBooks();

}

}

Creating and Using a JavaBeans Component
To declare that your JSP page will use a JavaBeans component, you use a jsp:useBean element.
There are two forms:

<jsp:useBean id="beanName"
class="fully-qualified-classname" scope="scope"/>

and

<jsp:useBean id="beanName"
class="fully-qualified-classname" scope="scope">
<jsp:setProperty .../>

</jsp:useBean>

The second form is used when you want to include jsp:setProperty statements, described in
the next section, for initializing bean properties.

JavaBeans Components

The Java EE 5 Tutorial • October 2008168

The jsp:useBean element declares that the page will use a bean that is stored within and is
accessible from the specified scope, which can be application, session, request, or page. If
no such bean exists, the statement creates the bean and stores it as an attribute of the scope
object (see “Using Scope Objects” on page 105). The value of the id attribute determines the
name of the bean in the scope and the identifier used to reference the bean in EL expressions,
other JSP elements, and scripting expressions (see Chapter 9, “Scripting in JSP Pages”). The
value supplied for the class attribute must be a fully qualified class name. Note that beans
cannot be in the unnamed package. Thus the format of the value must be
package-name.class-name.

The following element creates an instance of mypkg.myLocales if none exists, stores it as an
attribute of the application scope, and makes the bean available throughout the application by
the identifier locales:

<jsp:useBean id="locales" scope="application"
class="mypkg.MyLocales"/>

Setting JavaBeans Component Properties
The standard way to set JavaBeans component properties in a JSP page is by using the
jsp:setProperty element. The syntax of the jsp:setProperty element depends on the source
of the property value. Table 5–6 summarizes the various ways to set a property of a JavaBeans
component using the jsp:setProperty element.

Note –

Syntax rules of attribute values used in this table:

1. beanName must be the same as that specified for the id attribute in a useBean element.

2. There must be a setPropName method in the JavaBeans component.

3. paramName must be a request parameter name.

TABLE 5–6 Valid Bean Property Assignments from String Values

Value Source Element Syntax

String constant <jsp:setProperty name="beanName"
property="propName" value="string-constant"/>

Request parameter <jsp:setProperty name="beanName"
property="propName" param="paramName"/>

JavaBeans Components

Chapter 5 • JavaServer Pages Technology 169

TABLE 5–6 Valid Bean Property Assignments from String Values (Continued)
Value Source Element Syntax

Request parameter name that
matches bean property

<jsp:setProperty name="beanName"
property="propName"/>

<jsp:setProperty name="beanName"
property="*"/>

Expression <jsp:setProperty name="beanName"
property="propName" value="expression"/>

<jsp:setProperty name="beanName"
property="propName" >

<jsp:attribute name="value">
expression

</jsp:attribute>

</jsp:setProperty>

A property set from a constant string or request parameter must have one of the types listed in
Table 5–7. Because constants and request parameters are strings, the web container
automatically converts the value to the property’s type; the conversion applied is shown in the
table.

String values can be used to assign values to a property that has a PropertyEditor class. When
that is the case, the setAsText(String) method is used. A conversion failure arises if the
method throws an IllegalArgumentException.

The value assigned to an indexed property must be an array, and the rules just described apply
to the elements.

You use an expression to set the value of a property whose type is a compound Java
programming language type. The type returned from an expression must match or be castable
to the type of the property.

TABLE 5–7 Valid Property Value Assignments from String Values

Property Type Conversion on String Value

Bean Property Uses setAsText(string-literal)

boolean or Boolean As indicated in java.lang.Boolean.valueOf(String)

byte or Byte As indicated in java.lang.Byte.valueOf(String)

char or Character As indicated in java.lang.String.charAt(0)

double or Double As indicated in java.lang.Double.valueOf(String)

int or Integer As indicated in java.lang.Integer.valueOf(String)

JavaBeans Components

The Java EE 5 Tutorial • October 2008170

TABLE 5–7 Valid Property Value Assignments from String Values (Continued)
Property Type Conversion on String Value

float or Float As indicated in java.lang.Float.valueOf(String)

long or Long As indicated in java.lang.Long.valueOf(String)

short or Short As indicated in java.lang.Short.valueOf(String)

Object new String(string-literal)

The Duke’s Bookstore application demonstrates how to use the setProperty element to set the
current book from a request parameter in the database bean in
tut-install/javaeetutorial5/examples/web/bookstore2/web/books/bookdetails.jsp:

<c:set var="bid" value="${param.bookId}"/>
<jsp:setProperty name="bookDB" property="bookId"

value="${bid}" />

The following fragment from the page
tut-install/javaeetutorial5/examples/web/bookstore2/web/books/bookshowcart.jsp
illustrates how to initialize a BookDB bean with a database object. Because the initialization is
nested in a useBean element, it is executed only when the bean is created.

<jsp:useBean id="bookDB" class="database.BookDB" scope="page">
<jsp:setProperty name="bookDB" property="database"

value="${bookDBAO}" />

</jsp:useBean>

Retrieving JavaBeans Component Properties
The main way to retrieve JavaBeans component properties is by using the unified EL
expressions. Thus, to retrieve a book title, the Duke’s Bookstore application uses the following
expression:

${bookDB.bookDetails.title}

Another way to retrieve component properties is to use the jsp:getProperty element. This
element converts the value of the property into a String and inserts the value into the response
stream:

<jsp:getProperty name="beanName" property="propName"/>

Note that beanName must be the same as that specified for the id attribute in a useBean
element, and there must be a getPropName method in the JavaBeans component. Although the
preferred approach to getting properties is to use an EL expression, the getProperty element is
available if you need to disable expression evaluation.

JavaBeans Components

Chapter 5 • JavaServer Pages Technology 171

Using Custom Tags
Custom tags are user-defined JSP language elements that encapsulate recurring tasks. Custom
tags are distributed in a tag library, which defines a set of related custom tags and contains the
objects that implement the tags.

Custom tags have the syntax

<prefix:tag attr1="value" ... attrN="value" />

or

<prefix:tag attr1="value" ... attrN="value" >

body</prefix:tag>

where prefix distinguishes tags for a library, tag is the tag identifier, and attr1 ... attrN are
attributes that modify the behavior of the tag.

To use a custom tag in a JSP page, you must
■ Declare the tag library containing the tag
■ Make the tag library implementation available to the web application

See Chapter 8, “Custom Tags in JSP Pages,” for detailed information on the different types of
tags and how to implement tags.

Declaring Tag Libraries
To declare that a JSP page will use tags defined in a tag library, you include a taglib directive in
the page before any custom tag from that tag library is used. If you forget to include the taglib
directive for a tag library in a JSP page, the JSP compiler will treat any invocation of a custom tag
from that library as static data and will simply insert the text of the custom tag call into the
response.

<%@ taglib prefix="tt" [tagdir=/WEB-INF/tags/dir | uri=URI] %>

The prefix attribute defines the prefix that distinguishes tags defined by a given tag library
from those provided by other tag libraries.

If the tag library is defined with tag files (see “Encapsulating Reusable Content Using Tag Files”
on page 233), you supply the tagdir attribute to identify the location of the files. The value of
the attribute must start with /WEB-INF/tags/. A translation error will occur if the value points
to a directory that doesn’t exist or if it is used in conjunction with the uri attribute.

The uri attribute refers to a URI that uniquely identifies the tag library descriptor (TLD), a
document that describes the tag library (see “Tag Library Descriptors” on page 247).

Using Custom Tags

The Java EE 5 Tutorial • October 2008172

Tag library descriptor file names must have the extension .tld. TLD files are stored in the
WEB-INF directory or subdirectory of the WAR file, or in the META-INF directory or subdirectory
of a tag library packaged in a JAR. You can reference a TLD directly or indirectly.

The following taglib directive directly references a TLD file name:

<%@ taglib prefix="tlt" uri="/WEB-INF/iterator.tld"%>

This taglib directive uses a short logical name to indirectly reference the TLD:

<%@ taglib prefix="tlt" uri="/tlt"%>

The iterator example defines and uses a simple iteration tag. The JSP pages use a logical name
to reference the TLD.

To deploy and run the iterator application with NetBeans IDE, follow these steps:

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

3. Select the iterator folder.

4. Select the Open as Main Project check box.

5. Click Open Project.

6. In the Projects tab, right-click the iterator project, and select Undeploy and Deploy.

7. To run the application, open the bookstore URL http://localhost:8080/iterator.

To deploy and run the iterator application with Ant, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/iterator/.

2. Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/javaeetutorial5/examples/web/iterator/build/ directory, and create a
WAR file.

3. Start the Application Server.

4. Type ant deploy.

5. To run the example, open your browser to http://localhost:8080/iterator.

Using Custom Tags

Chapter 5 • JavaServer Pages Technology 173

To learn how to configure the example, refer to the deployment descriptor, which includes the
following configurations:

■ A display-name element that specifies the name that tools use to identify the application.
■ Nested inside a jsp-config element is a taglib element, which provides information on a

tag library used by the pages of the application. Inside the taglib element are the
taglib-uri element and the taglib-location element. The taglib-uri element identifies
the logical name of the tag library. The taglib-location element gives the absolute
location or the absolute URI of the tag library.

The absolute URIs for the JSTL library are as follows:

■ Core: http://java.sun.com/jsp/jstl/core
■ XML: http://java.sun.com/jsp/jstl/xml
■ Internationalization: http://java.sun.com/jsp/jstl/fmt
■ SQL: http://java.sun.com/jsp/jstl/sql
■ Functions: http://java.sun.com/jsp/jstl/functions

When you reference a tag library with an absolute URI that exactly matches the URI declared in
the taglib element of the TLD (see “Tag Library Descriptors” on page 247), you do not have to
add the taglib element to web.xml; the JSP container automatically locates the TLD inside the
JSTL library implementation.

Including the Tag Library Implementation
In addition to declaring the tag library, you also must make the tag library implementation
available to the web application. There are several ways to do this. Tag library implementations
can be included in a WAR in an unpacked format: Tag files are packaged in the /WEB-INF/tag/
directory, and tag handler classes are packaged in the /WEB-INF/classes/ directory of the
WAR. Tag libraries already packaged into a JAR file are included in the /WEB-INF/lib/
directory of the WAR. Finally, an application server can load a tag library into all the web
applications running on the server. For example, in the Application Server, the JSTL TLDs and
libraries are distributed in the archive appserv-jstl.jar in as-install/lib/. This library is
automatically loaded into the classpath of all web applications running on the Application
Server, so you don’t need to add it to your web application.

The iterator tag library is implemented with tag handlers. Therefore, its implementation
classes are packaged in the /WEB-INF/classes/ directory.

Using Custom Tags

The Java EE 5 Tutorial • October 2008174

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/functions

Reusing Content in JSP Pages
There are many mechanisms for reusing JSP content in a JSP page. Three mechanisms that can
be categorized as direct reuse are discussed here:
■ The include directive
■ Preludes and codas
■ The jsp:include element

An indirect method of content reuse occurs when a tag file is used to define a custom tag that is
used by many web applications. Tag files are discussed in the section “Encapsulating Reusable
Content Using Tag Files” on page 233 in Chapter 8, “Custom Tags in JSP Pages.”

The include directive is processed when the JSP page is translated into a servlet class. The effect
of the directive is to insert the text contained in another file (either static content or another JSP
page) into the including JSP page. You would probably use the include directive to include
banner content, copyright information, or any chunk of content that you might want to reuse in
another page. The syntax for the include directive is as follows:

<%@ include file="filename" %>

For example, all the Duke’s Bookstore application pages could include the file banner.jspf,
which contains the banner content, by using the following directive:

<%@ include file="banner.jspf" %>

Another way to do a static include is to use the prelude and coda mechanisms described in
“Defining Implicit Includes” on page 181. This is the approach used by the Duke’s Bookstore
application.

Because you must put an include directive in each file that reuses the resource referenced by
the directive, this approach has its limitations. Preludes and codas can be applied only to the
beginnings and ends of pages. For a more flexible approach to building pages out of content
chunks, see “A Template Tag Library” on page 267.

The jsp:include element is processed when a JSP page is executed. The include action allows
you to include either a static or a dynamic resource in a JSP file. The results of including static
and dynamic resources are quite different. If the resource is static, its content is inserted into the
calling JSP file. If the resource is dynamic, the request is sent to the included resource, the
included page is executed, and then the result is included in the response from the calling JSP
page. The syntax for the jsp:include element is:

<jsp:include page="includedPage" />

The hello1 application discussed in “Packaging Web Modules” on page 83 uses the following
statement to include the page that generates the response:

<jsp:include page="response.jsp"/>

Reusing Content in JSP Pages

Chapter 5 • JavaServer Pages Technology 175

Transferring Control to Another Web Component
The mechanism for transferring control to another web component from a JSP page uses the
functionality provided by the Java Servlet API as described in “Accessing a Session” on
page 125. You access this functionality from a JSP page by using the jsp:forward element:

<jsp:forward page="/main.jsp" />

Note that if any data has already been returned to a client, the jsp:forward element will fail
with an IllegalStateException.

jsp:param Element
When an include or forward element is invoked, the original request object is provided to the
target page. If you wish to provide additional data to that page, you can append parameters to
the request object by using the jsp:param element:

<jsp:include page="..." >

<jsp:param name="param1" value="value1"/>
</jsp:include>

When jsp:include or jsp:forward is executed, the included page or forwarded page will see
the original request object, with the original parameters augmented with the new parameters
and new values taking precedence over existing values when applicable. For example, if the
request has a parameter A=foo and a parameter A=bar is specified for forward, the forwarded
request will have A=bar,foo. Note that the new parameter has precedence.

The scope of the new parameters is the jsp:include or jsp:forward call; that is, in the case of
an jsp:include the new parameters (and values) will not apply after the include.

Including an Applet
You can include an applet or a JavaBeans component in a JSP page by using the jsp:plugin
element. This element generates HTML that contains the appropriate
client-browser-dependent construct (<object> or <embed>) that will result in the download of
the Java Plug-in software (if required) and the client-side component, and in the subsequent
execution of any client-side component. The syntax for the jsp:plugin element is as follows:

<jsp:plugin

type="bean|applet"
code="objectCode"
codebase="objectCodebase"
{ align="alignment" }

Transferring Control to Another Web Component

The Java EE 5 Tutorial • October 2008176

{ archive="archiveList" }

{ height="height" }

{ hspace="hspace" }

{ jreversion="jreversion" }

{ name="componentName" }

{ vspace="vspace" }

{ width="width" }

{ nspluginurl="url" }

{ iepluginurl="url" } >

{ <jsp:params>

{ <jsp:param name="paramName" value= paramValue" /> }+

</jsp:params> }

{ <jsp:fallback> arbitrary-text </jsp:fallback> }

</jsp:plugin>

The jsp:plugin tag is replaced by either an <object> or an <embed> tag as appropriate for the
requesting client. The attributes of the jsp:plugin tag provide configuration data for the
presentation of the element as well as the version of the plug-in required. The nspluginurl and
iepluginurl attributes override the default URL where the plug-in can be downloaded.

The jsp:params element specifies parameters to the applet or JavaBeans component. The
jsp:fallback element indicates the content to be used by the client browser if the plug-in
cannot be started (either because <object> or <embed> is not supported by the client or because
of some other problem).

If the plug-in can start but the applet or JavaBeans component cannot be found or started, a
plug-in-specific message will be presented to the user, most likely a pop-up window reporting a
ClassNotFoundException.

The Duke’s Bookstore page /template/prelude.jspf creates the banner that displays a
dynamic digital clock generated by DigitalClock (see Figure 5–3).

Including an Applet

Chapter 5 • JavaServer Pages Technology 177

Here is the jsp:plugin element that is used to download the applet:

<jsp:plugin

type="applet"
code="DigitalClock.class"
codebase="/bookstore2"
jreversion="1.4"
align="center" height="25" width="300"
nspluginurl="http://java.sun.com/j2se/1.4.2/download.html"
iepluginurl="http://java.sun.com/j2se/1.4.2/download.html" >

<jsp:params>

<jsp:param name="language"
value="${pageContext.request.locale.language}" />

<jsp:param name="country"
value="${pageContext.request.locale.country}" />

<jsp:param name="bgcolor" value="FFFFFF" />

<jsp:param name="fgcolor" value="CC0066" />

</jsp:params>

<jsp:fallback>

<p>Unable to start plugin.</p>

FIGURE 5–3 Duke’s Bookstore with Applet

Including an Applet

The Java EE 5 Tutorial • October 2008178

</jsp:fallback>

</jsp:plugin>

Setting Properties for Groups of JSP Pages
It is possible to specify certain properties for a group of JSP pages:

■ Expression language evaluation
■ Treatment of scripting elements (see “Disabling Scripting” on page 275)
■ Page encoding
■ Automatic prelude and coda includes

A JSP property group is defined by naming the group and specifying one or more URL patterns;
all the properties in the group apply to the resources that match any of the URL patterns. If a
resource matches URL patterns in more than one group, the pattern that is most specific
applies.

To define a property group in a deployment descriptor using NetBeans IDE, follow these steps:

1. In NetBeans IDE, expand your project’s folder in the Projects pane.
2. Expand the Web Pages node and then the WEB-INF node.
3. Double-click web.xml to open it in the editor pane.
4. Click Pages at the top of the editor pane.
5. Click Add JSP Property Group.
6. In the Add JSP Property Group dialog:

a. Enter a name for the JSP property group in the Display Name field.
b. Enter a URL pattern (a regular expression, such as *.jsp) or click Browse to indicate to

which page or set of pages to apply the properties specified by the JSP property group.
c. Click OK.

Instead of performing the preceding steps, you can define a JSP property group by editing the
XML by hand using NetBeans IDE by doing the following:

1. Perform steps 1 through 3 in the preceding set of steps.
2. Click XML at the top of the editor pane.
3. Include a jsp-config element if the deployment descriptor doesn’t already have one.
4. Add a jsp-property-group element inside the jsp-config element.
5. Add a display-name element inside the jsp-property-group element and give it a name.
6. Add a url-pattern element inside the jsp-property-group element and give it a URL

pattern (a regular expression, such as *.jsp).

Setting Properties for Groups of JSP Pages

Chapter 5 • JavaServer Pages Technology 179

The following sections discuss the properties and explain how they are interpreted for various
combinations of group properties, individual page directives, and web application deployment
descriptor versions.

Deactivating EL Expression Evaluation
Each JSP page has a default mode for EL expression evaluation. The default value varies
depending on the version of the web application deployment descriptor. The default mode for
JSP pages delivered with a Servlet 2.4 descriptor is to evaluate EL expressions; this automatically
provides the default that most applications want. The default mode for JSP pages delivered
using a descriptor from Servlet 2.3 or before is to ignore EL expressions; this provides backward
compatibility. For tag files (see “Encapsulating Reusable Content Using Tag Files” on page 233),
the default is to always evaluate expressions.

You can override the default mode through the isELIgnored attribute of the page directive in
JSP pages and through the isELIgnored attribute of the tag directive in tag files. You can also
explicitly change the default mode by doing one of the following:

■ If you are using the Pages section of the web.xml editor pane in NetBeans IDE:

1. Expand the JSP Property Group node.
2. Select the Ignore Expression Language check box.

■ If you are editing the web.xml file by hand, add an el-ignored element to the
jsp-property-group element in the deployment descriptor and set it to true.

Table 5–8 summarizes the EL evaluation settings for JSP pages.

TABLE 5–8 EL Evaluation Settings for JSP Pages

JSP Configuration Page Directive isELIgnored EL Encountered

Unspecified Unspecified Evaluated if 2.4 web.xml

Ignored if <= 2.3 web.xml

false Unspecified Evaluated

true Unspecified Ignored

Overridden by page directive false Evaluated

Overridden by page directive true Ignored

Table 5–9 summarizes the EL evaluation settings for tag files.

Setting Properties for Groups of JSP Pages

The Java EE 5 Tutorial • October 2008180

TABLE 5–9 EL Evaluation Settings for Tag Files

Tag Directive isELIgnored EL Encountered

Unspecified Evaluated

false Evaluated

true Ignored

Declaring Page Encodings
You set the page encoding of a group of JSP pages using the JSP property group configuration in
the deployment descriptor by doing one of the following:

■ If you are using the Pages section of the web.xml editor pane in NetBeans IDE:
1. Expand the JSP Property Group node.
2. Enter the page encoding in the Page Encoding field.

■ If you are editing the web.xml file by hand, add a page-encoding element to the
jsp-property-group element in the deployment descriptor and set it to one of the valid
character encoding codes, which are the same as those accepted by the pageEncoding
attribute of the page directive.

A translation-time error results if you define the page encoding of a JSP page with one value in
the JSP configuration element and then give it a different value in a pageEncoding directive.

Defining Implicit Includes
You can implicitly include preludes and codas for a group of JSP pages by adding items to the
Include Preludes and Codas lists. Their values are context-relative paths that must correspond
to elements in the web application. When the elements are present, the given paths are
automatically included (as in an include directive) at the beginning and end, respectively, of
each JSP page in the property group. When there is more than one include or coda element in a
group, they are included in the order they appear. When more than one JSP property group
applies to a JSP page, the corresponding elements will be processed in the same order as they
appear in the JSP configuration section.

For example, the Duke’s Bookstore application uses the files /template/prelude.jspf and
/template/coda.jspf to include the banner and other boilerplate in each screen. To add these
files to the Duke’s Bookstore property group using the deployment descriptor, follow these
steps:

1. In NetBeans IDE, expand your project’s folder in the Projects pane.
2. Expand the Web Pages node and then the WEB-INF node.
3. Double-click web.xml to open it in the editor pane.
4. Click Pages at the top of the editor pane.

Setting Properties for Groups of JSP Pages

Chapter 5 • JavaServer Pages Technology 181

5. Add a new JSP property group if you haven’t already (see “Setting Properties for Groups of
JSP Pages” on page 179) and give it the name bookstore2 and the URL pattern *.jsp.

6. Expand the JSP Property Group node.
7. Click the Browse button to the right of the Include Preludes field to locate the file that you

want to include at the beginning of all pages matching the pattern in the URL pattern field.
In this case, you want the /template/prelude.jspf file.

8. Click the Browse button to the right of the Include Codas field to locate the file that you want
to include at the end of all pages matching the URL pattern. In this case, you want the
/template/coda.jspf file.

Instead of performing the preceding steps, you can add preludes and codas by editing the XML
by hand using NetBeans IDE by doing the following:

1. Perform steps 1 through 3 in the preceding set of steps.
2. Click XML at the top of the editor pane.
3. Add a new JSP property group (see “Setting Properties for Groups of JSP Pages” on

page 179) and give it the name bookstore2 and URL pattern *.jsp.
4. Add an include-prelude element to the jsp-property-group element and give it the

name of the file to include, in this case, /template/prelude.jspf.
5. Add an include-coda element to the jsp-property-group element and give it the name of

the file to include, in this case, /template/coda.jspf.

Preludes and codas can put the included code only at the beginning and end of each file. For a
more flexible approach to building pages out of content chunks, see “A Template Tag Library”
on page 267.

Eliminating Extra White Space
White space included in the template text of JSP pages is preserved by default. This can have
undesirable effects. For example, a carriage return added after a taglib directive would be
added to the response output as an extra line.

If you want to eliminate the extra white space from the page, you can add a
trim-directive-whitespaces element to a jsp-property-group element in the deployment
descriptor and set it to true.

To set the trim-directive-whitespaces element to true using NetBeans 5.5, do the following:

1. Open the deployment descriptor file in the editor.
2. Click the Pages button at the top of the editor.
3. Select a JSP property group.
4. Select the Trim Directive Whitespaces check box.
5. Save the deployment descriptor.

Setting Properties for Groups of JSP Pages

The Java EE 5 Tutorial • October 2008182

Alternatively, a page author can set the value of the trimDirectiveWhitespaces attribute of the
page directive to true or false. This will override the value specified in the deployment
descriptor.

Custom tag authors can eliminate white space from the output generated by a tag file by setting
the trimDirectiveWhiteSpace attribute of the tag directive to true.

Further Information about JavaServer Pages Technology
For more information on JavaServer Pages technology, see:

■ JavaServer Pages 2.0 specification:
http://java.sun.com/products/jsp/download.html#specs

■ The JavaServer Pages web site:
http://java.sun.com/products/jsp

■ The Unified Expression Language, Ryan Lubke et al.:
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

Further Information about JavaServer Pages Technology

Chapter 5 • JavaServer Pages Technology 183

http://java.sun.com/products/jsp/download.html#specs
http://java.sun.com/products/jsp
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

184

JavaServer Pages Documents

A JSP document is a JSP page written in XML syntax as opposed to the standard syntax
described in Chapter 5, “JavaServer Pages Technology.” Because it is written in XML syntax, a
JSP document is also an XML document and therefore gives you all the benefits offered by the
XML standard:

■ You can author a JSP document using one of the many XML-aware tools on the market,
enabling you to ensure that your JSP document is well-formed XML.

■ You can validate the JSP document against a document type definition (DTD).
■ You can nest and scope namespaces within a JSP document.
■ You can use a JSP document for data interchange between web applications and as part of a

compile-time XML pipeline.

In addition to these benefits, the XML syntax gives the JSP page author less complexity and
more flexibility. For example, a page author can use any XML document as a JSP document.
Also, elements in XML syntax can be used in JSP pages written in standard syntax, allowing a
gradual transition from JSP pages to JSP documents.

This chapter gives you details on the benefits of JSP documents and uses a simple example to
show you how easy it is to create a JSP document.

You can also write tag files in XML syntax. This chapter covers only JSP documents. Writing tag
files in XML syntax will be addressed in a future release of the tutorial.

The Example JSP Document
This chapter uses the Duke’s Bookstore application, version bookstore5, and the books
application to demonstrate how to write JSP pages in XML syntax. The JSP pages of the
bookstore5 application use the JSTL XML tags (see “XML Tag Library” on page 211) to
manipulate the book data from an XML stream. The books application contains the JSP

6C H A P T E R 6

185

document books.jspx, which accesses the book data from the database and converts it into the
XML stream. The bookstore5 application accesses this XML stream to get the book data.

These applications show how easy it is to generate XML data and stream it between web
applications. The books application can be considered the application hosted by the book
warehouse’s server. The bookstore5 application can be considered the application hosted by
the book retailer’s server. In this way, the customer of the bookstore web site sees the list of
books currently available, according to the warehouse’s database.

The source for the Duke’s Bookstore application is located in the
tut-install/javaeetutorial5/examples/web/bookstore5/ directory, which is created when
you unzip the tutorial bundle (see Chapter 2, “Using the Tutorial Examples”).

To deploy the books application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

2. In NetBeans IDE, select File→Open Project.
3. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

4. Select the books folder.
5. Select the Open as Main Project check box and the Open Required Projects check box.
6. Click Open Project.
7. In the Projects tab, right-click the books project, and select Undeploy and Deploy.

To deploy the books application using the Ant utility, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/books/.
2. Type ant build. This target will spawn any necessary compilations, copy files to the

tut-install/javaeetutorial5/examples/web/books/build/ directory, build a WAR file,
and copy the WAR file to the tut-install/javaeetutorial5/examples/web/books/dist/
directory.

3. To deploy the application, type ant deploy.

To deploy and run the bookstore5 application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

2. In NetBeans IDE, select File→Open Project.
3. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

4. Select the bookstore5 folder.

The Example JSP Document

The Java EE 5 Tutorial • October 2008186

5. Select the Open as Main Project check box and the Open Required Projects check box.
6. Click Open Project.
7. In the Projects tab, right-click the bookstore5 project, and select Undeploy and Deploy.
8. To run the applications, open the bookstore URL

http://localhost:8080/bookstore5/books/bookstore.

To deploy and run the application using Ant, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/bookstore5/.
2. Type ant. This command will spawn any necessary compilations, copy files to the

tut-install/javaeetutorial5/examples/web/bookstore5/build/ directory, and create a
WAR file and copy it to the
tut-install/javaeetutorial5/examples/web/bookstore5/dist/ directory.

3. Start the Application Server.
4. Perform all the operations described in “Creating a Data Source in the Application Server”

on page 98.
5. To deploy the example, type ant deploy. The deploy target outputs a URL for running the

application. Ignore this URL, and instead use the one shown in the next step.
6. To run the applications, open the bookstore URL

http://localhost:8080/bookstore5/books/bookstore.

To learn how to configure the bookstore5 example, refer to the web.xml file, which includes the
following configurations:

■ A display-name element that specifies the name that tools use to identify the application.
■ A context-param element that identifies the context path to the XML stream.
■ A context-param element that specifies the JSTL resource bundle base name.
■ A set of servlet elements that identify the JSP files in the application.
■ A set of servlet-mapping elements that identify aliases to the JSP pages identified by the

servlet elements.
■ Nested inside a jsp-config element are two jsp-property-group elements, which define

the preludes and coda to be included in each page. See “Setting JavaBeans Component
Properties” on page 169 for more information.

To learn how to configure the books example, refer to the web.xml file, which includes the
following configurations:

■ A display-name element that specifies the name that tools use to identify the application.
■ A listener element that identifies the ContextListener class used to create and remove

the database access.
■ A servlet element that identifies the JSP page.

The Example JSP Document

Chapter 6 • JavaServer Pages Documents 187

■ Nested inside a jsp-config element is a jsp-property-group element, which identifies the
JSP page as an XML document. See “Identifying the JSP Document to the Container” on
page 200 for more information.

Creating a JSP Document
A JSP document is an XML document and therefore must comply with the XML standard.
Fundamentally, this means that a JSP document must be well formed, meaning that each start
tag must have a corresponding end tag and that the document must have only one root element.
In addition, JSP elements included in the JSP document must comply with the XML syntax.

Much of the standard JSP syntax is already XML-compliant, including all the standard actions.
Those elements that are not compliant are summarized in Table 6–1 along with the equivalent
elements in XML syntax. As you can see, JSP documents are not much different from JSP pages.
If you know standard JSP syntax, you will find it easy to convert your current JSP pages to XML
syntax and to create new JSP documents.

TABLE 6–1 Standard Syntax Versus XML Syntax

Syntax Elements Standard Syntax XML Syntax

Comments <%--.. --%> <!-- .. -->

Declarations <%! ..%> <jsp:declaration> .. </jsp:declaration>

Directives <%@ include .. %> <jsp:directive.include .. />

<%@ page .. %> <jsp:directive.page .. />

<%@ taglib .. %> xmlns:prefix="tag library URL"

Expressions <%= ..%> <jsp:expression> .. </jsp:expression>

Scriptlets <% ..%> <jsp:scriptlet> .. </jsp:scriptlet>

To illustrate how simple it is to transition from standard syntax to XML syntax, let’s convert a
simple JSP page to a JSP document. The standard syntax version is as follows:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions"
prefix="fn" %>

<html>

<head><title>Hello</title></head>

<body bgcolor="white">

<h2>My name is Duke. What is yours?</h2>

Creating a JSP Document

The Java EE 5 Tutorial • October 2008188

<form method="get">
<input type="text" name="username" size="25">
<p></p>

<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>

<jsp:useBean id="userNameBean" class="hello.UserNameBean"
scope="request"/>

<jsp:setProperty name="userNameBean" property="name"
value="${param.username}" />

<c:if test="${fn:length(userNameBean.name) > 0}" >

<%@include file="response.jsp" %>

</c:if>

</body>

</html>

Here is the same page in XML syntax:

<html

xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:fn="http://java.sun.com/jsp/jstl/functions" >

<head><title>Hello</title></head>

<body bgcolor="white" />

<h2>My name is Duke. What is yours?</h2>

<form method="get">
<input type="text" name="username" size="25" />

<p></p>

<input type="submit" value="Submit" />

<input type="reset" value="Reset" />

</form>

<jsp:useBean id="userNameBean" class="hello.UserNameBean"
scope="request"/>

<jsp:setProperty name="userNameBean" property="name"
value="${param.username}" />

<c:if test="${fn:length(userNameBean.name) gt 0}" >

<jsp:directive.include="response.jsp" />

</c:if>

</body>

</html>

As you can see, a number of constructs that are legal in standard syntax have been changed to
comply with XML syntax:

■ The taglib directives have been removed. Tag libraries are now declared using XML
namespaces, as shown in the html element.

■ The img and input tags did not have matching end tags and have been made
XML-compliant by the addition of a / to the start tag.

Creating a JSP Document

Chapter 6 • JavaServer Pages Documents 189

■ The > symbol in the EL expression has been replaced with gt.
■ The include directive has been changed to the XML-compliant jsp:directive.include

tag.

With only these few small changes, when you save the file with a .jspx extension, this page is a
JSP document.

Using the example described in “The Example JSP Document” on page 185, the rest of this
chapter gives you more details on how to transition from standard syntax to XML syntax. It
explains how to use XML namespaces to declare tag libraries, include directives, and create
static and dynamic content in your JSP documents. It also describes jsp:root and jsp:output,
two elements that are used exclusively in JSP documents.

Declaring Tag Libraries
This section explains how to use XML namespaces to declare tag libraries.

In standard syntax, the taglib directive declares tag libraries used in a JSP page. Here is an
example of a taglib directive:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

This syntax is not allowed in JSP documents. To declare a tag library in a JSP document, you use
the xmlns attribute, which is used to declare namespaces according to the XML standard:

...

xmlns:c="http://java.sun.com/jsp/jstl/core"
...

The value that identifies the location of the tag library can take three forms:

■ A plain URI that is a unique identifier for the tag library. The container tries to match it
against any <taglib-uri> elements in the application’s web.xml file or the <uri> element of
tag library descriptors (TLDs) in JAR files in /WEB-INF/lib/ or TLDs under WEB-INF.

■ A URN of the form urn:jsptld:path.
■ A URN of the form urn:jsptagdir:path.

The URN of the form urn:jsptld:path points to one tag library packaged with the application:

xmlns:u="urn:jsptld:/WEB-INF/tlds/my.tld"

The URN of the form urn:jsptagdir:path must start with /WEB-INF/tags/ and identifies tag
extensions (implemented as tag files) installed in the /WEB-INF/tags/ directory or a
subdirectory of it:

xmlns:u="urn:jsptagdir:/WEB-INF/tags/mytaglibs/"

Creating a JSP Document

The Java EE 5 Tutorial • October 2008190

You can include the xmlns attribute in any element in your JSP document, just as you can in an
XML document. This capability has many advantages:
■ It follows the XML standard, making it easier to use any XML document as a JSP document.
■ It allows you to scope prefixes to an element and override them.
■ It allows you to use xmlns to declare other namespaces and not just tag libraries.

The books.jspx page declares the tag libraries it uses with the xmlns attributes in the root
element, books:

<books

xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"

>

In this way, all elements within the books element have access to these tag libraries.

As an alternative, you can scope the namespaces:

<books>

...

<jsp:useBean xmlns:jsp="http://java.sun.com/JSP/Page"
id="bookDB"
class="database.BookDB"
scope="page">

<jsp:setProperty name="bookDB"
property="database" value="${bookDBAO}" />

</jsp:useBean>

<c:forEach xmlns:c="http://java.sun.com/jsp/jstl/core"
var="book" begin="0" items="${bookDB.books}">
...

</c:forEach>

</books>

In this way, the tag library referenced by the jsp prefix is available only to the jsp:useBean
element and its subelements. Similarly, the tag library referenced by the c prefix is only available
to the c:forEach element.

Scoping the namespaces also allows you to override the prefix. For example, in another part of
the page, you could bind the c prefix to a different namespace or tag library. In contrast, the jsp
prefix must always be bound to http://java.sun.com/JSP/Page, the JSP namespace.

Including Directives in a JSP Document
Directives are elements that relay messages to the JSP container and affect how it compiles the
JSP page. The directives themselves do not appear in the XML output.

Creating a JSP Document

Chapter 6 • JavaServer Pages Documents 191

There are three directives: include, page, and taglib. The taglib directive is covered in the
preceding section.

The jsp:directive.page element defines a number of page-dependent properties and
communicates these to the JSP container. This element must be a child of the root element. Its
syntax is

<jsp:directive.page page-directive-attr-list />

The page-directive-attr-list is the same list of attributes that the <@ page ...> directive has.
These are described in Chapter 5, “JavaServer Pages Technology.” All the attributes are optional.
Except for the import and pageEncoding attributes, there can be only one instance of each
attribute in an element, but an element can contain more than one attribute.

An example of a page directive is one that tells the JSP container to load an error page when it
throws an exception. You can add this error page directive to the books.jspx page:

<books xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:directive.page errorPage="errorpage.jsp" />

...

</books>

If there is an error when you try to execute the page (perhaps when you want to see the XML
output of books.jspx), the error page is accessed.

The jsp:directive.include element is used to insert the text contained in another file (either
static content or another JSP page) into the including JSP document. You can place this element
anywhere in a document. Its syntax is:

<jsp:directive.include file="relativeURLspec" />

The XML view of a JSP document does not contain jsp:directive.include elements; rather
the included file is expanded in place. This is done to simplify validation.

Suppose that you want to use an include directive to add a JSP document containing magazine
data inside the JSP document containing the books data. To do this, you can add the following
include directive to books.jspx, assuming that magazines.jspx generates the magazine XML
data.

<jsp:root version="2.0" >

<books ...>

...

</books>

<jsp:directive.include file="magazine.jspx" />

</jsp:root>

Creating a JSP Document

The Java EE 5 Tutorial • October 2008192

Note that jsp:root is required because otherwise books.jspx would have two root elements:
<books> and <magazines>. The output generated from books.jspx will be a sequence of XML
documents: one with <books> and the other with <magazines> as its root element.

The output of this example will not be well-formed XML because of the two root elements, so
the client might refuse to process it. However, it is still a legal JSP document.

In addition to including JSP documents in JSP documents, you can also include JSP pages
written in standard syntax in JSP documents, and you can include JSP documents in JSP pages
written in standard syntax. The container detects the page you are including and parses it as
either a standard syntax JSP page or a JSP document and then places it into the XML view for
validation.

Creating Static and Dynamic Content
This section explains how to represent static text and dynamic content in a JSP document. You
can represent static text in a JSP document using uninterpreted XML tags or the jsp:text
element. The jsp:text element passes its content through to the output.

If you use jsp:text, all white space is preserved. For example, consider this example using
XML tags:

<books>

<book>

Web Servers for Fun and Profit

</book>

</books>

The output generated from this XML has all white space removed:

<books><book>

Web Servers for Fun and Profit

</book></books>

If you wrap the example XML with a <jsp:text> tag, all white space is preserved. The white
space characters are #x20, #x9, #xD, and #xA.

You can also use jsp:text to output static data that is not well formed. The ${counter}
expression in the following example would be illegal in a JSP document if it were not wrapped
in a jsp:text tag.

<c:forEach var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>

</c:forEach>

This example will output

Creating a JSP Document

Chapter 6 • JavaServer Pages Documents 193

123

The jsp:text tag must not contain any other elements. Therefore, if you need to nest a tag
inside jsp:text, you must wrap the tag inside CDATA.

You also need to use CDATA if you need to output some elements that are not well-formed. The
following example requires CDATA wrappers around the blockquote start and end tags because
the blockquote element is not well formed. This is because the blockquote element overlaps
with other elements in the example.

<c:forEach var="i" begin="1" end="${x}">
<![CDATA[<blockquote>]]>

</c:forEach>

...

<c:forEach var="i" begin="1" end="${x}">
<![CDATA[</blockquote>]]>

</c:forEach>

Just like JSP pages, JSP documents can generate dynamic content using expressions language
(EL) expressions, scripting elements, standard actions, and custom tags. The books.jspx
document uses EL expressions and custom tags to generate the XML book data.

As shown in this snippet from books.jspx, the c:forEach JSTL tag iterates through the list of
books and generates the XML data stream. The EL expressions access the JavaBeans
component, which in turn retrieves the data from the database:

<c:forEach var="book" begin="0" items="${bookDB.books}">
<book id="${book.bookId}" >

<surname>${book.surname}</surname>

<firstname>${book.firstName}</firstname>

<title>${book.title}</title>

<price>${book.price}</price>

<year>${book.year}</year>

<description>${book.description}</description>

<inventory>${book.inventory}</inventory>

</book>

</c:forEach>

When using the expression language in your JSP documents, you must substitute alternative
notation for some of the operators so that they will not be interpreted as XML markup.
Table 6–2 enumerates the more common operators and their alternative syntax in JSP
documents.

Creating a JSP Document

The Java EE 5 Tutorial • October 2008194

TABLE 6–2 EL Operators and JSP Document-Compliant Alternative Notation

EL Operator JSP Document Notation

< lt

> gt

<= le

>= ge

!= ne

You can also use EL expressions with jsp:element to generate tags dynamically rather than
hard code them. This example could be used to generate an HTML header tag with a lang
attribute:

<jsp:element name="${content.headerName}"
xmlns:jsp="http://java.sun.com/JSP/Page">

<jsp:attribute name="lang">${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>

</jsp:element>

The name attribute identifies the generated tag’s name. The jsp:attribute tag generates the
lang attribute. The body of the jsp:attribute tag identifies the value of the lang attribute. The
jsp:body tag generates the body of the tag. The output of this example jsp:element could be

<h1 lang="fr">Heading in French</h1>

As shown in Table 6–1, scripting elements (described in Chapter 9, “Scripting in JSP Pages”) are
represented as XML elements when they appear in a JSP document. The only exception is a
scriptlet expression used to specify a request-time attribute value. Instead of using <%=expr %>,
a JSP document uses %= expr % to represent a request-time attribute value.

The three scripting elements are declarations, scriptlets, and expressions.

A jsp:declaration element declares a scripting language construct that is available to other
scripting elements. A jsp:declaration element has no attributes and its body is the
declaration itself. Its syntax is

<jsp:declaration> declaration goes here </jsp:declaration>

A jsp:scriptlet element contains a Java program fragment called a scriptlet. This element has
no attributes, and its body is the program fragment that constitutes the scriptlet. Its syntax is

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

Creating a JSP Document

Chapter 6 • JavaServer Pages Documents 195

The jsp:expression element inserts the value of a scripting language expression, converted
into a string, into the data stream returned to the client. A jsp:expression element has no
attributes and its body is the expression. Its syntax is

<jsp:expression> expression goes here </jsp:expression>

Using the jsp:root Element
The jsp:root element represents the root element of a JSP document. A jsp:root element is
not required for JSP documents. You can specify your own root element, enabling you to use
any XML document as a JSP document. The root element of the books.jspx example JSP
document is books.

Although the jsp:root element is not required, it is still useful in these cases:
■ When you want to identify the document as a JSP document to the JSP container without

having to add any configuration attributes to the deployment descriptor or name the
document with a .jspx extension

■ When you want to generate, from a single JSP document, more than one XML document or
XML content mixed with non-XML content

The version attribute is the only required attribute of the jsp:root element. It specifies the JSP
specification version that the JSP document is using.

The jsp:root element can also include xmlns attributes for specifying tag libraries used by the
other elements in the page.

The books.jspx page does not need a jsp:root element and therefore doesn’t include one.
However, suppose that you want to generate two XML documents from books.jspx: one that
lists books and another that lists magazines (assuming magazines are in the database). This
example is similar to the one in the section “Including Directives in a JSP Document” on
page 191. To do this, you can use this jsp:root element:

<jsp:root

xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0" >

<books>...</books>

<magazines>...</magazines>

</jsp:root>

Notice in this example that jsp:root defines the JSP namespace because both the books and the
magazines elements use the elements defined in this namespace.

Using the jsp:output Element
The jsp:output element specifies the XML declaration or the document type declaration in the
request output of the JSP document.

Creating a JSP Document

The Java EE 5 Tutorial • October 2008196

The XML declaration and document type declaration that are declared by the jsp:output
element are not interpreted by the JSP container. Instead, the container simply directs them to
the request output.

To illustrate this, here is an example of specifying a document type declaration with
jsp:output:

<jsp:output doctype-root-element="books"
doctype-system="books.dtd" />

The resulting output is:

<!DOCTYPE books SYSTEM "books.dtd" >

Specifying the document type declaration in the jsp:output element will not cause the JSP
container to validate the JSP document against the books.dtd.

If you want the JSP document to be validated against the DTD, you must manually include the
document type declaration within the JSP document, just as you would with any XML
document.

Table 6–3 shows all the jsp:output attributes. They are all optional, but some attributes
depend on other attributes occurring in the same jsp:output element, as shown in the table.
The rest of this section explains more about using jsp:output to generate an XML declaration
and a document type declaration.

TABLE 6–3 jsp:outputAttributes

Attribute What It Specifies

omit-xml-declaration A value of true or yes omits the XML declaration. A value of false or no
generates an XML declaration.

doctype-root-element Indicates the root element of the XML document in the DOCTYPE. Can be specified
only if doctype-system is specified.

doctype-system Specifies that a DOCTYPE is generated in output and gives the SYSTEM literal.

doctype-public Specifies the value for the Public ID of the generated DOCTYPE. Can be specified
only if doctype-system is specified.

Generating XML Declarations
Here is an example of an XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>

This declaration is the default XML declaration. It means that if the JSP container is generating
an XML declaration, this is what the JSP container will include in the output of your JSP
document.

Creating a JSP Document

Chapter 6 • JavaServer Pages Documents 197

Neither a JSP document nor its request output is required to have an XML declaration. In fact, if
the JSP document is not producing XML output then it shouldn’t have an XML declaration.

The JSP container will not include the XML declaration in the output when either of the
following is true:

■ You set the omit-xml-declaration attribute of the jsp:output element to either true or
yes.

■ You have a jsp:root element in your JSP document, and you do not specify
omit-xml-declaration="false" in jsp:output.

The JSP container will include the XML declaration in the output when either of the following is
true:

■ You set the omit-xml-declaration attribute of the jsp:output element to either false or
no.

■ You do not have a jsp:root action in your JSP document, and you do not specify the
omit-xml-declaration attribute in jsp:output.

The books.jspx JSP document does not include a jsp:root action nor a jsp:output.
Therefore, the default XML declaration is generated in the output.

Generating a Document Type Declaration
A document type declaration (DTD) defines the structural rules for the XML document in
which the document type declaration occurs. XML documents are not required to have a DTD
associated with them. In fact, the books example does not include one.

This section shows you how to use the jsp:output element to add a document type declaration
to the XML output of books.jspx. It also shows you how to enter the document type
declaration manually into books.jspx so that the JSP container will interpret it and validate the
document against the DTD.

As shown in Table 6–3, the jsp:output element has three attributes that you use to generate the
document type declaration:

■ doctype-root-element: Indicates the root element of the XML document.
■ doctype-system: Indicates the URI reference to the DTD.
■ doctype-public: A more flexible way to reference the DTD. This identifier gives more

information about the DTD without giving a specific location. A public identifier resolves to
the same actual document on any system even though the location of that document on each
system may vary. See the XML 1.0 specification (http://www.w3.org/XML/) for more
information.

Creating a JSP Document

The Java EE 5 Tutorial • October 2008198

http://www.w3.org/XML/

The rules for using the attributes are as follows:
■ The doctype attributes can appear in any order.
■ The doctype-root attribute must be specified if the doctype-system attribute is specified.
■ The doctype-public attribute must not be specified unless doctype-system is specified.

This syntax notation summarizes these rules:

<jsp:output (omit-xmldeclaration=

"yes"|"no"|"true"|"false"){doctypeDecl} />

doctypeDecl:= (doctype-root-element="rootElement"
doctype-public="PublicLiteral"

doctype-system="SystemLiteral")
| (doctype-root-element="rootElement"
doctype-system="SystemLiteral")

Suppose that you want to reference a DTD, called books.DTD, from the output of the
books.jspx page. The DTD would look like this:

<!ELEMENT books (book+) >

<!ELEMENT book (surname, firstname, title, price, year,

description, inventory) >

<!ATTLIST book id CDATA #REQUIRED >

<!ELEMENT surname (#PCDATA) >

<!ELEMENT firstname (#PCDATA) >

<!ELEMENT title (#PCDATA) >

<!ELEMENT price (#PCDATA) >

<!ELEMENT year (#PCDATA) >

<!ELEMENT description (#PCDATA) >

<!ELEMENT inventory (#PCDATA) >

To add a document type declaration that references the DTD to the XML request output
generated from books.jspx, include this jsp:output element in books.jspx:

<jsp:output doctype-root-element="books"
doctype-system="books.DTD" />

With this jsp:output action, the JSP container generates this document type declaration in the
request output:

<!DOCTYPE books SYSTEM "books.DTD" />

The jsp:output need not be located before the root element of the document. The JSP
container will automatically place the resulting document type declaration before the start of
the output of the JSP document.

Note that the JSP container will not interpret anything provided by jsp:output. This means
that the JSP container will not validate the XML document against the DTD. It only generates

Creating a JSP Document

Chapter 6 • JavaServer Pages Documents 199

the document type declaration in the XML request output. To see the XML output, run
http://localhost:8080/books/books.jspx in your browser after you have updated
books.WAR with books.DTD and the jsp:output element. When using some browsers, you
might need to view the source of the page to actually see the output.

Directing the document type declaration to output without interpreting it is useful in situations
when another system receiving the output expects to see it. For example, two companies that do
business by means of a web service might use a standard DTD, against which any XML content
exchanged between the companies is validated by the consumer of the content. The document
type declaration tells the consumer what DTD to use to validate the XML data that it receives.

For the JSP container to validate books.jspx against book.DTD, you must manually include the
document type declaration in the books.jspx file rather than use jsp:output. However, you
must add definitions for all tags in your DTD, including definitions for standard elements and
custom tags, such as jsp:useBean and c:forEach. You also must ensure that the DTD is
located in the domain-dir/config/ directory so that the JSP container will validate the JSP
document against the DTD.

Identifying the JSP Document to the Container
A JSP document must be identified as such to the web container so that the container interprets
it as an XML document. There are three ways to do this:

■ In your application’s web.xml file, set the is-xml element of the jsp-property-group
element to true.

■ Use a Java Servlet Specification version 2.4 web.xml file and give your JSP document the
.jspx extension.

■ Include a jsp:root element in your JSP document. This method is backward-compatible
with JSP 1.2.

Identifying the JSP Document to the Container

The Java EE 5 Tutorial • October 2008200

JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality common to
many JSP applications. Instead of mixing tags from numerous vendors in your JSP applications,
JSTL allows you to employ a single, standard set of tags. This standardization allows you to
deploy your applications on any JSP container supporting JSTL and makes it more likely that
the implementation of the tags is optimized.

JSTL has tags such as iterators and conditionals for handling flow control, tags for manipulating
XML documents, internationalization tags, tags for accessing databases using SQL, and
commonly used functions.

This chapter demonstrates JSTL through excerpts from the JSP version of the Duke’s Bookstore
application discussed in the earlier chapters. It assumes that you are familiar with the material
in the “Using Custom Tags” on page 172 section of Chapter 5, “JavaServer Pages Technology.”

This chapter does not cover every JSTL tag, only the most commonly used ones. Please refer to
the reference pages at
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html for a complete
list of the JSTL tags and their attributes.

The Example JSP Pages
This chapter illustrates JSTL using excerpts from the JSP version of the Duke’s Bookstore
application discussed in Chapter 5, “JavaServer Pages Technology.” Here, they are rewritten to
replace the JavaBeans component database access object with direct calls to the database using
the JSTL SQL tags. For most applications, it is better to encapsulate calls to a database in a bean.
JSTL includes SQL tags for situations where a new application is being prototyped and the
overhead of creating a bean may not be warranted.

The source for the Duke’s Bookstore application is located in the
tut-install/javaeetutorial5/examples/web/bookstore4/ directory created when you unzip
the tutorial bundle (see Chapter 2, “Using the Tutorial Examples”).

7C H A P T E R 7

201

http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html

To deploy and run the application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

2. In NetBeans IDE, select File→Open Project.
3. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

4. Select the bookstore4 folder.
5. Select the Open as Main Project check box and the Open Required Projects check box.
6. Click Open Project.
7. In the Projects tab, right-click the bookstore4 project, and select Undeploy and Deploy.
8. To run the application, open the bookstore URL

http://localhost:8080/bookstore4/books/bookstore.

To deploy and run the application using Ant, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/bookstore4/.
2. Type ant. This command will spawn any necessary compilations, copy files to the

tut-install/javaeetutorial5/examples/web/bookstore4/build/ directory, and create a
WAR file and copy it to the
tut-install/javaeetutorial5/examples/web/bookstore4/dist/ directory.

3. Start the Application Server.
4. Perform all the operations described in “Creating a Data Source in the Application Server”

on page 98.
5. To deploy the example, type ant deploy. The deploy target outputs a URL for running the

application. Ignore this URL, and instead use the one shown in the next step.
6. To run the application, open the bookstore URL

http://localhost:8080/bookstore4/books/bookstore.

To learn how to configure the example, refer to the web.xml file, which includes the following
configurations:

■ A display-name element that specifies the name that tools use to identify the application.
■ A context-param element that specifies the JSTL resource bundle base name.
■ A set of servlet elements that identify the application’s JSP files.
■ A set of servlet-mapping elements that define the aliases to the JSP files.
■ Nested inside a jsp-config element are two jsp-property-group elements, which define

the preludes and coda to be included in each page. See “Setting JavaBeans Component
Properties” on page 169 for more information.

The Example JSP Pages

The Java EE 5 Tutorial • October 2008202

See “Troubleshooting Duke's Bookstore Database Problems” on page 102 for help with
diagnosing common problems.

Using JSTL
JSTL includes a wide variety of tags that fit into discrete functional areas. To reflect this, as well
as to give each area its own namespace, JSTL is exposed as multiple tag libraries. The URIs for
the libraries are as follows:

■ Core: http://java.sun.com/jsp/jstl/core
■ XML: http://java.sun.com/jsp/jstl/xml
■ Internationalization: http://java.sun.com/jsp/jstl/fmt
■ SQL: http://java.sun.com/jsp/jstl/sql
■ Functions: http://java.sun.com/jsp/jstl/functions

Table 7–1 summarizes these functional areas along with the prefixes used in this tutorial.

TABLE 7–1 JSTL Tags

Area Subfunction Prefix

Core Variable support c

Flow control

URL management

Miscellaneous

XML Core x

Flow control

Transformation

I18N Locale fmt

Message formatting

Number and date formatting

Database SQL sql

Functions Collection length fn

String manipulation

Thus, the tutorial references the JSTL core tags in JSP pages by using the following taglib
directive:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

Using JSTL

Chapter 7 • JavaServer Pages Standard Tag Library 203

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/functions

In addition to declaring the tag libraries, tutorial examples access the JSTL API and
implementation. In the Application Server, the JSTL TLDs and libraries are distributed in the
archive as-install/lib/appserv-jstl.jar. This library is automatically loaded into the
classpath of all web applications running on the Application Server, so you don’t need to add it
to your web application.

Tag Collaboration
Tags usually collaborate with their environment in implicit and explicit ways. Implicit
collaboration is done by means of a well-defined interface that allows nested tags to work
seamlessly with the ancestor tag that exposes that interface. The JSTL conditional tags employ
this mode of collaboration.

Explicit collaboration happens when a tag exposes information to its environment. JSTL tags
expose information as JSP EL variables; the convention followed by JSTL is to use the name var
for any tag attribute that exports information about the tag. For example, the forEach tag
exposes the current item of the shopping cart it is iterating over in the following way:

<c:forEach var="item" items="${sessionScope.cart.items}">
...

</c:forEach>

In situations where a tag exposes more than one piece of information, the name var is used for
the primary piece of information being exported, and an appropriate name is selected for any
other secondary piece of information exposed. For example, iteration status information is
exported by the forEach tag through the attribute status.

When you want to use an EL variable exposed by a JSTL tag in an expression in the page’s
scripting language (see Chapter 9, “Scripting in JSP Pages”), you use the standard JSP element
jsp:useBean to declare a scripting variable.

For example,
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookshowcart.jsp
removes a book from a shopping cart using a scriptlet. The ID of the book to be removed is
passed as a request parameter. The value of the request parameter is first exposed as an EL
variable (to be used later by the JSTL sql:query tag) and then is declared as a scripting variable
and passed to the cart.remove method:

<c:set var="bookId" value="${param.Remove}"/>
<jsp:useBean id="bookId" type="java.lang.String" />

<% cart.remove(bookId); %>

<sql:query var="books"
dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?

<sql:param value="${bookId}" />

</sql:query>

Using JSTL

The Java EE 5 Tutorial • October 2008204

Core Tag Library
Table 7–2 summarizes the core tags, which include those related to variables and flow control,
as well as a generic way to access URL-based resources whose content can then be included or
processed within the JSP page.

TABLE 7–2 Core Tags

Area Function Tags Prefix

Core Variable support remove

set

c

Flow control choose

when

otherwise

forEach

forTokens

if

URL management import

param

redirect

param

url

param

Miscellaneous catch

out

Variable Support Tags
The set tag sets the value of an EL variable or the property of an EL variable in any of the JSP
scopes (page, request, session, or application). If the variable does not already exist, it is created.

The JSP EL variable or property can be set either from the attribute value:

<c:set var="foo" scope="session" value="..."/>

or from the body of the tag:

<c:set var="foo">
...

</c:set>

For example, the following sets an EL variable named bookID with the value of the request
parameter named Remove:

Core Tag Library

Chapter 7 • JavaServer Pages Standard Tag Library 205

<c:set var="bookId" value="${param.Remove}"/>

To remove an EL variable, you use the remove tag. When the bookstore JSP page
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookreceipt.jsp is
invoked, the shopping session is finished, so the cart session attribute is removed as follows:

<c:remove var="cart" scope="session"/>

The value attribute of the set tag can also take a deferred value expression (See “Immediate
and Deferred Evaluation Syntax” on page 148) so that JavaServer Faces component tags can
access the value at the appropriate stage of the page life cycle.

JavaServer Faces technology (see Chapter 10, “JavaServer Faces Technology”) supports a
multiphase life cycle, which includes separate phases for rendering components, validating
data, updating model values, and performing other tasks. What this means is that any
JavaServer Faces component tags that reference the value set by the set tag must have access to
this value at different phases of the life cycle, not just during the rendering phase. Consider the
following code:

<c:set var="bookId" scope="page" value="#{BooksBean.books}"/>
...

<h:inputText id="bookId" value="#{bookId}"/>
...

The value attribute of the c:set tag uses a deferred value expression, which means that the
bookId variable it references is available not only during the rendering phase of the JavaServer
Faces life cycle but also during the later stages of the life cycle. Therefore, whatever value the
user enters into the bookId component tag is updated to the external data object during the
appropriate stage of the life cycle.

If the expression referenced by the value attribute used immediate evaluation syntax then the
bookId variable would be available only when the component is rendered during the render
response phase. This would prevent the value the user enters into the component from being
converted, validated, or updated to the external data object during the later phases of the life
cycle.

Flow Control Tags
To execute flow control logic, a page author must generally resort to using scriptlets. For
example, the following scriptlet is used to iterate through a shopping cart:

<%

Iterator i = cart.getItems().iterator();

while (i.hasNext()) {

ShoppingCartItem item =

Core Tag Library

The Java EE 5 Tutorial • October 2008206

(ShoppingCartItem)i.next();

...

%>

<tr>

<td align="right" bgcolor="#ffffff">
${item.quantity}

</td>

...

<%

}

%>

Flow control tags eliminate the need for scriptlets. The next two sections have examples that
demonstrate the conditional and iterator tags.

Conditional Tags
The if tag allows the conditional execution of its body according to the value of the test
attribute. The following example from
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog.jsp tests
whether the request parameter Add is empty. If the test evaluates to true, the page queries the
database for the book record identified by the request parameter and adds the book to the
shopping cart:

<c:if test="${!empty param.Add}">
<c:set var="bid" value="${param.Add}"/>
<jsp:useBean id="bid" type="java.lang.String" />

<sql:query var="books"
dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?

<sql:param value="${bid}" />

</sql:query>

<c:forEach var="bookRow" begin="0" items="${books.rows}">
<jsp:useBean id="bookRow" type="java.util.Map" />

<jsp:useBean id="addedBook"
class="database.Book" scope="page" />

...

<% cart.add(bid, addedBook); %>

...

</c:if>

The choose tag performs conditional block execution by the embedded when subtags. It renders
the body of the first when tag whose test condition evaluates to true. If none of the test
conditions of nested when tags evaluates to true, then the body of an otherwise tag is evaluated,
if present.

For example, the following sample code shows how to render text based on a customer’s
membership category.

Core Tag Library

Chapter 7 • JavaServer Pages Standard Tag Library 207

<c:choose>

<c:when test="${customer.category == ’trial’}" >

...

</c:when>

<c:when test="${customer.category == ’member’}" >

...

</c:when>

<c:when test="${customer.category == ’preferred’}" >

...

</c:when>

<c:otherwise>

...

</c:otherwise>

</c:choose>

The choose, when, and otherwise tags can be used to construct an if-then-else statement as
follows:

<c:choose>

<c:when test="${count == 0}" >

No records matched your selection.

</c:when>

<c:otherwise>

${count} records matched your selection.

</c:otherwise>

</c:choose>

Iterator Tags
The forEach tag allows you to iterate over a collection of objects. You specify the collection
using the items attribute, and the current item is available through a variable named by the var
attribute.

A large number of collection types are supported by forEach, including all implementations of
java.util.Collection and java.util.Map. If the items attribute is of type java.util.Map,
then the current item will be of type java.util.Map.Entry, which has the following properties:
■ key: The key under which the item is stored in the underlying Map
■ value: The value that corresponds to the key

Arrays of objects as well as arrays of primitive types (for example, int) are also supported. For
arrays of primitive types, the current item for the iteration is automatically wrapped with its
standard wrapper class (for example, Integer for int, Float for float, and so on).

Implementations of java.util.Iterator and java.util.Enumeration are supported, but
they must be used with caution. Iterator and Enumeration objects can't be reset, so they
should not be used within more than one iteration tag. Finally, java.lang.String objects can
be iterated over if the string contains a list of comma-separated values (for example:
Monday,Tuesday,Wednesday,Thursday,Friday).

Core Tag Library

The Java EE 5 Tutorial • October 2008208

Here’s the shopping cart iteration from the preceding section, now with the forEach tag:

<c:forEach var="item" items="${sessionScope.cart.items}">
...

<tr>

<td align="right" bgcolor="#ffffff">
${item.quantity}

</td>

...

</c:forEach>

The forTokens tag is used to iterate over a collection of tokens separated by a delimiter.

Similarly to the value attribute of the c:set tag (see “Variable Support Tags” on page 205), the
items attribute of forEach and forTokens can also take a deferred value expression so that
JavaServer Faces tags can be included within these tags.

As described in “Variable Support Tags” on page 205, JavaServer Faces technology (see
Chapter 10, “JavaServer Faces Technology”) supports a multiphase life cycle. Therefore, any
JavaServer Faces component tags that are included in the forEach tag or the forTokens tag
must have access to the variable referenced by the items attribute at different phases of the life
cycle, not just during the rendering phase. Consider the following code:

<c:forEach var="book" items="#{BooksBean.books}">
...

<h:inputText id="quantity" value="#{book.quantity}"/>
...

</c:forEach>

The items attribute uses a deferred value expression, which means that the book variable it
references is available not only during the rendering phase of the JavaServer Faces life cycle but
also during the later stages of the life cycle. Therefore, whatever values the user enters into the
quantity component tags are updated to the external data object during the appropriate stage
of the life cycle.

If the expression referenced by the items attribute used immediate evaluation syntax then the
book variable would be available only when the component is rendered during the render
response phase. This would prevent the values the user enters into the components from being
converted, validated, or updated to the external data object during the later phases of the life
cycle. The JavaServer Faces version of Duke’s Bookstore includes a forEach tag on its
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog.jsp
page.

Core Tag Library

Chapter 7 • JavaServer Pages Standard Tag Library 209

URL Tags
The jsp:include element provides for the inclusion of static and dynamic resources in the
same context as the current page. However, jsp:include cannot access resources that reside
outside the web application, and it causes unnecessary buffering when the resource included is
used by another element.

In the following example, the transform element uses the content of the included resource as
the input of its transformation. The jsp:include element reads the content of the response and
writes it to the body content of the enclosing transform element, which then rereads exactly the
same content. It would be more efficient if the transform element could access the input source
directly and thereby avoid the buffering involved in the body content of the transform tag.

<acme:transform>

<jsp:include page="/exec/employeesList"/>
<acme:transform/>

The import tag is therefore the simple, generic way to access URL-based resources, whose
content can then be included and or processed within the JSP page. For example, in “XML Tag
Library” on page 211, import is used to read in the XML document containing book
information and assign the content to the scoped variable xml:

<c:import url="/books.xml" var="xml" />

<x:parse doc="${xml}" var="booklist"
scope="application" />

The param tag, analogous to the jsp:param tag (see “jsp:param Element” on page 176), can be
used with import to specify request parameters.

“Session Tracking” on page 127 discusses how an application must rewrite URLs to enable
session tracking whenever the client turns off cookies. You can use the url tag to rewrite URLs
returned from a JSP page. The tag includes the session ID in the URL only if cookies are
disabled; otherwise, it returns the URL unchanged. Note that this feature requires that the URL
be relative. The url tag takes param subtags to include parameters in the returned URL. For
example,
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog.jsp
rewrites the URL used to add a book to the shopping cart as follows:

<c:url var="url" value="/catalog" >

<c:param name="Add" value="${bookId}" />

</c:url>

<p>

The redirect tag sends an HTTP redirect to the client. The redirect tag takes param subtags
for including parameters in the returned URL.

Core Tag Library

The Java EE 5 Tutorial • October 2008210

Miscellaneous Tags
The catch tag provides a complement to the JSP error page mechanism. It allows page authors
to recover gracefully from error conditions that they can control. Actions that are of central
importance to a page should not be encapsulated in a catch; in this way their exceptions will
propagate instead to an error page. Actions with secondary importance to the page should be
wrapped in a catch so that they never cause the error page mechanism to be invoked.

The exception thrown is stored in the variable identified by var, which always has page scope. If
no exception occurred, the scoped variable identified by var is removed if it existed. If var is
missing, the exception is simply caught and not saved.

The out tag evaluates an expression and outputs the result of the evaluation to the current
JspWriter object. The syntax and attributes are as follows:

<c:out value="value" [escapeXml="{true|false}"]
[default="defaultValue"] />

If the result of the evaluation is a java.io.Reader object, then data is first read from the Reader
object and then written into the current JspWriter object. The special processing associated
with Reader objects improves performance when a large amount of data must be read and then
written to the response.

If escapeXml is true, the character conversions listed in Table 7–3 are applied.

TABLE 7–3 Character Conversions

Character Character Entity Code

< <

> >

& &

’ '

" "

XML Tag Library
The JSTL XML tag set is listed in Table 7–4.

XML Tag Library

Chapter 7 • JavaServer Pages Standard Tag Library 211

TABLE 7–4 XML Tags

Area Function Tags Prefix

XML Core out

parse

set

x

Flow control choose

when

otherwise

forEach

if

Transformation transform

param

A key aspect of dealing with XML documents is to be able to easily access their content. XPath
(see http://java.sun.com/webservices/jaxp/), a W3C recommendation since 1999,
provides an easy notation for specifying and selecting parts of an XML document. In the JSTL
XML tags, XPath expressions specified using the select attribute are used to select portions of
XML data streams. Note that XPath is used as a local expression language only for the select
attribute. This means that values specified for select attributes are evaluated using the XPath
expression language but that values for all other attributes are evaluated using the rules
associated with the JSP 2.0 expression language.

In addition to the standard XPath syntax, the JSTL XPath engine supports the following scopes
to access web application data within an XPath expression:

■ $foo

■ $param:

■ $header:

■ $cookie:

■ $initParam:

■ $pageScope:

■ $requestScope:

■ $sessionScope:

■ $applicationScope:

These scopes are defined in exactly the same way as their counterparts in the JSP expression
language discussed in “Implicit Objects” on page 162. Table 7–5 shows some examples of using
the scopes.

XML Tag Library

The Java EE 5 Tutorial • October 2008212

http://java.sun.com/webservices/jaxp/

TABLE 7–5 Example XPath Expressions

XPath Expression Result

$sessionScope:profile The session-scoped EL variable named profile

$initParam:mycom.productId The String value of the mycom.productId context parameter

The XML tags are illustrated in another version (bookstore5) of the Duke’s Bookstore
application. This version replaces the database with an XML representation of the bookstore
database, which is retrieved from another web application. The directions for building and
deploying this version of the application are in “The Example JSP Document” on page 185.

Core Tags
The core XML tags provide basic functionality to easily parse and access XML data.

The parse tag parses an XML document and saves the resulting object in the EL variable
specified by attribute var. In bookstore5, the XML document is parsed and saved to a context
attribute in
tut-install/javaeetutorial5/examples/web/bookstore5/web/books/parsebooks.jsp,
which is included by all JSP pages that need access to the document:

<c:if test="${applicationScope:booklist == null}" >

<c:import url="${initParam.booksURL}" var="xml" />

<x:parse doc="${xml}" var="booklist" scope="application" />

</c:if>

The set and out tags parallel the behavior described in “Variable Support Tags” on page 205
and “Miscellaneous Tags” on page 211 for the XPath local expression language. The set tag
evaluates an XPath expression and sets the result into a JSP EL variable specified by attribute
var. The out tag evaluates an XPath expression on the current context node and outputs the
result of the evaluation to the current JspWriter object.

The JSP page
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookdetails.jsp
selects a book element whose id attribute matches the request parameter bookId and sets the
abook attribute. The out tag then selects the book’s title element and outputs the result.

<x:set var="abook"
select="$applicationScope.booklist/

books/book[@id=$param:bookId]" />

<h2><x:out select="$abook/title"/></h2>

As you have just seen, x:set stores an internal XML representation of a node retrieved using an
XPath expression; it doesn’t convert the selected node into a String and store it. Thus, x:set is
primarily useful for storing parts of documents for later retrieval.

XML Tag Library

Chapter 7 • JavaServer Pages Standard Tag Library 213

If you want to store a String, you must use x:out within c:set. The x:out tag converts the
node to a String, and c:set then stores the String as an EL variable. For example,
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookdetails.jsp
stores an EL variable containing a book price, which is later provided as the value of a fmt tag, as
follows:

<c:set var="price">
<x:out select="$abook/price"/>

</c:set>

<h4><fmt:message key="ItemPrice"/>:
<fmt:formatNumber value="${price}" type="currency"/>

The other option, which is more direct but requires that the user have more knowledge of
XPath, is to coerce the node to a String manually by using XPath’s string function.

<x:set var="price" select="string($abook/price)"/>

Flow Control Tags
The XML flow control tags parallel the behavior described in “Flow Control Tags” on page 206
for XML data streams.

The JSP page
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog.jsp uses
the forEach tag to display all the books contained in booklist as follows:

<x:forEach var="book"
select="$applicationScope:booklist/books/*">
<tr>

<c:set var="bookId">
<x:out select="$book/@id"/>

</c:set>=

<td bgcolor="#ffffaa">
<c:url var="url"
value="/bookdetails" >

<c:param name="bookId" value="${bookId}" />

<c:param name="Clear" value="0" />

</c:url>

<x:out select="$book/title"/>
</td>

<td bgcolor="#ffffaa" rowspan=2>

<c:set var="price">
<x:out select="$book/price"/>

</c:set>

<fmt:formatNumber value="${price}" type="currency"/>

XML Tag Library

The Java EE 5 Tutorial • October 2008214

</td>

<td bgcolor="#ffffaa" rowspan=2>

<c:url var="url" value="/catalog" >

<c:param name="Add" value="${bookId}" />

</c:url>

<p>
<fmt:message key="CartAdd"/>

</td>

</tr>

<tr>

<td bgcolor="#ffffff">
 <fmt:message key="By"/>

<x:out select="$book/firstname"/>
<x:out select="$book/surname"/></td></tr>

</x:forEach>

Transformation Tags
The transform tag applies a transformation, specified by an XSLT stylesheet set by the attribute
xslt, to an XML document, specified by the attribute doc. If the doc attribute is not specified,
the input XML document is read from the tag’s body content.

The param subtag can be used along with transform to set transformation parameters. The
attributes name and value are used to specify the parameter. The value attribute is optional. If it
is not specified, the value is retrieved from the tag’s body.

Internationalization Tag Library
Chapter 15, “Internationalizing and Localizing Web Applications,” covers how to design web
applications so that they conform to the language and formatting conventions of client locales.
This section describes tags that support the internationalization of JSP pages.

JSTL defines tags for setting the locale for a page, creating locale-sensitive messages, and
formatting and parsing data elements such as numbers, currencies, dates, and times in a
locale-sensitive or customized manner. Table 7–6 lists the tags.

Internationalization Tag Library

Chapter 7 • JavaServer Pages Standard Tag Library 215

TABLE 7–6 Internationalization Tags

Area Function Tags Prefix

I18N Setting Locale setLocale

requestEncoding

fmt

Messaging bundle

message

param

setBundle

Number and Date Formatting formatNumber

formatDate

parseDate

parseNumber

setTimeZone

timeZone

JSTL I18N tags use a localization context to localize their data. A localization context contains a
locale and a resource bundle instance. To specify the localization context at deployment time,
you define the context parameter javax.servlet.jsp.jstl.fmt.localizationContext,
whose value can be a javax.servlet.jsp.jstl.fmt.LocalizationContext or a String. A
String context parameter is interpreted as a resource bundle base name. For the Duke’s
Bookstore application, the context parameter is the String messages.BookstoreMessages.
When a request is received, JSTL automatically sets the locale based on the value retrieved from
the request header and chooses the correct resource bundle using the base name specified in the
context parameter.

Setting the Locale
The setLocale tag is used to override the client-specified locale for a page. The
requestEncoding tag is used to set the request’s character encoding, in order to be able to
correctly decode request parameter values whose encoding is different from ISO-8859-1.

Messaging Tags
By default, the capability to sense the browser locale setting is enabled in JSTL. This means that
the client determines (through its browser setting) which locale to use, and allows page authors
to cater to the language preferences of their clients.

Internationalization Tag Library

The Java EE 5 Tutorial • October 2008216

The setBundle and bundle Tags
You can set the resource bundle at runtime with the JSTL fmt:setBundle and fmt:bundle tags.
fmt:setBundle is used to set the localization context in a variable or configuration variable for a
specified scope. fmt:bundle is used to set the resource bundle for a given tag body.

The message Tag
The message tag is used to output localized strings. The following tag from
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog.jsp is
used to output a string inviting customers to choose a book from the catalog.

<h3><fmt:message key="Choose"/></h3>

The param subtag provides a single argument (for parametric replacement) to the compound
message or pattern in its parent message tag. One param tag must be specified for each variable
in the compound message or pattern. Parametric replacement takes place in the order of the
param tags.

Formatting Tags
JSTL provides a set of tags for parsing and formatting locale-sensitive numbers and dates.

The formatNumber tag is used to output localized numbers. The following tag from
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookshowcart.jsp is
used to display a localized price for a book.

<fmt:formatNumber value="${book.price}" type="currency"/>

Note that because the price is maintained in the database in dollars, the localization is somewhat
simplistic, because the formatNumber tag is unaware of exchange rates. The tag formats
currencies but does not convert them.

Analogous tags for formatting dates (formatDate) and for parsing numbers and dates
(parseNumber, parseDate) are also available. The timeZone tag establishes the time zone
(specified with the value attribute) to be used by any nested formatDate tags.

In tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookreceipt.jsp, a
“pretend” ship date is created and then formatted with the formatDate tag:

<jsp:useBean id="now" class="java.util.Date" />

<jsp:setProperty name="now" property="time"
value="${now.time + 432000000}" />

<fmt:message key="ShipDate"/>
<fmt:formatDate value="${now}" type="date"

dateStyle="full"/>.

Internationalization Tag Library

Chapter 7 • JavaServer Pages Standard Tag Library 217

SQL Tag Library
The JSTL SQL tags for accessing databases listed in Table 7–7 are designed for quick
prototyping and simple applications. For production applications, database operations are
normally encapsulated in JavaBeans components.

TABLE 7–7 SQL Tags

Area Function Tags Prefix

Database Setting the data source setDataSource sql

SQL query

dateParam

param

transaction

update

dateParam

param

The setDataSource tag allows you to set data source information for the database. You can
provide a JNDI name or DriverManager parameters to set the data source information. All of
the Duke’s Bookstore pages that have more than one SQL tag use the following statement to set
the data source:

<sql:setDataSource dataSource="jdbc/BookDB" />

The query tag performs an SQL query that returns a result set. For parameterized SQL queries,
you use a nested param tag inside the query tag.

In tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog.jsp,
the value of the Add request parameter determines which book information should be retrieved
from the database. This parameter is saved as the attribute name bid and is passed to the param
tag.

<c:set var="bid" value="${param.Add}"/>
<sql:query var="books" >

select * from PUBLIC.books where id = ?

<sql:param value="${bid}" />

</sql:query>

The update tag is used to update a database row. The transaction tag is used to perform a
series of SQL statements atomically.

The JSP page
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookreceipt.jsp uses

SQL Tag Library

The Java EE 5 Tutorial • October 2008218

both tags to update the database inventory for each purchase. Because a shopping cart can
contain more than one book, the transaction tag is used to wrap multiple queries and updates.
First, the page establishes that there is sufficient inventory; then the updates are performed.

<c:set var="sufficientInventory" value="true" />

<sql:transaction>

<c:forEach var="item" items="${sessionScope.cart.items}">
<c:set var="book" value="${item.item}" />

<c:set var="bookId" value="${book.bookId}" />

<sql:query var="books"
sql="select * from PUBLIC.books where id = ?" >

<sql:param value="${bookId}" />

</sql:query>

<jsp:useBean id="inventory"
class="database.BookInventory" />

<c:forEach var="bookRow" begin="0"
items="${books.rowsByIndex}">
<jsp:useBean id="bookRow" type="java.lang.Object[]" />

<jsp:setProperty name="inventory" property="quantity"
value="${bookRow[7]}" />

<c:if test="${item.quantity > inventory.quantity}">
<c:set var="sufficientInventory" value="false" />

<h3>
<fmt:message key="OrderError"/>
There is insufficient inventory for

<i>${bookRow[3]}</i>.</h3>

</c:if>

</c:forEach>

</c:forEach>

<c:if test="${sufficientInventory == ’true’}" />

<c:forEach var="item" items="${sessionScope.cart.items}">
<c:set var="book" value="${item.item}" />

<c:set var="bookId" value="${book.bookId}" />

<sql:query var="books"
sql="select * from PUBLIC.books where id = ?" >

<sql:param value="${bookId}" />

</sql:query>

<c:forEach var="bookRow" begin="0"
items="${books.rows}">

<sql:update var="books" sql="update PUBLIC.books set

inventory = inventory - ? where id = ?" >

<sql:param value="${item.quantity}" />

<sql:param value="${bookId}" />

SQL Tag Library

Chapter 7 • JavaServer Pages Standard Tag Library 219

</sql:update>

</c:forEach>

</c:forEach>

<h3><fmt:message key="ThankYou"/>
${param.cardname}.</h3>

</c:if>

</sql:transaction>

query Tag Result Interface
The Result interface is used to retrieve information from objects returned from a query tag.

public interface Result

public String[] getColumnNames();

public int getRowCount()

public Map[] getRows();

public Object[][] getRowsByIndex();

public boolean isLimitedByMaxRows();

For complete information about this interface, see the API documentation for the JSTL
packages.

The var attribute set by a query tag is of type Result. The getRows method returns an array of
maps that can be supplied to the items attribute of a forEach tag. The JSTL expression language
converts the syntax ${result.rows} to a call to result.getRows. The expression ${books.rows}

in the following example returns an array of maps.

When you provide an array of maps to the forEach tag, the var attribute set by the tag is of type
Map. To retrieve information from a row, use the get("colname") method to get a column value.
The JSP expression language converts the syntax ${map.colname} to a call to
map.get("colname"). For example, the expression ${book.title} returns the value of the title
entry of a book map.

The Duke’s Bookstore page
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookdetails.jsp
retrieves the column values from the book map as follows.

<c:forEach var="book" begin="0" items="${books.rows}">
<h2>${book.title}</h2>

 <fmt:message key="By"/> ${book.firstname}

${book.surname}

(${book.year})

<h4><fmt:message key="Critics"/></h4>
<blockquote>${book.description}</blockquote>

<h4><fmt:message key="ItemPrice"/>:
<fmt:formatNumber value="${book.price}" type="currency"/>

SQL Tag Library

The Java EE 5 Tutorial • October 2008220

http://java.sun.com/products/jsp/jstl/1.1/docs/api/index.html

</h4>

</c:forEach>

The following excerpt from
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog.jsp uses
the Row interface to retrieve values from the columns of a book row using scripting language
expressions. First, the book row that matches a request parameter (bid) is retrieved from the
database. Because the bid and bookRow objects are later used by tags that use scripting language
expressions to set attribute values and by a scriptlet that adds a book to the shopping cart, both
objects are declared as scripting variables using the jsp:useBean tag. The page creates a bean
that describes the book, and scripting language expressions are used to set the book properties
from book row column values. Then the book is added to the shopping cart.

You might want to compare this version of bookcatalog.jsp to the versions in Chapter 5,
“JavaServer Pages Technology,” and Chapter 8, “Custom Tags in JSP Pages,” that use a book
database JavaBeans component.

<sql:query var="books"
dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?

<sql:param value="${bid}" />

</sql:query>

<c:forEach var="bookRow" begin="0"
items="${books.rowsByIndex}">

<jsp:useBean id="bid" type="java.lang.String" />

<jsp:useBean id="bookRow" type="java.lang.Object[]" />

<jsp:useBean id="addedBook" class="database.Book"
scope="page" >

<jsp:setProperty name="addedBook" property="bookId"
value="${bookRow[0]}" />

<jsp:setProperty name="addedBook" property="surname"
value="${bookRow[1]}" />

<jsp:setProperty name="addedBook" property="firstName"
value="${bookRow[2]}" />

<jsp:setProperty name="addedBook" property="title"
value="${bookRow[3]}" />

<jsp:setProperty name="addedBook" property="price"
value="${bookRow[4])}" />

<jsp:setProperty name="addedBook" property="year"
value="${bookRow[6]}" />

<jsp:setProperty name="addedBook"
property="description"
value="${bookRow[7]}" />

<jsp:setProperty name="addedBook" property="inventory"
value="${bookRow[8]}" />

</jsp:useBean>

<% cart.add(bid, addedBook); %>

SQL Tag Library

Chapter 7 • JavaServer Pages Standard Tag Library 221

...

</c:forEach>

JSTL Functions
Table 7–8 lists the JSTL functions.

TABLE 7–8 Functions

Area Function Tags Prefix

Functions Collection length length fn

String manipulation toUpperCase, toLowerCase

substring, substringAfter, substringBefore

trim

replace

indexOf, startsWith, endsWith, contains,
containsIgnoreCase

split, join

escapeXml

Although the java.util.Collection interface defines a size method, it does not conform to
the JavaBeans component design pattern for properties and so cannot be accessed by using the
JSP expression language. The length function can be applied to any collection supported by the
c:forEach and returns the length of the collection. When applied to a String, it returns the
number of characters in the string.

For example, the index.jsp page of the hello1 application introduced in Chapter 3, “Getting
Started with Web Applications,” uses the fn:length function and the c:if tag to determine
whether to include a response page:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions"
prefix="fn" %>

<html>

<head><title>Hello</title></head>

...

<input type="text" name="username" size="25">
<p></p>

<input type="submit" value="Submit">
<input type="reset" value="Reset">

JSTL Functions

The Java EE 5 Tutorial • October 2008222

</form>

<c:if test="${fn:length(param.username) > 0}" >

<%@include file="response.jsp" %>

</c:if>

</body>

</html>

The rest of the JSTL functions are concerned with string manipulation:

■ toUpperCase, toLowerCase: Changes the capitalization of a string
■ substring, substringBefore, substringAfter: Gets a subset of a string
■ trim: Trims white space from a string
■ replace: Replaces characters in a string
■ indexOf, startsWith, endsWith, contains, containsIgnoreCase: Checks whether a string

contains another string
■ split: Splits a string into an array
■ join: Joins a collection into a string
■ escapeXml: Escapes XML characters in a string

Further Information about JSTL
For more information on JSTL, see:

■ The tag reference documentation:
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html

■ The API reference documentation:
http://java.sun.com/products/jsp/jstl/1.1/docs/api/index.html

■ The JSTL 1.1 specification:
http://java.sun.com/products/jsp/jstl/downloads/index.html#specs

■ The JSTL web site:
http://java.sun.com/products/jsp/jstl

Further Information about JSTL

Chapter 7 • JavaServer Pages Standard Tag Library 223

http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html
http://java.sun.com/products/jsp/jstl/1.1/docs/api/index.html
http://java.sun.com/products/jsp/jstl/downloads/index.html#specs
http://java.sun.com/products/jsp/jstl

224

Custom Tags in JSP Pages

The standard JSP tags simplify JSP page development and maintenance. JSP technology also
provides a mechanism for encapsulating other types of dynamic functionality in custom tags,
which are extensions to the JSP language. Some examples of tasks that can be performed by
custom tags include operating on implicit objects, processing forms, accessing databases and
other enterprise services such as email and directories, and implementing flow control. Custom
tags increase productivity because they can be reused in more than one application.

Custom tags are distributed in a tag library, which defines a set of related custom tags and
contains the objects that implement the tags. The object that implements a custom tag is called a
tag handler. JSP technology defines two types of tag handlers: simple and classic. Simple tag
handlers can be used only for tags that do not use scripting elements in attribute values or the
tag body. Classic tag handlers must be used if scripting elements are required. Simple tag
handlers are covered in this chapter, and classic tag handlers are discussed in Chapter 9,
“Scripting in JSP Pages.”

You can write simple tag handlers using the JSP language or using the Java language. A tag file is
a source file containing a reusable fragment of JSP code that is translated into a simple tag
handler by the web container. Tag files can be used to develop custom tags that are
presentation-centric or that can take advantage of existing tag libraries, or by page authors who
do not know Java. When the flexibility of the Java programming language is needed to define
the tag, JSP technology provides a simple API for developing a tag handler in the Java
programming language.

This chapter assumes that you are familiar with the material in Chapter 5, “JavaServer Pages
Technology,” especially the section “Using Custom Tags” on page 172. For more information
about tag libraries and for pointers to some freely available libraries, see
http://java.sun.com/products/jsp/taglibraries/index.jsp.

8C H A P T E R 8

225

http://java.sun.com/products/jsp/taglibraries/index.jsp

What Is a Custom Tag?
A custom tag is a user-defined JSP language element. When a JSP page containing a custom tag
is translated into a servlet, the tag is converted to operations on a tag handler. The web
container then invokes those operations when the JSP page’s servlet is executed.

Custom tags have a rich set of features. They can

■ Be customized by means of attributes passed from the calling page.
■ Pass variables back to the calling page.
■ Access all the objects available to JSP pages.
■ Communicate with each other. You can create and initialize a JavaBeans component, create

a public EL variable that refers to that bean in one tag, and then use the bean in another tag.
■ Be nested within one another and communicate by means of private variables.

The Example JSP Pages
This chapter describes the tasks involved in defining simple tags. It illustrates the tasks using
excerpts from the JSP version of the Duke’s Bookstore application discussed in “The Example
JSP Pages” on page 136, rewritten here to take advantage of several custom tags:

■ A catalog tag for rendering the book catalog
■ A shipDate tag for rendering the ship date of an order
■ A template library for ensuring a common look and feel among all screens and composing

screens out of content chunks

The tutorial-template tag library defines a set of tags for creating an application template.
The template is a JSP page that has placeholders for the parts that need to change with each
screen. Each of these placeholders is referred to as a parameter of the template. For example, a
simple template might include a title parameter for the top of the generated screen and a body
parameter to refer to a JSP page for the custom content of the screen. The template is created
using a set of nested tags (definition, screen, and parameter) that are used to build a table of
screen definitions for Duke’s Bookstore. An insert tag to insert parameters from the table into
the screen.

What Is a Custom Tag?

The Java EE 5 Tutorial • October 2008226

Figure 8–1 shows the flow of a request through the following Duke’s Bookstore web
components:

■ tut-install/javaeetutorial5/examples/web/bookstore3/web/template/template.jsp,
which determines the structure of each screen. It uses the insert tag to compose a screen
from subcomponents.

■ tut-install/javaeetutorial5/examples/web/bookstore3/web/template/screendefinitions.jspf,
which defines the subcomponents used by each screen. All screens have the same banner but
different title and body content (specified by the JSP Pages column in Figure 5–1).

■ tut-install/javaeetutorial5/examples/web/bookstore3/src/java/com/sun/bookstore3/dispatcher/Dispatche
a servlet, which processes requests and forwards to template.jsp.

The source code for the Duke’s Bookstore application is located in the
tut-install/javaeetutorial5/examples/web/bookstore3/ directory created when you unzip
the tutorial bundle (see Chapter 2, “Using the Tutorial Examples”).

To deploy and run the application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

2. In NetBeans IDE, select File→Open Project.
3. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

Web
Client

BookDB

Dispatcher
Servlet

HttpServlet
Request

Template
JSP Page

HttpServlet
Response

Web Container

BookDB
Catalog

JSP Page

HTTP
Request

HTTP
Response

1.

2.

3.

4.5.

FIGURE 8–1 Request Flow through Duke’s Bookstore Components

The Example JSP Pages

Chapter 8 • Custom Tags in JSP Pages 227

4. Select the bookstore3 folder.
5. Select the Open as Main Project check box and the Open Required Projects check box.
6. Click Open Project.
7. In the Projects tab, right-click the bookstore3 project, and select Undeploy and Deploy.
8. To run the application, open the bookstore URL

http://localhost:8080/bookstore3/bookstore.

To deploy and run the application using Ant, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/bookstore3/.
2. Type ant. This command will spawn any necessary compilations, copy files to the

tut-install/javaeetutorial5/examples/web/bookstore3/build/ directory, and create a
WAR file and copy it to the
tut-install/javaeetutorial5/examples/web/bookstore3/dist/ directory.

3. Start the Application Server.
4. Perform all the operations described in “Creating a Data Source in the Application Server”

on page 98.
5. To deploy the example, type ant deploy. The deploy target outputs a URL for running the

application. Ignore this URL, and instead use the one shown in the next step.
6. To run the application, open the bookstore URL

http://localhost:8080/bookstore3/bookstore.

To learn how to configure the example, refer to the web.xml file, which includes the following
configurations:

■ A display-name element that specifies the name that tools use to identify the application.
■ A context-param element that specifies the JSTL resource bundle base name.
■ A listener element that identifies the ContextListener class used to create and remove

the database access.
■ A servlet element that identifies the Dispatcher instance.
■ A set of servlet-mapping elements that map Dispatcher to URL patterns for each of the

JSP pages in the application.
■ Nested inside a jsp-config element is a jsp-property-group element, which sets the

properties for the group of pages included in this version of Duke’s Bookstore. See “Setting
Properties for Groups of JSP Pages” on page 179 for more information.

To run the example, open the bookstore URL
http://localhost:8080/bookstore3/bookstore.

See “Troubleshooting Duke's Bookstore Database Problems” on page 102 for help with
diagnosing common problems.

The Example JSP Pages

The Java EE 5 Tutorial • October 2008228

Types of Tags
Simple tags are invoked using XML syntax. They have a start tag and an end tag, and possibly a
body:

<tt:tag>

body</tt:tag>

A custom tag with no body is expressed as follows:

<tt:tag /> or <tt:tag></tt:tag>

Tags with Attributes
A simple tag can have attributes. Attributes customize the behavior of a custom tag just as
parameters customize the behavior of a method. There are three types of attributes:

■ Simple attributes
■ Fragment attributes
■ Dynamic attributes

Simple Attributes
Simple attributes are evaluated by the container before being passed to the tag handler. Simple
attributes are listed in the start tag and have the syntax attr="value". You can set a simple
attribute value from a String constant, or an expression language (EL) expression, or by using a
jsp:attribute element (see “jsp:attribute Element” on page 231). The conversion process
between the constants and expressions and attribute types follows the rules described for
JavaBeans component properties in “Setting JavaBeans Component Properties” on page 169.

The Duke’s Bookstore page
tut-install/javaeetutorial5/examples/web/bookstore3/web/bookcatalog.jsp calls the
catalog tag, which has two attributes. The first attribute, a reference to a book database object,
is set by an EL expression. The second attribute, which sets the color of the rows in a table that
represents the bookstore catalog, is set with a String constant.

<sc:catalog bookDB ="${bookDB}" color="#cccccc">

Fragment Attributes
A JSP fragment is a portion of JSP code passed to a tag handler that can be invoked as many
times as needed. You can think of a fragment as a template that is used by a tag handler to
produce customized content. Thus, unlike a simple attribute which is evaluated by the
container, a fragment attribute is evaluated by a tag handler during tag invocation.

Types of Tags

Chapter 8 • Custom Tags in JSP Pages 229

To declare a fragment attribute, you use the fragment attribute of the attribute directive (see
“Declaring Tag Attributes in Tag Files” on page 237) or use the fragment subelement of the
attribute TLD element (see “Declaring Tag Attributes for Tag Handlers” on page 252). You
define the value of a fragment attribute by using a jsp:attribute element. When used to
specify a fragment attribute, the body of the jsp:attribute element can contain only static text
and standard and custom tags; it cannot contain scripting elements (see Chapter 9, “Scripting in
JSP Pages”).

JSP fragments can be parameterized by means of expression language (EL) variables in the JSP
code that composes the fragment. The EL variables are set by the tag handler, thus allowing the
handler to customize the fragment each time it is invoked (see “Declaring Tag Variables in Tag
Files” on page 238, and “Declaring Tag Variables for Tag Handlers” on page 254).

The catalog tag discussed earlier accepts two fragments: normalPrice, which is displayed for a
product that’s full price, and onSale, which is displayed for a product that’s on sale.

<sc:catalog bookDB ="${bookDB}" color="#cccccc">
<jsp:attribute name="normalPrice">

<fmt:formatNumber value="${price}" type="currency"/>
</jsp:attribute>

<jsp:attribute name="onSale">
<strike><fmt:formatNumber value="${price}"

type="currency"/></strike>

<fmt:formatNumber value="${salePrice}"

type="currency"/>
</jsp:attribute>

</sc:catalog>

The tag executes the normalPrice fragment, using the values for the price EL variable, if the
product is full price. If the product is on sale, the tag executes the onSale fragment using the
price and salePrice variables.

Dynamic Attributes
A dynamic attribute is an attribute that is not specified in the definition of the tag. Dynamic
attributes are used primarily by tags whose attributes are treated in a uniform manner but
whose names are not necessarily known at development time.

For example, this tag accepts an arbitrary number of attributes whose values are colors and
outputs a bulleted list of the attributes colored according to the values:

<colored:colored color1="red" color2="yellow" color3="blue"/>

You can also set the value of dynamic attributes using an EL expression or using the
jsp:attribute element.

Types of Tags

The Java EE 5 Tutorial • October 2008230

Deferred Value
A deferred value attribute is one that accepts deferred value expressions, which are described in
“Value Expressions” on page 150.

Deferred Method
A deferred method attribute is one that accepts deferred method expressions, which are
described in “Method Expressions” on page 154.

Dynamic Attribute or Deferred Expression
This kind of attribute can accept a String literal, a scriptlet expression, or an EL expression,
including deferred expressions.

jsp:attribute Element
The jsp:attribute element allows you to define the value of a tag attribute in the body of an
XML element instead of in the value of an XML attribute.

For example, the Duke’s Bookstore template page screendefinitions.jsp uses
jsp:attribute to use the output of fmt:message to set the value of the value attribute of
tt:parameter:

...

<tt:screen id="/bookcatalog">
<tt:parameter name="title" direct="true">

<jsp:attribute name="value" >

<fmt:message key="TitleBookCatalog"/>
</jsp:attribute>

</tt:parameter>

<tt:parameter name="banner" value="/template/banner.jsp"
direct="false"/>

<tt:parameter name="body" value="/bookcatalog.jsp"
direct="false"/>

</tt:screen>

...

jsp:attribute accepts a name attribute and a trim attribute. The name attribute identifies
which tag attribute is being specified. The optional trim attribute determines whether or not
white space appearing at the beginning and end of the element body should be discarded. By
default, the leading and trailing white space is discarded. The white space is trimmed when the
JSP page is translated. If a body contains a custom tag that produces leading or trailing white
space, that white space is preserved regardless of the value of the trim attribute.

An empty body is equivalent to specifying "" as the value of the attribute.

Types of Tags

Chapter 8 • Custom Tags in JSP Pages 231

The body of jsp:attribute is restricted according to the type of attribute being specified:

■ For simple attributes that accept an EL expression, the body can be any JSP content.
■ For simple attributes that do not accept an EL expression, the body can contain only static

text.
■ For fragment attributes, the body must not contain any scripting elements (see Chapter 9,

“Scripting in JSP Pages”).

Tags with Bodies
A simple tag can contain custom and core tags, HTML text, and tag-dependent body content
between the start tag and the end tag.

In the following example, the Duke’s Bookstore application page
tut-install/javaeetutorial5/examples/web/bookstore3/web/bookshowcart.jsp uses the
JSTL c:if tag to print the body if the request contains a parameter named Clear:

<c:if test="${param.Clear}">

You just cleared your shopping cart!

</c:if>

jsp:body Element
You can also explicitly specify the body of a simple tag by using the jsp:body element. If one or
more attributes are specified with the jsp:attribute element, then jsp:body is the only way to
specify the body of the tag. If one or more jsp:attribute elements appear in the body of a tag
invocation but you don’t include a jsp:body element, the tag has an empty body.

Tags That Define Variables
A simple tag can define an EL variable that can be used within the calling page. In the following
example, the iterator tag sets the value of the EL variable departmentName as it iterates
through a collection of department names.

<tlt:iterator var="departmentName" type="java.lang.String"
group="${myorg.departmentNames}">

<tr>

<td>
${departmentName}</td>

</tr>

</tlt:iterator>

Types of Tags

The Java EE 5 Tutorial • October 2008232

Communication between Tags
Custom tags communicate with each other through shared objects. There are two types of
shared objects: public and private.

In the following example, the c:set tag creates a public EL variable called aVariable, which is
then reused by anotherTag.

<c:set var="aVariable" value="aValue" />

<tt:anotherTag attr1="${aVariable}" />

Nested tags can share private objects. In the next example, an object created by outerTag is
available to innerTag. The inner tag retrieves its parent tag and then retrieves an object from
the parent. Because the object is not named, the potential for naming conflicts is reduced.

<tt:outerTag>

<tt:innerTag />

</tt:outerTag>

The Duke’s Bookstore page
tut-install/javaeetutorial5/examples/web/bookstore3/web/template/template.jsp uses
a set of cooperating tags that share public and private objects to define the screens of the
application. These tags are described in “A Template Tag Library” on page 267.

Encapsulating Reusable Content Using Tag Files
A tag file is a source file that contains a fragment of JSP code that is reusable as a custom tag. Tag
files allow you to create custom tags using JSP syntax. Just as a JSP page gets translated into a
servlet class and then compiled, a tag file gets translated into a tag handler and then compiled.

The recommended file extension for a tag file is .tag. As is the case with JSP files, the tag can be
composed of a top file that includes other files that contain either a complete tag or a fragment
of a tag file. Just as the recommended extension for a fragment of a JSP file is .jspf, the
recommended extension for a fragment of a tag file is .tagf.

The following version of the Hello, World application introduced in Chapter 3, “Getting Started
with Web Applications,” uses a tag to generate the response. The response tag, which accepts
two attributes (a greeting string and a name) is encapsulated in response.tag:

<%@ attribute name="greeting" required="true" %>

<%@ attribute name="name" required="true" %>

<h2>${greeting}, ${name}!</h2>

The highlighted line in the greeting.jsp page invokes the response tag if the length of the
username request parameter is greater than 0:

Encapsulating Reusable Content Using Tag Files

Chapter 8 • Custom Tags in JSP Pages 233

<%@ taglib tagdir="/WEB-INF/tags" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions"
prefix="fn" %>

<html>

<head><title>Hello</title></head>

<body bgcolor="white">

<c:set var="greeting" value="Hello" />

<h2>${greeting}, my name is Duke. What’s yours?</h2>

<form method="get">
<input type="text" name="username" size="25">
<p></p>

<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>

<c:if test="${fn:length(param.username) > 0}" >

<h:response greeting="${greeting}"

name="${param.username}"/></c:if>

</body>

</html>

To deploy and run the hello3 application with NetBeans IDE, follow these steps:

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

3. Select the hello3 folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the hello3 project, and select Undeploy and Deploy.
7. To run the application, open the bookstore URL http://localhost:8080/hello3.

To deploy and run the hello3 application with Ant, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/hello3/.
2. Type ant. This target will spawn any necessary compilations, copy files to the

tut-install/javaeetutorial5/examples/web/hello3/build/ directory, and create a WAR
file.

3. Start the Application Server.
4. To deploy the example, type ant deploy.
5. To run the example, open your browser to http://localhost:8080/hello3.

Encapsulating Reusable Content Using Tag Files

The Java EE 5 Tutorial • October 2008234

To learn how to configure the example, refer to the deployment descriptor (the web.xml file),
which includes the following configurations:

■ A display-name element that specifies the name that tools use to identify the application.
■ A welcome-file-list element that sets a particular page to be a welcome file.

Tag File Location
Tag files can be placed in one of two locations: in the /WEB-INF/tags/ directory or subdirectory
of a web application or in a JAR file (see “Packaged Tag Files” on page 250) in the
/WEB-INF/lib/ directory of a web application. Packaged tag files require a tag library descriptor
(see “Tag Library Descriptors” on page 247), an XML document that contains information
about a library as a whole and about each tag contained in the library. Tag files that appear in
any other location are not considered tag extensions and are ignored by the web container.

Tag File Directives
Directives are used to control aspects of tag file translation to a tag handler, and to specify
aspects of the tag, attributes of the tag, and variables exposed by the tag. Table 8–1 lists the
directives that you can use in tag files.

TABLE 8–1 Tag File Directives

Directive Description

taglib Identical to taglib directive (see “Declaring Tag Libraries” on page 172) for JSP pages.

include Identical to include directive (see “Reusing Content in JSP Pages” on page 175) for JSP pages.
Note that if the included file contains syntax unsuitable for tag files, a translation error will
occur.

tag Similar to the page directive in a JSP page, but applies to tag files instead of JSP pages. As with
the page directive, a translation unit can contain more than one instance of the tag directive. All
the attributes apply to the complete translation unit. However, there can be only one occurrence
of any attribute or value defined by this directive in a given translation unit. With the exception
of the import attribute, multiple attribute or value (re)definitions result in a translation error.

Also used for declaring custom tag properties such as display name. See “Declaring Tags” on
page 236.

attribute Declares an attribute of the custom tag defined in the tag file. See “Declaring Tag Attributes in
Tag Files” on page 237.

variable Declares an EL variable exposed by the tag to the calling page. See “Declaring Tag Variables in
Tag Files” on page 238.

Encapsulating Reusable Content Using Tag Files

Chapter 8 • Custom Tags in JSP Pages 235

Declaring Tags
The tag directive is similar to the JSP page’s page directive but applies to tag files. Some of the
elements in the tag directive appear in the tag element of a TLD (see “Declaring Tag Handlers”
on page 251). Table 8–2 lists the tag directive attributes.

TABLE 8–2 tagDirective Attributes

Attribute Description

display-name (optional) A short name that is intended to be displayed by tools. Defaults to the
name of the tag file without the extension .tag.

body-content (optional) Provides information on the content of the body of the tag. Can be either
empty, tagdependent, or scriptless. A translation error will result if JSP or any
other value is used. Defaults to scriptless. See “body-content Attribute” on
page 237.

dynamic-attributes (optional) Indicates whether this tag supports additional attributes with dynamic
names. The value identifies a scoped attribute in which to place a Map containing the
names and values of the dynamic attributes passed during invocation of the tag.

A translation error results if the value of the dynamic-attributes of a tag directive
is equal to the value of a name-given of a variable directive or the value of a name
attribute of an attribute directive.

small-icon (optional) Relative path, from the tag source file, of an image file containing a small
icon that can be used by tools. Defaults to no small icon.

large-icon (optional) Relative path, from the tag source file, of an image file containing a large
icon that can be used by tools. Defaults to no large icon.

description (optional) Defines an arbitrary string that describes this tag. Defaults to no
description.

example (optional) Defines an arbitrary string that presents an informal description of an
example of a use of this action. Defaults to no example.

language (optional) Carries the same syntax and semantics of the language attribute of the
page directive.

import (optional) Carries the same syntax and semantics of the import attribute of the page
directive.

pageEncoding (optional) Carries the same syntax and semantics of the page-Encoding attribute in
the page directive.

isELIgnored (optional) Carries the same syntax and semantics of the isEL-Ignored attribute of
the page directive.

Encapsulating Reusable Content Using Tag Files

The Java EE 5 Tutorial • October 2008236

body-content Attribute
You specify the type of a tag’s body content using the body-content attribute:

bodycontent="empty | scriptless | tagdependent"

You must declare the body content of tags that do not accept a body as empty. For tags that have
a body there are two options. Body content containing custom and standard tags and HTML
text is specified as scriptless. All other types of body content (for example, SQL statements
passed to the query tag) is specified as tagdependent. If no attribute is specified, the default is
scriptless.

Declaring Tag Attributes in Tag Files
To declare the attributes of a custom tag defined in a tag file, you use the attribute directive. A
TLD has an analogous attribute element (see “Declaring Tag Attributes for Tag Handlers” on
page 252). Table 8–3 lists the attribute directive attributes.

TABLE 8–3 attributeDirective Attributes

Attribute Description

description (optional) Description of the attribute. Defaults to no description.

name The unique name of the attribute being declared. A translation error results if
more than one attribute directive appears in the same translation unit with the
same name.

A translation error results if the value of a name attribute of an attribute

directive is equal to the value of the dynamic-attributes attribute of a tag
directive or the value of a name-given attribute of a variable directive.

required (optional) Whether this attribute is required (true) or optional (false).
Defaults to false.

rtexprvalue (optional) Whether the attribute’s value can be dynamically calculated at
runtime by an expression. Defaults to true. When this element is set to true and
the attribute definition also includes either a deferred-value or
deferred-method element then the attribute accepts both dynamic and deferred
expressions.

type (optional) The runtime type of the attribute’s value. Defaults to
java.lang.String.

deferredValue (optional) Indicates whether the attribute accepts deferred value expressions.
Only one of deferredValue or deferredMethod can be true. If
deferredValueType is specified, the default for deferredValue is true. Causes
a translation error if specified in a tag file with a JSP version less than 2.1.

Encapsulating Reusable Content Using Tag Files

Chapter 8 • Custom Tags in JSP Pages 237

TABLE 8–3 attributeDirective Attributes (Continued)
Attribute Description

deferredValueType (optional) The type resulting from the evaluation of the attribute’s value
expression. The default is java.lang.String if no type is specified. If both
deferredValueType and deferredValue are specified, deferredValue must be
true. If deferredValue is true, the default of deferredValueType is
java.lang.Object. Causes a translation error specified in a tag file with a JSP
version less than 2.1.

deferredMethod (optional) Indicates whether the tag attribute accepts deferred method
expressions. If deferredMethod and deferredMethodSignature are specified
then deferredMethod must be true. The default of deferredMethod is true if
deferredMethodSignature is specified, otherwise the default of
deferredMethod is false. The presence of a deferred-method element in an
attribute definition precludes the inclusion of a deferred-value element.
Causes a translation error if specified in a tag file with a JSP version less than 2.1.

deferredMethodSignature (optional) The signature of the method to be invoked by the expression defined
by the accompanying deferredMethod attribute. If deferredMethod is true and
this attribute is not specified, the method signature defaults to void

methodName(). Causes a translation error if specified in a tag file with a JSP
version less than 2.1.

fragment (optional) Whether this attribute is a fragment to be evaluated by the tag handler
(true) or a normal attribute to be evaluated by the container before being passed
to the tag handler.

If this attribute is true:

You do not specify the rtexprvalue attribute. The container fixes the
rtexprvalue attribute at true.

You do not specify the type attribute. The container fixes the type attribute at
javax.servlet.jsp.tagext.JspFragment.

Defaults to false.

Declaring Tag Variables in Tag Files
Tag attributes are used to customize tag behavior much as parameters are used to customize the
behavior of object methods. In fact, using tag attributes and EL variables, it is possible to
emulate various types of parameters: IN, OUT, and nested.

To emulate IN parameters, use tag attributes. A tag attribute is communicated between the
calling page and the tag file when the tag is invoked. No further communication occurs between
the calling page and the tag file.

To emulate OUT or nested parameters, use EL variables. The variable is not initialized by the
calling page but instead is set by the tag file. Each type of parameter is synchronized with the
calling page at various points according to the scope of the variable. See “Variable
Synchronization” on page 239 for details.

Encapsulating Reusable Content Using Tag Files

The Java EE 5 Tutorial • October 2008238

To declare an EL variable exposed by a tag file, you use the variable directive. A TLD has an
analogous variable element (see “Declaring Tag Variables for Tag Handlers” on page 254).
Table 8–4 lists the variable directive attributes.

TABLE 8–4 variableDirective Attributes

Attribute Description

description (optional) An optional description of this variable. Defaults to no description.

name-given |

name-from-attribute

Defines an EL variable to be used in the page invoking this tag. Either name-given
or name-from-attribute must be specified. If name-given is specified, the value is
the name of the variable. If name-from-attribute is specified, the value is the
name of an attribute whose (translation-time) value at the start of the tag
invocation will give the name of the variable.

Translation errors arise in the following circumstances:

1. Specifying neither name-given nor name-from-attribute or both.

2. If two variable directives have the same name-given.

3. If the value of a name-given attribute of a variable directive is equal to the
value of a name attribute of an attribute directive or the value of a
dynamic-attributes attribute of a tag directive.

alias Defines a variable, local to the tag file, to hold the value of the EL variable. The
container will synchronize this value with the variable whose name is given in
name-from-attribute.

Required when name-from-attribute is specified. A translation error results if
used without name-from-attribute.

A translation error results if the value of alias is the same as the value of a name
attribute of an attribute directive or the name-given attribute of a variable
directive.

variable-class (optional) The name of the class of the variable. The default is java.lang.String.

declare (optional) Whether or not the variable is declared. True is the default.

scope (optional) The scope of the variable. Can be either AT_BEGIN, AT_END, or NESTED.
Defaults to NESTED.

Variable Synchronization

The web container handles the synchronization of variables between a tag file and a calling
page. Table 8–5 summarizes when and how each object is synchronized according to the
object’s scope.

Encapsulating Reusable Content Using Tag Files

Chapter 8 • Custom Tags in JSP Pages 239

TABLE 8–5 Variable Synchronization Behavior

Tag File Location AT_BEGIN NESTED AT_END

Beginning Not sync. Save Not sync.

Before any fragment invocation using
jsp:invoke or jsp:doBody (see “Evaluating
Fragments Passed to Tag Files” on page 242)

Tag→page Tag→page Not sync.

End Tag→page Restore Tag→page

If name-given is used to specify the variable name, then the name of the variable in the calling
page and the name of the variable in the tag file are the same and are equal to the value of
name-given.

The name-from-attribute and alias attributes of the variable directive can be used to
customize the name of the variable in the calling page while another name is used in the tag file.
When using these attributes, you set the name of the variable in the calling page from the value
of name-from-attribute at the time the tag was called. The name of the corresponding variable
in the tag file is the value of alias.

Synchronization Examples

The following examples illustrate how variable synchronization works between a tag file and its
calling page. All the example JSP pages and tag files reference the JSTL core tag library with the
prefix c. The JSP pages reference a tag file located in /WEB-INF/tags with the prefix my.

AT_BEGIN Scope In this example, the AT_BEGIN scope is used to pass
the value of the variable named x to the tag’s body
and at the end of the tag invocation.

<%-- callingpage.jsp --%>

<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>

<my:example>

${x} <%-- (x == 2) --%>

</my:example>

${x} <%-- (x == 4) --%>

<%-- example.tag --%>

<%@ variable name-given="x" scope="AT_BEGIN" %>

${x} <%-- (x == null) --%>

<c:set var="x" value="2"/>
<jsp:doBody/>

${x} <%-- (x == 2) --%>

<c:set var="x" value="4"/>

Encapsulating Reusable Content Using Tag Files

The Java EE 5 Tutorial • October 2008240

NESTED Scope In this example, the NESTED scope is used to make a
variable named x available only to the tag’s body. The
tag sets the variable to 2, and this value is passed to
the calling page before the body is invoked. Because
the scope is NESTED and because the calling page also
had a variable named x, its original value, 1, is
restored when the tag completes.

<%-- callingpage.jsp --%>

<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>

<my:example>

${x} <%-- (x == 2) --%>

</my:example>

${x} <%-- (x == 1) --%>

<%-- example.tag --%>

<%@ variable name-given="x" scope="NESTED" %>

${x} <%-- (x == null) --%>

<c:set var="x" value="2"/>
<jsp:doBody/>

${x} <%-- (x == 2) --%>

<c:set var="x" value="4"/>

AT_END Scope In this example, the AT_END scope is used to return a
value to the page. The body of the tag is not affected.

<%-- callingpage.jsp --%>

<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>

<my:example>

${x} <%-- (x == 1) --%>

</my:example>

${x} <%-- (x == 4) --%>

<%-- example.tag --%>

<%@ variable name-given="x" scope="AT_END" %>

${x} <%-- (x == null) --%>

<c:set var="x" value="2"/>
<jsp:doBody/>

${x} <%-- (x == 2) --%>

<c:set var="x" value="4"/>

AT_BEGIN and name-from-attribute In this example the AT_BEGIN scope is used to pass an
EL variable to the tag’s body and make to it available
to the calling page at the end of the tag invocation.
The name of the variable is specified by the value of
the attribute var. The variable is referenced by a local
name, result, in the tag file.

Encapsulating Reusable Content Using Tag Files

Chapter 8 • Custom Tags in JSP Pages 241

<%-- callingpage.jsp --%>

<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>

<my:example var="x">
${x} <%-- (x == 2) --%>

${result} <%-- (result == null) --%>

<c:set var="result" value="invisible"/>
</my:example>

${x} <%-- (x == 4) --%>

${result} <%-- (result == ”invisible’) --%>

<%-- example.tag --%>

<%@ attribute name="var" required="true" rtexprvalue="false"%>
<%@ variable alias="result" name-from-attribute="var"

scope="AT_BEGIN" %>

${x} <%-- (x == null) --%>

${result} <%-- (result == null) --%>

<c:set var="x" value="ignored"/>
<c:set var="result" value="2"/>
<jsp:doBody/>

${x} <%-- (x == ”ignored’) --%>

${result} <%-- (result == 2) --%>

<c:set var="result" value="4"/>

Evaluating Fragments Passed to Tag Files
When a tag file is executed, the web container passes it two types of fragments: fragment
attributes and the tag body. Recall from the discussion of fragment attributes that fragments are
evaluated by the tag handler as opposed to the web container. Within a tag file, you use the
jsp:invoke element to evaluate a fragment attribute and use the jsp:doBody element to
evaluate a tag file body.

The result of evaluating either type of fragment is sent to the response or is stored in an EL
variable for later manipulation. To store the result of evaluating a fragment to an EL variable,
you specify the var or varReader attribute. If var is specified, the container stores the result in
an EL variable of type String with the name specified by var. If varReader is specified, the
container stores the result in an EL variable of type java.io.Reader, with the name specified by
varReader. The Reader object can then be passed to a custom tag for further processing. A
translation error occurs if both var and varReader are specified.

An optional scope attribute indicates the scope of the resulting variable. The possible values are
page (default), request, session, or application. A translation error occurs if you use this
attribute without specifying the var or varReader attribute.

Encapsulating Reusable Content Using Tag Files

The Java EE 5 Tutorial • October 2008242

Custom Tag Examples
This section introduces examples that demonstrate using custom tags.

Simple Attribute Example
The Duke’s Bookstore shipDate tag, defined in
tut-install/javaeetutorial5/examples/web/bookstore3/web/WEB-INF/tags/shipDate.tag,
is a custom tag that has a simple attribute. The tag generates the date of a book order according
to the type of shipping requested.

<%@ taglib prefix="sc" tagdir="/WEB-INF/tags" %>

<h3><fmt:message key="ThankYou"/> ${param.cardname}.</h3>

<fmt:message key="With"/>
<fmt:message key="${param.shipping}"/>,
<fmt:message key="ShipDateLC"/>

<sc:shipDate shipping="${param.shipping}" />

The tag determines the number of days until shipment from the shipping attribute passed to it
by the page tut-install/javaeetutorial5/examples/web/bookstore3/web/bookreceipt.jsp.
From the number of days, the tag computes the ship date. It then formats the ship date.

<%@ attribute name="shipping" required="true" %>

<jsp:useBean id="now" class="java.util.Date" />

<jsp:useBean id="shipDate" class="java.util.Date" />

<c:choose>

<c:when test="${shipping == ’QuickShip’}">
<c:set var="days" value="2" />

</c:when>

<c:when test="${shipping == ’NormalShip’}">
<c:set var="days" value="5" />

</c:when>

<c:when test="${shipping == ’SaverShip’}">
<c:set var="days" value="7" />

</c:when>

</c:choose>

<jsp:setProperty name="shipDate" property="time"
value="${now.time + 86400000 * days}" />

<fmt:formatDate value="${shipDate}" type="date"
dateStyle="full"/>.

Simple and Fragment Attribute and Variable Example
The Duke’s Bookstore catalog tag, defined in
tut-install/javaeetutorial5/examples/web/bookstore3/web/WEB-INF/tags/catalog.tag,

Encapsulating Reusable Content Using Tag Files

Chapter 8 • Custom Tags in JSP Pages 243

is a custom tag with simple and fragment attributes and variables. The tag renders the catalog of
a book database as an HTML table. The tag file declares that it sets variables named price and
salePrice using variable directives. The fragment normalPrice uses the variable price, and
the fragment onSale uses the variables price and salePrice. Before the tag invokes the
fragment attributes using the jsp:invoke element, the web container passes values for the
variables back to the calling page.

<%@ attribute name="bookDB" required="true"
type="database.BookDB" %>

<%@ attribute name="color" required="true" %>

<%@ attribute name="normalPrice" fragment="true" %>

<%@ attribute name="onSale" fragment="true" %>

<%@ variable name-given="price" %>

<%@ variable name-given="salePrice" %>

<center>

<table>

<c:forEach var="book" begin="0" items="${bookDB.books}">
<tr>

<c:set var="bookId" value="${book.bookId}" />

<td bgcolor="${color}">
<c:url var="url" value="/bookdetails" >

<c:param name="bookId" value="${bookId}" />

</c:url>

<
strong>${book.title} </td>

<td bgcolor="${color}" rowspan=2>

<c:set var="salePrice" value="${book.price * .85}" />

<c:set var="price" value="${book.price}" />

<c:choose>

<c:when test="${book.onSale}" >

<jsp:invoke fragment="onSale" />

</c:when>

<c:otherwise>

<jsp:invoke fragment="normalPrice"/>
</c:otherwise>

</c:choose>

 </td>

...

</table>

</center>

The page bookcatalog.jsp invokes the catalog tag that has the simple attributes bookDB,
which contains catalog data, and color, which customizes the coloring of the table rows. The

Encapsulating Reusable Content Using Tag Files

The Java EE 5 Tutorial • October 2008244

formatting of the book price is determined by two fragment attributes, normalPrice and
onSale, that are conditionally invoked by the tag according to data retrieved from the book
database.

<sc:catalog bookDB ="${bookDB}" color="#cccccc">
<jsp:attribute name="normalPrice">

<fmt:formatNumber value="${price}" type="currency"/>
</jsp:attribute>

<jsp:attribute name="onSale">
<strike>

<fmt:formatNumber value="${price}" type="currency"/>
</strike>

<fmt:formatNumber value="${salePrice}" type="currency"/>

</jsp:attribute>

</sc:catalog>

The screen produced by
tut-install/javaeetutorial5/examples/web/bookstore3/web/bookcatalog.jsp is shown in
Figure 8–2. You can compare it to the version in Figure 5–2.

Encapsulating Reusable Content Using Tag Files

Chapter 8 • Custom Tags in JSP Pages 245

Dynamic Attribute Example
The following code implements the tag discussed in “Dynamic Attributes” on page 230. An
arbitrary number of attributes whose values are colors are stored in a Map named by the
dynamic-attributes attribute of the tag directive. The JSTL forEach tag is used to iterate
through the Map and the attribute keys and colored attribute values are printed in a bulleted list.

FIGURE 8–2 Book Catalog

Encapsulating Reusable Content Using Tag Files

The Java EE 5 Tutorial • October 2008246

<%@ tag dynamic-attributes="colorMap"%>

<c:forEach var="color" begin="0" items="${colorMap}">
${color.key} =

${color.value}
</c:forEach>

Tag Library Descriptors
If you want to redistribute your tag files or implement your custom tags with tag handlers
written in Java, you must declare the tags in a tag library descriptor (TLD). A tag library
descriptor is an XML document that contains information about a library as a whole and about
each tag contained in the library. TLDs are used by a web container to validate the tags and by
JSP page development tools.

Tag library descriptor file names must have the extension .tld and must be packaged in the
/WEB-INF/ directory or subdirectory of the WAR file or in the /META-INF/ directory or
subdirectory of a tag library packaged in a JAR. If a tag is implemented as a tag file and is
packaged in /WEB-INF/tags/ or a subdirectory, a TLD will be generated automatically by the
web container, though you can provide one if you wish.

Most containers set the JSP version of this automatically generated TLD (called an implicit
TLD) to 2.0. Therefore, in order to take advantage of JSP 2.1 features, you must provide a TLD
that sets the JSP version to 2.1 if you don’t have a TLD already. This TLD must be named
implicit.tld and placed into the same directory as the tag files.

You set the JSP version using the version attribute of the root taglib element that of the TLD,
as shown here:

<taglib

xsi:schemaLocation=

"http://java.sun.com/xml/ns/javaee web-

jsptaglibrary_2_1.xsd"
xmlns="http://java.sun.com/xml/ns/javaee"|
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="2.1">

Table 8–6 lists the subelements of the taglib element.

TABLE 8–6 taglib Subelements

Element Description

description (optional) A string describing the use of the tag library.

Tag Library Descriptors

Chapter 8 • Custom Tags in JSP Pages 247

TABLE 8–6 taglib Subelements (Continued)
Element Description

display-name (optional) Name intended to be displayed by tools.

icon (optional) Icon that can be used by tools.

tlib-version The tag library’s version.

short-name (optional) Name that could be used by a JSP page-authoring tool to create names with a
mnemonic value.

uri A URI that uniquely identifies the tag library.

validator See “validator Element” on page 248.

listener See “listener Element” on page 249.

tag-file | tag Declares the tag files or tags defined in the tag library. See “Declaring Tag Files” on page 249
and “Declaring Tag Handlers” on page 251. A tag library is considered invalid if a tag-file
element has a name subelement with the same content as a name subelement in a tag
element.

function Zero or more EL functions (see “Functions” on page 165) defined in the tag library.

tag-extension (optional) Extensions that provide extra information about the tag library for tools.

Top-Level Tag Library Descriptor Elements
This section describes some top-level TLD elements. Subsequent sections describe how to
declare tags defined in tag files, how to declare tags defined in tag handlers, and how to declare
tag attributes and variables.

validator Element
This element defines an optional tag library validator that can be used to validate the
conformance of any JSP page importing this tag library to its requirements. Table 8–7 lists the
subelements of the validator element.

TABLE 8–7 validator Subelements

Element Description

validator-class The class implementing javax.servlet.jsp.tagext.TagLibraryValidator

init-param (optional) Initialization parameters

Tag Library Descriptors

The Java EE 5 Tutorial • October 2008248

listener Element
A tag library can specify some classes that are event listeners (see “Handling Servlet Life-Cycle
Events” on page 103). The listeners are listed in the TLD as listener elements, and the web
container will instantiate the listener classes and register them in a way analogous to that of
listeners defined at the WAR level. Unlike WAR-level listeners, the order in which the tag
library listeners are registered is undefined. The only subelement of the listener element is the
listener-class element, which must contain the fully qualified name of the listener class.

Declaring Tag Files
Although not required for tag files, providing a TLD allows you to share the tag across more
than one tag library and lets you import the tag library using a URI instead of the tagdir
attribute.

tag-file TLD Element
A tag file is declared in the TLD using a tag-file element. Its subelements are listed in
Table 8–8.

TABLE 8–8 tag-file Subelements

Element Description

description (optional) A description of the tag.

display-name (optional) Name intended to be displayed by tools.

icon (optional) Icon that can be used by tools.

name The unique tag name.

path Where to find the tag file implementing this tag, relative to the root of the web application
or the root of the JAR file for a tag library packaged in a JAR. This must begin with
/WEB-INF/tags/ if the tag file resides in the WAR, or /META-INF/tags/ if the tag file
resides in a JAR.

example (optional) Informal description of an example use of the tag.

tag-extension (optional) Extensions that provide extra information about the tag for tools.

Unpackaged Tag Files
Tag files placed in a subdirectory of /WEB-INF/tags/ do not require a TLD file and don’t have to
be packaged. Thus, to create reusable JSP code, you simply create a new tag file and place the
code inside it.

Tag Library Descriptors

Chapter 8 • Custom Tags in JSP Pages 249

The web container generates an implicit tag library for each directory under and including
/WEB-INF/tags/. There are no special relationships between subdirectories; they are allowed
simply for organizational purposes. For example, the following web application contains three
tag libraries:

/WEB-INF/tags/

/WEB-INF/tags/a.tag

/WEB-INF/tags/b.tag

/WEB-INF/tags/foo/

/WEB-INF/tags/foo/c.tag

/WEB-INF/tags/bar/baz/

/WEB-INF/tags/bar/baz/d.tag

The implicit TLD for each library has the following values:
■ tlib-version for the tag library. Defaults to 1.0.
■ short-name is derived from the directory name. If the directory is /WEB-INF/tags/, the

short name is simply tags. Otherwise, the full directory path (relative to the web
application) is taken, minus the /WEB-INF/tags/ prefix. Then all / characters are replaced
with - (hyphen), which yields the short name. Note that short names are not guaranteed to
be unique.

■ A tag-file element is considered to exist for each tag file, with the following subelements:
■ The name for each is the filename of the tag file, without the .tag extension.
■ The path for each is the path of the tag file, relative to the root of the web application.

So, for the example, the implicit TLD for the /WEB-INF/tags/bar/baz/ directory would be as
follows:

<taglib>

<tlib-version>1.0</tlib-version>

<short-name>bar-baz</short-name>

<tag-file>

<name>d</name>

<path>/WEB-INF/tags/bar/baz/d.tag</path>

</tag-file>

</taglib>

Despite the existence of an implicit tag library, a TLD in the web application can still create
additional tags from the same tag files. To accomplish this, you add a tag-file element with a
path that points to the tag file.

Packaged Tag Files
Tag files can be packaged in the /META-INF/tags/ directory in a JAR file installed in the
/WEB-INF/lib/ directory of the web application. Tags placed here are typically part of a
reusable library of tags that can be used easily in any web application.

Tag Library Descriptors

The Java EE 5 Tutorial • October 2008250

Tag files bundled in a JAR require a tag library descriptor. Tag files that appear in a JAR but are
not defined in a TLD are ignored by the web container.

When used in a JAR file, the path subelement of the tag-file element specifies the full path of
the tag file from the root of the JAR. Therefore, it must always begin with /META-INF/tags/.

Tag files can also be compiled into Java classes and bundled as a tag library. This is useful when
you wish to distribute a binary version of the tag library without the original source. If you
choose this form of packaging, you must use a tool that produces portable JSP code that uses
only standard APIs.

Declaring Tag Handlers
When tags are implemented with tag handlers written in Java, each tag in the library must be
declared in the TLD with a tag element. The tag element contains the tag name, the class of its
tag handler, information on the tag’s attributes, and information on the variables created by the
tag (see “Tags That Define Variables” on page 232).

Each attribute declaration contains an indication of whether the attribute is required, whether
its value can be determined by request-time expressions, the type of the attribute, and whether
the attribute is a fragment. Variable information can be given directly in the TLD or through a
tag extra info class. Table 8–9 lists the subelements of the tag element.

TABLE 8–9 tagSubelements

Element Description

description (optional) A description of the tag.

display-name (optional) name intended to be displayed by tools.

icon (optional) Icon that can be used by tools.

name The unique tag name.

tag-class The fully qualified name of the tag handler class.

tei-class (optional) Subclass of javax.servlet.jsp.tagext.TagExtraInfo. See “Declaring
Tag Variables for Tag Handlers” on page 254.

body-content The body content type. See “body-content Element” on page 252.

variable (optional) Declares an EL variable exposed by the tag to the calling page. See
“Declaring Tag Variables for Tag Handlers” on page 254.

attribute Declares an attribute of the custom tag. See “Declaring Tag Attributes for Tag
Handlers” on page 252.

Tag Library Descriptors

Chapter 8 • Custom Tags in JSP Pages 251

TABLE 8–9 tag Subelements (Continued)
Element Description

dynamic-attributes Whether the tag supports additional attributes with dynamic names. Defaults to
false. If true, the tag handler class must implement the
javax.servlet.jsp.tagext.DynamicAttributes interface.

example (optional) Informal description of an example use of the tag.

tag-extension (optional) Extensions that provide extra information about the tag for tools.

body-content Element
You specify the type of body that is valid for a tag by using the body-content element. This
element is used by the web container to validate that a tag invocation has the correct body
syntax and is used by page-composition tools to assist the page author in providing a valid tag
body. There are three possible values:

■ tagdependent: The body of the tag is interpreted by the tag implementation itself, and is
most likely in a different language, for example, embedded SQL statements.

■ empty: The body must be empty.
■ scriptless: The body accepts only static text, EL expressions, and custom tags. No

scripting elements are allowed.

Declaring Tag Attributes for Tag Handlers
For each tag attribute, you must specify whether the attribute is required, whether the value can
be determined by an expression, the type of the attribute in an attribute element (optional),
and whether the attribute is a fragment. If the rtexprvalue element is true or yes, then the
type element defines the return type expected from any expression specified as the value of the
attribute. For static values, the type is always java.lang.String. An attribute is specified in a
TLD in an attribute element. Table 8–10 lists the subelements of the attribute element.

TABLE 8–10 attribute Subelements

Element Description

description (optional) A description of the attribute.

name The unique name of the attribute being declared. A translation error results if more
than one attribute element appears in the same tag with the same name.

required (optional) Whether the attribute is required. The default is false.

Tag Library Descriptors

The Java EE 5 Tutorial • October 2008252

TABLE 8–10 attribute Subelements (Continued)
Element Description

rtexprvalue (optional) Whether the attribute’s value can be dynamically calculated at runtime by
an EL expression. The default is false. When this element is set to true and the
attribute definition also includes either a deferred-value or deferred-method
element then the attribute accepts both dynamic and deferred expressions.

type (optional) The runtime type of the attribute’s value. Defaults to java.lang.String if
not specified.

fragment (optional) Whether this attribute is a fragment to be evaluated by the tag handler
(true) or a normal attribute to be evaluated by the container before being passed to
the tag handler.

If this attribute is true:

You do not specify the rtexprvalue attribute. The container fixes the rtexprvalue
attribute at true.

You do not specify the type attribute. The container fixes the type attribute at
javax.servlet.jsp.tagext.JspFragment.

Defaults to false.

deferred-value (optional) Indicates that the tag attribute accepts deferred value expressions. This
element includes an optional type child element, which indicates the type of object to
which the expression resolves. If no type element is included, the type is
java.lang.Object. Either the deferred-value or deferred-method element (but
not both) can be defined for the same attribute.

deferred-method (optional) Indicates that the tag attribute accepts deferred method expressions. This
element includes an optional method-signature child element, which indicates the
signature of the method that the expression invokes. If no method signature is
defined, the method signature default is void methodName(). Either the
deferred-value or deferred-method element (but not both) can be defined for the
same attribute.

If a tag attribute is not required, a tag handler should provide a default value.

The tag element for a tag that outputs its body if a test evaluates to true declares that the test
attribute is required and that its value can be set by a runtime expression.

<tag>

<name>present</name>

<tag-class>condpkg.IfSimpleTag</tag-class>

<body-content>scriptless</body-content>

...

<attribute>

<name>test</name>

<required>true</required>

<rtexprvalue>true</rtexprvalue>

Tag Library Descriptors

Chapter 8 • Custom Tags in JSP Pages 253

</attribute>

...

</tag>

Declaring Tag Variables for Tag Handlers
The example described in “Tags That Define Variables” on page 232 defines an EL variable
departmentName:

<tlt:iterator var="departmentName" type="java.lang.String"
group="${myorg.departmentNames}">

<tr>

<td>
${departmentName}</td>

</tr>

</tlt:iterator>

When the JSP page containing this tag is translated, the web container generates code to
synchronize the variable with the object referenced by the variable. To generate the code, the
web container requires certain information about the variable:

■ Variable name
■ Variable class
■ Whether the variable refers to a new or an existing object
■ The availability of the variable

There are two ways to provide this information: by specifying the variable TLD subelement or
by defining a tag extra info class and including the tei-class element in the TLD (see
“TagExtraInfo Class” on page 262). Using the variable element is simpler but less dynamic.
With the variable element, the only aspect of the variable that you can specify at runtime is its
name (with the name-from-attribute element). If you provide this information in a tag extra
info class, you can also specify the type of the variable at runtime.

Table 8–11 lists the subelements of the variable element.

TABLE 8–11 variable Subelements

Element Description

description (optional) A description of the variable.

Tag Library Descriptors

The Java EE 5 Tutorial • October 2008254

TABLE 8–11 variable Subelements (Continued)
Element Description

name-given |

name-from-attribute

Defines an EL variable to be used in the page invoking this tag. Either name-given or
name-from-attribute must be specified. If name-given is specified, the value is the
name of the variable. If name-from-attribute is specified, the value is the name of an
attribute whose (translation-time) value at the start of the tag invocation will give the
name of the variable.

Translation errors arise in the following circumstances:
■ Specifying neither name-given nor name-from-attribute or both.
■ If two variable elements have the same name-given.

variable-class (optional) The fully qualified name of the class of the object. java.lang.String is the
default.

declare (optional) Whether or not the object is declared. True is the default. A translation
error results if both declare and fragment are specified.

scope (optional) The scope of the variable defined. Can be either AT_BEGIN, AT_END, or
NESTED (see Table 8–12). Defaults to NESTED.

Table 8–12 summarizes a variable’s availability according to its declared scope.

TABLE 8–12 Variable Availability

Value Availability

NESTED Between the start tag and the end tag.

AT_BEGIN From the start tag until the scope of any enclosing tag. If there’s no enclosing tag, then to the
end of the page.

AT_END After the end tag until the scope of any enclosing tag. If there’s no enclosing tag, then to the
end of the page.

You can define the following variable element for the tlt:iterator tag:

<tag>

<variable>

<name-given>var</name-given>

<variable-class>java.lang.String</variable-class>

<declare>true</declare>

<scope>NESTED</scope>

</variable>

</tag>

Tag Library Descriptors

Chapter 8 • Custom Tags in JSP Pages 255

Programming Simple Tag Handlers
The classes and interfaces used to implement simple tag handlers are contained in the
javax.servlet.jsp.tagext package. Simple tag handlers implement the SimpleTag interface.
Interfaces can be used to take an existing Java object and make it a tag handler. For most newly
created handlers, you would use the SimpleTagSupport classes as a base class.

The heart of a simple tag handler is a single method, doTag, which is invoked when the end
element of the tag is encountered. Note that the default implementation of the doTag method of
SimpleTagSupport does nothing.

A tag handler has access to an API that allows it to communicate with the JSP page. The entry
point to the API is the JSP context object (javax.servlet.jsp.JspContext). The JspContext object
provides access to implicit objects. PageContext extends JspContext with servlet-specific
behavior. Through these objects, a tag handler can retrieve all the other implicit objects
(request, session, and application) that are accessible from a JSP page. If the tag is nested, a tag
handler also has access to the handler (called the parent) that is associated with the enclosing
tag.

Including Tag Handlers in Web Applications
Tag handlers can be made available to a web application in two basic ways. The classes
implementing the tag handlers can be stored in an unpacked form in the /WEB-INF/classes/
subdirectory of the web application. Alternatively, if the library is distributed as a JAR, it is
stored in the /WEB-INF/lib/ directory of the web application.

How Is a Simple Tag Handler Invoked?
The SimpleTag interface defines the basic protocol between a simple tag handler and a JSP
page’s servlet. The JSP page’s servlet invokes the setJspContext, setParent, and attribute
setting methods before calling doStartTag.

ATag t = new ATag();

t.setJSPContext(...);

t.setParent(...);

t.setAttribute1(value1);

t.setAttribute2(value2);

...

t.setJspBody(new JspFragment(...))

t.doTag();

The following sections describe the methods that you need to develop for each type of tag
introduced in “Types of Tags” on page 229.

Programming Simple Tag Handlers

The Java EE 5 Tutorial • October 2008256

http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/SimpleTag.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/SimpleTagSupport.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/JspContext.html

Tag Handlers for Basic Tags
The handler for a basic tag without a body must implement the doTag method of the SimpleTag
interface. The doTag method is invoked when the end element of the tag is encountered.

The basic tag discussed in the first section, <tt:basic />, would be implemented by the
following tag handler:

public HelloWorldSimpleTag extends SimpleTagSupport {

public void doTag() throws JspException, IOException {

getJspContext().getOut().write("Hello, world.");
}

}

Tag Handlers for Tags with Attributes
This section describes how to define attributes for a tag handler and how to validate attribute
values.

Defining Attributes in a Tag Handler
For each tag attribute, you must define a set method in the tag handler that conforms to the
JavaBeans architecture conventions. For example, consider the tag handler for the JSTL c:if

tag:

<c:if test="${Clear}">

This tag handler contains the following method:

public void setTest(boolean test) {

this.test = test;

}

As shown by the preceding example, the name of the attribute must match the name of the set
method.

Attribute Validation
The documentation for a tag library should describe valid values for tag attributes. When a JSP
page is translated, a web container will enforce any constraints contained in the TLD element
for each attribute.

The attributes passed to a tag can also be validated at translation time using the validate
method of a class derived from TagExtraInfo. This class is also used to provide information
about variables defined by the tag (see “TagExtraInfo Class” on page 262).

Programming Simple Tag Handlers

Chapter 8 • Custom Tags in JSP Pages 257

The validate method is passed the attribute information in a TagData object, which contains
attribute-value tuples for each of the tag’s attributes. Because the validation occurs at translation
time, the value of an attribute that is computed at request time will be set to
TagData.REQUEST_TIME_VALUE.

The tag <tt:twa attr1="value1"/> has the following TLD attribute element:

<attribute>

<name>attr1</name>

<required>true</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

This declaration indicates that the value of attr1 can be determined at runtime.

The following validate method checks whether the value of attr1 is a valid Boolean value.
Note that because the value of attr1 can be computed at runtime, validate must check
whether the tag user has chosen to provide a runtime value.

public class TwaTEI extends TagExtraInfo {

public ValidationMessage[] validate(TagData data) {

Object o = data.getAttribute("attr1");
if (o != null && o != TagData.REQUEST_TIME_VALUE) {

if (((String)o).toLowerCase().equals("true") ||

((String)o).toLowerCase().equals("false"))

return null;

else

return new ValidationMessage(data.getId(),

"Invalid boolean value.");
}

else

return null;

}

}

Setting Dynamic Attributes
Simple tag handlers that support dynamic attributes must declare that they do so in the tag
element of the TLD (see “Declaring Tag Handlers” on page 251). In addition, your tag handler
must implement the setDynamicAttribute method of the DynamicAttributes interface. For
each attribute specified in the tag invocation that does not have a corresponding attribute
element in the TLD, the web container calls setDynamicAttribute, passing in the namespace of
the attribute (or null if in the default namespace), the name of the attribute, and the value of the
attribute. You must implement the setDynamicAttribute method to remember the names and
values of the dynamic attributes so that they can be used later when doTag is executed. If the
setDynamicAttribute method throws an exception, the doTag method is not invoked for the
tag, and the exception must be treated in the same manner as if it came from an attribute setter
method.

Programming Simple Tag Handlers

The Java EE 5 Tutorial • October 2008258

The following implementation of setDynamicAttribute saves the attribute names and values
in lists. Then, in the doTag method, the names and values are echoed to the response in an
HTML list.

private ArrayList keys = new ArrayList();

private ArrayList values = new ArrayList();

public void setDynamicAttribute(String uri,

String localName, Object value) throws JspException {

keys.add(localName);

values.add(value);

}

public void doTag() throws JspException, IOException {

JspWriter out = getJspContext().getOut();

for(int i = 0; i < keys.size(); i++) {

String key = (String)keys.get(i);

Object value = values.get(i);

out.println("" + key + " = " + value + "");

}

}

Setting Deferred Value Attributes and Deferred Method Attributes
For each tag attribute that accepts a deferred value expression or a deferred method expression,
the tag handler must have a method to access the value of the attribute.

The methods that access the value of a deferred value attribute method must accept a
ValueExpression object. The methods that access the value of a deferred method attribute
must accept a MethodExpression object. These methods take the form setXXX, where XXX is
the name of the attribute.

The following example shows a method that can be used to access the value of a deferred value
attribute called attributeName:

private javax.el.ValueExpression attributeName = null;

public void setAttributeName(

javax.el.ValueExpression attributeName)

{

this.attributeName = attributeName;

}

Deferred value attributes and deferred method attributes are primarily used by JavaServer Faces
technology. See “Getting the Attribute Values” on page 433 for an example of creating a tag
handler that processes these attributes for a JavaServer Faces application.

Programming Simple Tag Handlers

Chapter 8 • Custom Tags in JSP Pages 259

If you have an attribute that is both dynamic and deferred (meaning that the tag attribute
definition accepts a deferred expression and has rtexprvalue set to true), then the setX
method that accesses this value must accept an Object instance and test if the Object instance is
a deferred value expression, as shown in this pseudocode:

public void setAttr(Object obj) {

if (obj instance of ValueExpression) {

// this is a deferred expression

else {

// this is an rtexpression

}

}

Tag Handlers for Tags with Bodies
A simple tag handler for a tag with a body is implemented differently depending on whether or
not the tag handler needs to manipulate the body. A tag handler manipulates the body when it
reads or modifies the contents of the body.

Tag Handler Does Not Manipulate the Body
If a tag handler needs simply to evaluate the body, it gets the body using the getJspBody
method of SimpleTag and then evaluates the body using the invoke method.

The following tag handler accepts a test parameter and evaluates the body of the tag if the test
evaluates to true. The body of the tag is encapsulated in a JSP fragment. If the test is true, the
handler retrieves the fragment using the getJspBody method. The invoke method directs all
output to a supplied writer or, if the writer is null, to the JspWriter returned by the getOut
method of the JspContext associated with the tag handler.

public class IfSimpleTag extends SimpleTagSupport {

private boolean test;

public void setTest(boolean test) {

this.test = test;

}

public void doTag() throws JspException, IOException {

if(test){

getJspBody().invoke(null);

}

}

}

Programming Simple Tag Handlers

The Java EE 5 Tutorial • October 2008260

Tag Handler Manipulates the Body

If the tag handler needs to manipulate the body, the tag handler must capture the body in a
StringWriter. The invoke method directs all output to a supplied writer. Then the modified
body is written to the JspWriter returned by the getOut method of the JspContext. Thus, a tag
that converts its body to uppercase could be written as follows:

public class SimpleWriter extends SimpleTagSupport {

public void doTag() throws JspException, IOException {

StringWriter sw = new StringWriter();

jspBody.invoke(sw);

jspContext().

getOut().println(sw.toString().toUpperCase());

}

}

Tag Handlers for Tags That Define Variables
Similar communication mechanisms exist for communication between JSP page and tag
handlers as for JSP pages and tag files.

To emulate IN parameters, use tag attributes. A tag attribute is communicated between the
calling page and the tag handler when the tag is invoked. No further communication occurs
between the calling page and the tag handler.

To emulate OUT or nested parameters, use variables with availability AT_BEGIN, AT_END, or
NESTED. The variable is not initialized by the calling page but instead is set by the tag handler.

For AT_BEGIN availability, the variable is available in the calling page from the start tag until the
scope of any enclosing tag. If there’s no enclosing tag, then the variable is available to the end of
the page. For AT_END availability, the variable is available in the calling page after the end tag
until the scope of any enclosing tag. If there’s no enclosing tag, then the variable is available to
the end of the page. For nested parameters, the variable is available in the calling page between
the start tag and the end tag.

When you develop a tag handler you are responsible for creating and setting the object
referenced by the variable into a context that is accessible from the page. You do this by using
the JspContext().setAttribute(name, value) or
JspContext.setAttribute(name,value,scope) method. You retrieve the page context using
the getJspContext method of SimpleTag.

Typically, an attribute passed to the custom tag specifies the name of the variable and the value
of the variable is dependent on another attribute. For example, the iterator tag introduced in
Chapter 5, “JavaServer Pages Technology,” retrieves the name of the variable from the var
attribute and determines the value of the variable from a computation performed on the group
attribute.

Programming Simple Tag Handlers

Chapter 8 • Custom Tags in JSP Pages 261

public void doTag() throws JspException, IOException {

if (iterator == null)

return;

while (iterator.hasNext()) {

getJspContext().setAttribute(var, iterator.next());

getJspBody().invoke(null);

}

}

public void setVar(String var) {

this.var = var;

}

public void setGroup(Collection group) {

this.group = group;

if(group.size() > 0)

iterator = group.iterator();

}

The scope that a variable can have is summarized in Table 8–13. The scope constrains the
accessibility and lifetime of the object.

TABLE 8–13 Scope of Objects

Name Accessible From Lifetime

page Current page Until the response has been sent back to the
user or the request is passed to a new page

request Current page and any included or
forwarded pages

Until the response has been sent back to the
user

session Current request and any subsequent
request from the same browser (subject to
session lifetime)

The life of the user’s session

application Current and any future request in the same
web application

The life of the application

TagExtraInfoClass
“Declaring Tag Variables for Tag Handlers” on page 254 discussed how to provide information
about tag variables in the tag library descriptor. This section describes another approach:
defining a tag extra info class. You define a tag extra info class by extending the class
javax.servlet.jsp.tagext.TagExtraInfo. A TagExtraInfo must implement the
getVariableInfo method to return an array of VariableInfo objects containing the following
information:
■ Variable name
■ Variable class
■ Whether the variable refers to a new object
■ The availability of the variable

Programming Simple Tag Handlers

The Java EE 5 Tutorial • October 2008262

The web container passes a parameter of type javax.servlet.jsp.tagext.TagData to the
getVariableInfo method, which contains attribute-value tuples for each of the tag’s attributes.
These attributes can be used to provide the VariableInfo object with an EL variable’s name and
class.

The following example demonstrates how to provide information about the variable created by
the iterator tag in a tag extra info class. Because the name (var) and class (type) of the
variable are passed in as tag attributes, they can be retrieved using the
data.getAttributeString method and can be used to fill in the VariableInfo constructor. To
allow the variable var to be used only within the tag body, you set the scope of the object to
NESTED.

package iterator;

public class IteratorTEI extends TagExtraInfo {

public VariableInfo[] getVariableInfo(TagData data) {

String type = data.getAttributeString("type");
if (type == null)

type = "java.lang.Object";
return new VariableInfo[] {

new VariableInfo(data.getAttributeString("var"),
type,

true,

VariableInfo.NESTED)

};

}

}

The fully qualified name of the tag extra info class defined for an EL variable must be declared in
the TLD in the tei-class subelement of the tag element. Thus, the tei-class element for
IteratorTei would be as follows:

<tei-class>

iterator.IteratorTEI

</tei-class>

Cooperating Tags
Tags cooperate by sharing objects. JSP technology supports two styles of object sharing.

The first style requires that a shared object be named and stored in the page context (one of the
implicit objects accessible to JSP pages as well as tag handlers). To access objects created and
named by another tag, a tag handler uses the pageContext.getAttribute(name,scope)
method.

In the second style of object sharing, an object created by the enclosing tag handler of a group of
nested tags is available to all inner tag handlers. This form of object sharing has the advantage
that it uses a private namespace for the objects, thus reducing the potential for naming conflicts.

Programming Simple Tag Handlers

Chapter 8 • Custom Tags in JSP Pages 263

To access an object created by an enclosing tag, a tag handler must first obtain its enclosing tag
by using the static method SimpleTagSupport.findAncestorWithClass(from,class) or the
SimpleTagSupport.getParent method. The former method should be used when a specific
nesting of tag handlers cannot be guaranteed. After the ancestor has been retrieved, a tag
handler can access any statically or dynamically created objects. Statically created objects are
members of the parent. Private objects can also be created dynamically. Such privately named
objects would have to be managed by the tag handler; one approach would be to use a Map to
store name-object pairs.

The following example illustrates a tag handler that supports both the named approach and the
private object approach to sharing objects. In the example, the handler for a query tag checks
whether an attribute named connectionId has been set. If the connectionId attribute has been
set, the handler retrieves the connection object from the page context. Otherwise, the tag
handler first retrieves the tag handler for the enclosing tag and then retrieves the connection
object from that handler.

public class QueryTag extends SimpleTagSupport {

public int doTag() throws JspException {

String cid = getConnectionId();

Connection connection;

if (cid != null) {

// there is a connection id, use it

connection =(Connection)pageContext.

getAttribute(cid);

} else {

ConnectionTag ancestorTag =

(ConnectionTag)findAncestorWithClass(this,

ConnectionTag.class);

if (ancestorTag == null) {

throw new JspTagException("A query without

a connection attribute must be nested

within a connection tag.");
}

connection = ancestorTag.getConnection();

...

}

}

}

The query tag implemented by this tag handler can be used in either of the following ways:

<tt:connection cid="con01" ... >

...

</tt:connection>

<tt:query id="balances" connectionId="con01">
SELECT account, balance FROM acct_table

where customer_number = ?

Programming Simple Tag Handlers

The Java EE 5 Tutorial • October 2008264

<tt:param value="${requestScope.custNumber}" />

</tt:query>

<tt:connection ... >

<tt:query cid="balances">
SELECT account, balance FROM acct_table

where customer_number = ?

<tt:param value="${requestScope.custNumber}" />

</tt:query>

</tt:connection>

The TLD for the tag handler uses the following declaration to indicate that the connectionId
attribute is optional:

<tag>

...

<attribute>

<name>connectionId</name>

<required>false</required>

</attribute>

</tag>

Tag Handler Examples
The simple tags described in this section demonstrate solutions to two recurring problems in
developing JSP applications: minimizing the amount of Java programming in JSP pages and
ensuring a common look and feel across applications. In doing so, they illustrate many of the
styles of tags discussed in the first part of the chapter.

An Iteration Tag
Constructing page content that is dependent on dynamically generated data often requires the
use of flow control scripting statements. By moving the flow control logic to tag handlers, flow
control tags reduce the amount of scripting needed in JSP pages. Iteration is a very common
flow control function and is easily handled by a custom tag.

The discussion on using tag libraries in Chapter 5, “JavaServer Pages Technology,” introduced a
tag library containing an iterator tag. The tag retrieves objects from a collection stored in a
JavaBeans component and assigns them to an EL variable. The body of the tag retrieves
information from the variable. As long as elements remain in the collection, the iterator tag
causes the body to be reevaluated. The tag in this example is simplified to make it easy to
demonstrate how to program a custom tag. web applications requiring such functionality
should use the JSTL forEach tag, which is discussed in “Iterator Tags” on page 208.

Programming Simple Tag Handlers

Chapter 8 • Custom Tags in JSP Pages 265

JSP Page

The index.jsp page invokes the iterator tag to iterate through a collection of department
names. Each item in the collection is assigned to the departmentName variable.

<%@ taglib uri="/tlt" prefix="tlt" %>

<html>

<head>

<title>Departments</title>

</head>

<body bgcolor="white">
<jsp:useBean id="myorg" class="myorg.Organization"/>
<table border=2 cellspacing=3 cellpadding=3>

<tr>

<td>Departments</td>

</tr>

<tlt:iterator var="departmentName" type="java.lang.String"
group="${myorg.departmentNames}">

<tr>

<td>
${departmentName}</td>

</tr>

</tlt:iterator>

</table>

</body>

</html>

Tag Handler

The collection is set in the tag handler by means of the group attribute. The tag handler retrieves
an element from the group and passes the element back to the page in the EL variable whose
name is determined by the var attribute. The variable is accessed in the calling page using the
JSP expression language. After the variable is set, the tag body is evaluated with the invoke
method.

public void doTag() throws JspException, IOException {

if (iterator == null)

return;

while (iterator.hasNext()) {

getJspContext().setAttribute(var, iterator.next());

getJspBody().invoke(null);

}

}

public void setVar(String var) {

this.var = var;

}

public void setGroup(Collection group) {

Programming Simple Tag Handlers

The Java EE 5 Tutorial • October 2008266

this.group = group;

if(group.size() > 0)

iterator = group.iterator();

}

A Template Tag Library
A template provides a way to separate the common elements that are part of each screen from
the elements that change with each screen of an application. Putting all the common elements
together into one file makes it easier to maintain and enforce a consistent look and feel in all the
screens. It also makes development of individual screens easier because the designer can focus
on portions of a screen that are specific to that screen while the template takes care of the
common portions.

The template is a JSP page that has placeholders for the parts that need to change with each
screen. Each of these placeholders is referred to as a parameter of the template. For example, a
simple template might include a title parameter for the top of the generated screen and a body
parameter to refer to a JSP page for the custom content of the screen.

The template uses a set of nested tags (definition, screen, and parameter) to define a table of
screen definitions and uses an insert tag to insert parameters from a screen definition into a
specific application screen.

JSP Pages

The template for the Duke’s Bookstore example,
tut-install/javaeetutorial5/examples/web/bookstore3/web/template/template.jsp, is
shown next. This page includes a JSP page that creates the screen definition and then uses the
insert tag to insert parameters from the definition into the application screen.

<%@ taglib uri="/tutorial-template" prefix="tt" %>

<%@ page errorPage="/template/errorinclude.jsp" %>

<%@ include file="/template/screendefinitions.jsp" %>

<html>

<head>

<title>

<tt:insert definition="bookstore" parameter="title"/>
</title>

</head>

<body bgcolor="#FFFFFF">
<tt:insert definition="bookstore" parameter="banner"/>

<tt:insert definition="bookstore" parameter="body"/>
<center>Copyright © 2004 Sun Microsystems, Inc. </center>

</body>

</html>

Programming Simple Tag Handlers

Chapter 8 • Custom Tags in JSP Pages 267

The
tut-install/javaeetutorial5/examples/web/bookstore3/web/template/screendefinitions.jspf
page creates a definition for the screen specified by the request attribute
javax.servlet.forward.servlet_path:

<tt:definition name="bookstore"
screen="${requestScope

[’javax.servlet.forward.servlet_path’]}">
<tt:screen id="/bookstore">
<tt:parameter name="title" value="Duke’s Bookstore"

direct="true"/>
<tt:parameter name="banner" value="/template/banner.jsp"

direct="false"/>
<tt:parameter name="body" value="/bookstore.jsp"

direct="false"/>
</tt:screen>

<tt:screen id="/bookcatalog">
<tt:parameter name="title" direct="true">
<jsp:attribute name="value" >

<fmt:message key="TitleBookCatalog"/>
</jsp:attribute>

</tt:parameter>

<tt:parameter name="banner" value="/template/banner.jsp"
direct="false"/>
<tt:parameter name="body" value="/bookcatalog.jsp"
direct="false"/>

</tt:screen>

...

</tt:definition>

The template is instantiated by the Dispatcher servlet. Dispatcher first gets the requested
screen. Dispatcher performs business logic and updates model objects based on the requested
screen. For example, if the requested screen is /bookcatalog, Dispatcher determines whether
a book is being added to the cart based on the value of the Add request parameter. It sets the
price of the book if it’s on sale, and then adds the book to the cart. Finally, the servlet dispatches
the request to template.jsp:

public class Dispatcher extends HttpServlet {

@Resource

UserTransaction utx;

public void doGet(HttpServletRequest request,

HttpServletResponse response) {

String bookId = null;

Book book = null;

String clear = null;

BookDBAO bookDBAO =

Programming Simple Tag Handlers

The Java EE 5 Tutorial • October 2008268

(BookDBAO)getServletContext().

getAttribute("bookDBAO");
HttpSession session = request.getSession();

String selectedScreen = request.getServletPath();

ShoppingCart cart = (ShoppingCart)session.

getAttribute("cart");
if (cart == null) {

cart = new ShoppingCart();

session.setAttribute("cart", cart);

}

if (selectedScreen.equals("/bookcatalog")) {

bookId = request.getParameter("Add");
if (!bookId.equals("")) {

try {

book = bookDBAO.getBook(bookId);

if (book.getOnSale()) {

double sale = book.getPrice() * .85;

Float salePrice = new Float(sale);

book.setPrice(salePrice.floatValue());

}

cart.add(bookId, book);

} catch (BookNotFoundException ex) {

// not possible

}

}

} else if (selectedScreen.equals("/bookshowcart")) {

bookId =request.getParameter("Remove");
if (bookId != null) {

cart.remove(bookId);

}

clear = request.getParameter("Clear");
if (clear != null && clear.equals("clear")) {

cart.clear();

}

} else if (selectedScreen.equals("/bookreceipt")) {

// Update the inventory

try {

utx.begin();

bookDBAO.buyBooks(cart);

utx.commit();

} catch (Exception ex) {

try {

utx.rollback();

request.getRequestDispatcher(

"/bookordererror.jsp").
forward(request, response);

} catch(Exception e) {

System.out.println(

Programming Simple Tag Handlers

Chapter 8 • Custom Tags in JSP Pages 269

"Rollback failed: "+e.getMessage());
e.printStackTrace();

}

}

}

try {

request.

getRequestDispatcher(

"/template/template.jsp").
forward(request, response);

} catch(Exception ex) {

ex.printStackTrace();

}

}

public void doPost(HttpServletRequest request,

HttpServletResponse response) {

request.setAttribute("selectedScreen",
request.getServletPath());

try {

request.

getRequestDispatcher(

"/template/template.jsp").
forward(request, response);

} catch(Exception ex) {

ex.printStackTrace();

}

}

}

Tag Handlers

The template tag library contains four tag handlers (DefinitionTag, ScreenTag,
ParameterTag, and InsertTag) that demonstrate the use of cooperating tags. DefinitionTag,
ScreenTag, and ParameterTag constitute a set of nested tag handlers that share private objects.
DefinitionTag creates a public object named bookstore that is used by InsertTag.

In doTag,
tut-install/javaeetutorial5/examples/web/bookstore3/src/java/com/sun/bookstore3/template/DefinitionTag.java
creates a private object named screens that contains a hash table of screen definitions. A screen
definition consists of a screen identifier and a set of parameters associated with the screen.
These parameters are loaded when the body of the definition tag, which contains nested screen

and parameter tags, is invoked. DefinitionTag creates a public object of class
tut-install/javaeetutorial5/examples/web/bookstore3/src/java/com/sun/bookstore3/template/Definition.java,
selects a screen definition from the screens object based on the URL passed in the request, and
uses this screen definition to initialize a public Definition object.

Programming Simple Tag Handlers

The Java EE 5 Tutorial • October 2008270

public int doTag() {

try {

screens = new HashMap();

getJspBody().invoke(null);

Definition definition = new Definition();

PageContext context = (PageContext)getJspContext();

ArrayList params = (ArrayList) screens.get(screenId);

Iterator ir = null;

if (params != null) {

ir = params.iterator();

while (ir.hasNext())

definition.setParam((Parameter)ir.next());

// put the definition in the page context

context.setAttribute(definitionName, definition,

context.APPLICATION_SCOPE);

}

}

The table of screen definitions is filled in by ScreenTag and ParameterTag from text provided
as attributes to these tags. Table 8–14 shows the contents of the screen definitions hash table for
the Duke’s Bookstore application.

TABLE 8–14 Screen Definitions

Screen ID Title Banner Body

/bookstore Duke’s Bookstore /banner.jsp /bookstore.jsp

/bookcatalog Book Catalog /banner.jsp /bookcatalog.jsp

/bookdetails Book Description /banner.jsp /bookdetails.jsp

/bookshowcart Shopping Cart /banner.jsp /bookshowcart.jsp

/bookcashier Cashier /banner.jsp /bookcashier.jsp

/bookreceipt Receipt /banner.jsp /bookreceipt.jsp

If the URL passed in the request is /bookstore, the Definition object contains the items from
the first row of Table 8–14 (see Table 8–15).

TABLE 8–15 Definition Object Contents for URL /bookstore

Title Banner Body

Duke’s Bookstore /banner.jsp /bookstore.jsp

The parameters for the URL /bookstore are shown in Table 8–16. The parameters specify that
the value of the title parameter, Duke’s Bookstore, should be inserted directly into the output
stream, but the values of banner and body should be included dynamically.

Programming Simple Tag Handlers

Chapter 8 • Custom Tags in JSP Pages 271

TABLE 8–16 Parameters for the URL /bookstore

Parameter Name Parameter Value isDirect

title Duke’s Bookstore true

banner /banner.jsp false

body /bookstore.jsp false

tut-install/javaeetutorial5/examples/web/bookstore3/src/java/com/sun/bookstore3/template/InsertTag.java
inserts parameters of the screen definition into the response. The doTag method retrieves the
definition object from the page context and then inserts the parameter value. If the parameter is
direct, it is directly inserted into the response; otherwise, the request is sent to the parameter,
and the response is dynamically included into the overall response.

public void doTag() throws JspTagException {

Definition definition = null;

Parameter parameter = null;

boolean directInclude = false;

PageContext context = (PageContext)getJspContext();

// get the definition from the page context

definition = (Definition)context.getAttribute(

definitionName, context.APPLICATION_SCOPE);

// get the parameter

if (parameterName != null && definition != null)

parameter = (Parameter)

definition.getParam(parameterName);

if (parameter != null)

directInclude = parameter.isDirect();

try {

// if parameter is direct, print to out

if (directInclude && parameter != null)

context.getOut().print(parameter.getValue());

// if parameter is indirect,

include results of dispatching to page

else {

if ((parameter != null) &&

(parameter.getValue() != null))

context.include(parameter.getValue());

}

} catch (Exception ex) {

throw new JspTagException(ex.getMessage());

}

}

Programming Simple Tag Handlers

The Java EE 5 Tutorial • October 2008272

Scripting in JSP Pages

JSP scripting elements allow you to use Java programming language statements in your JSP
pages. Scripting elements are typically used to create and access objects, define methods, and
manage the flow of control. Many tasks that require the use of scripts can be eliminated by using
custom tag libraries, in particular the JSP Standard Tag Library. Because one of the goals of JSP
technology is to separate static data from the code needed to dynamically generate content, very
sparing use of JSP scripting is recommended. Nevertheless, there may be some circumstances
that require its use.

There are three ways to create and use objects in scripting elements:

■ Instance and class variables of the JSP page’s servlet class are created in declarations and
accessed in scriptlets and expressions.

■ Local variables of the JSP page’s servlet class are created and used in scriptlets and
expressions.

■ Attributes of scope objects (see “Using Scope Objects” on page 105) are created and used in
scriptlets and expressions.

This chapter briefly describes the syntax and usage of JSP scripting elements.

The Example JSP Pages
This chapter illustrates JSP scripting elements using webclient, a version of the hello1
example introduced in Chapter 3, “Getting Started with Web Applications,” that accesses a web
service.

To deploy and run the webclient example using NetBeans IDE, follow these steps:

1. Build and deploy the JAX-WS web service MyHelloService described in “Building,
Packaging, and Deploying the Service” on page 484.

2. In NetBeans IDE, select File→Open Project.

9C H A P T E R 9

273

3. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/jaxws/

4. Select the webclient folder.
5. Select the Open as Main Project check box and the Open Required Projects check box.
6. Click Open Project.
7. In the Projects tab, right-click the webclient project, and select Undeploy and Deploy.
8. To run the application, open the bookstore URL

http://localhost:8080/webclient/greeting.

To deploy and run the webclient example using ant, follow these steps:

1. Build and deploy the JAX-WS web service MyHelloService described in “Building,
Packaging, and Deploying the Service” on page 484.

2. In a terminal window, go to tut-install/javaeetutorial5/examples/jaxws/webclient/.
3. Run ant. This target will spawn any necessary compilations, will copy files to the

tut-install/javaeetutorial5/examples/jaxws/webclient/build/ directory, will create a
WAR file, and will copy it to the
tut-install/javaeetutorial5/examples/jaxws/webclient/dist directory.

4. Start the Application Server.
5. To deploy the example using ant, run the following command:

ant deploy

6. To run the example, open your browser to http://localhost:8080/webclient/greeting.

To learn how to configure the example, refer to the deployment descriptor (the web.xml file),
which includes the following configurations:

■ A display-name element that specifies the name that tools use to identify the application.
■ A set of servlet elements that identify the application’s JSP file.
■ A servlet-mapping element that defines the alias to the JSP file.

Note – The example assumes that the Application Server runs on the default port, 8080. If
you have changed the port, you must update the port number in the file
tut-install/javaeetutorial5/examples/jaxws/webclient/response.jsp before building
and running the example.

The Example JSP Pages

The Java EE 5 Tutorial • October 2008274

Using Scripting
JSP technology allows a container to support any scripting language that can call Java objects. If
you wish to use a scripting language other than the default, java, you must specify it in the
language attribute of the page directive at the beginning of a JSP page:

<%@ page language="scripting-language" %>

Because scripting elements are converted to programming language statements in the JSP
page’s servlet class, you must import any classes and packages used by a JSP page. If the page
language is java, you import a class or package with the import attribute of the page directive:

<%@ page import="fully-qualified-classname, packagename.*" %>

The webclient JSP page response.jsp uses the following page directive to import the classes
needed to access the service classes:

<%@ page import=

"helloservice.endpoint.HelloService,
helloservice.endpoint.Hello" %>

Disabling Scripting
By default, scripting in JSP pages is valid. Because scripting can make pages difficult to
maintain, some JSP page authors or page authoring groups may want to follow a methodology
in which scripting elements are not allowed.

You can disable scripting for a group of JSP pages in an application in one of two ways:

■ Select the Ignore Java Script check box in the JSP Property Group node of the NetBeans IDE
web.xml editor.

■ Set the scripting-invalid element of the application’s deployment descriptor to true. The
scripting-invalid element is a child of the jsp-property-group element that defines
properties for a set of JSP pages.

For information on how to define a group of JSP pages, see “Setting Properties for Groups of JSP
Pages” on page 179. When scripting is invalid, it means that scriptlets, scripting expressions,
and declarations will produce a translation error if present in any of the pages in the group.
Table 9–1 summarizes the scripting settings and their meanings.

Disabling Scripting

Chapter 9 • Scripting in JSP Pages 275

TABLE 9–1 Scripting Settings

JSP Configuration Scripting Encountered

Unspecified Valid

false Valid

true Translation Error

JSP Declarations
A JSP declaration is used to declare variables and methods in a page’s scripting language. The
syntax for a declaration is as follows:

<%! scripting-language-declaration %>

When the scripting language is the Java programming language, variables and methods in JSP
declarations become declarations in the JSP page’s servlet class.

Initializing and Finalizing a JSP Page
You can customize the initialization process to allow the JSP page to read persistent
configuration data, initialize resources, and perform any other one-time activities; to do so, you
override the jspInit method of the JspPage interface. You release resources using the
jspDestroy method. The methods are defined using JSP declarations.

For example, an older version of the Duke’s Bookstore application retrieved the object that
accesses the bookstore database from the context and stored a reference to the object in the
variable bookDBAO in the jspInit method. The variable definition and the initialization and
finalization methods jspInit and jspDestroy were defined in a declaration:

<%!

private BookDBAO bookDBAO;

public void jspInit() {

bookDBAO =

(BookDBAO)getServletContext().getAttribute("bookDB");
if (bookDBAO == null)

System.out.println("Couldn’t get database.");
}

%>

When the JSP page was removed from service, the jspDestroy method released the BookDBAO
variable.

JSP Declarations

The Java EE 5 Tutorial • October 2008276

<%!

public void jspDestroy() {

bookDBAO = null;

}

%>

JSP Scriptlets
A JSP scriptlet is used to contain any code fragment that is valid for the scripting language used
in a page. The syntax for a scriptlet is as follows:

<%

scripting-language-statements
%>

When the scripting language is set to java, a scriptlet is transformed into a Java programming
language statement fragment and is inserted into the service method of the JSP page’s servlet. A
programming language variable created within a scriptlet is accessible from anywhere within
the JSP page.

In the web service version of the hello1 application, greeting.jsp contains a scriptlet to
retrieve the request parameter named username and test whether it is empty. If the if statement
evaluates to true, the response page is included. Because the if statement opens a block, the
HTML markup would be followed by a scriptlet that closes the block.

<%

String username = request.getParameter("username");
if (username != null && username.length() > 0) {

%>

<%@include file="response.jsp" %>

<%

}

%>

JSP Expressions
A JSP expression is used to insert the value of a scripting language expression, converted into a
string, into the data stream returned to the client. When the scripting language is the Java
programming language, an expression is transformed into a statement that converts the value
of the expression into a String object and inserts it into the implicit out object.

The syntax for an expression is as follows:

<%= scripting-language-expression %>

JSP Expressions

Chapter 9 • Scripting in JSP Pages 277

Note that a semicolon is not allowed within a JSP expression, even if the same expression has a
semicolon when you use it within a scriptlet.

In the web service version of the hello1 application, response.jsp contains the following
scriptlet, which gets the proxy that implements the service endpoint interface. It then invokes
the sayHello method on the proxy, passing the user name retrieved from a request parameter:

<%

String resp = null;

try {

Hello hello = new HelloService().getHelloPort();

resp = hello.sayHello(request.getParameter("username"));
} catch (Exception ex) {

resp = ex.toString();

}

%>

A scripting expression is then used to insert the value of resp into the output stream:

<h2><%= resp %>!</h2>

Programming Tags That Accept Scripting Elements
Tags that accept scripting elements in attribute values or in the body cannot be programmed as
simple tags; they must be implemented as classic tags. The following sections describe the TLD
elements and JSP tag extension API specific to classic tag handlers. All other TLD elements are
the same as for simple tags.

TLD Elements
You specify the character of a classic tag’s body content using the body-content element:

<body-content>empty | JSP | tagdependent</body-content>

You must declare the body content of tags that do not have a body as empty. For tags that have a
body, there are two options. Body content containing custom and core tags, scripting elements,
and HTML text is categorized as JSP. All other types of body content (for example, SQL
statements passed to the query tag) are labeled tagdependent.

Tag Handlers
The classes and interfaces used to implement classic tag handlers are contained in the
javax.servlet.jsp.tagext package. Classic tag handlers implement either the Tag, the

Programming Tags That Accept Scripting Elements

The Java EE 5 Tutorial • October 2008278

http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/Tag.html

IterationTag, or the BodyTag interface. Interfaces can be used to take an existing Java object and
make it a tag handler. For newly created classic tag handlers, you can use the TagSupport and
BodyTagSupport classes as base classes. These classes and interfaces are contained in the
javax.servlet.jsp.tagext package.

Tag handler methods defined by the Tag and BodyTag interfaces are called by the JSP page’s
servlet at various points during the evaluation of the tag. When the start element of a custom tag
is encountered, the JSP page’s servlet calls methods to initialize the appropriate handler and
then invokes the handler’s doStartTag method. When the end element of a custom tag is
encountered, the handler’s doEndTag method is invoked for all but simple tags. Additional
methods are invoked in between when a tag handler needs to manipulate the body of the tag.
For further information, see “Tags with Bodies” on page 280. To provide a tag handler
implementation, you must implement the methods, summarized in Table 9–2, that are invoked
at various stages of processing the tag.

TABLE 9–2 Tag Handler Methods

Tag Type Interface Methods

Basic Tag doStartTag, doEndTag

Attributes Tag doStartTag, doEndTag, setAttribute1,...,N, release

Body Tag doStartTag, doEndTag, release

Body, iterative evaluation IterationTag doStartTag, doAfterBody, doEndTag, release

Body, manipulation BodyTag doStartTag, doEndTag, release, doInitBody, doAfterBody

A tag handler has access to an API that allows it to communicate with the JSP page. The entry
points to the API are two objects: the JSP context (javax.servlet.jsp.JspContext) for simple tag
handlers and the page context (javax.servlet.jsp.PageContext) for classic tag handlers.
JspContext provides access to implicit objects. PageContext extends JspContext with
HTTP-specific behavior. A tag handler can retrieve all the other implicit objects (request,
session, and application) that are accessible from a JSP page through these objects. In addition,
implicit objects can have named attributes associated with them. Such attributes are accessed
using [set|get]Attribute methods.

If the tag is nested, a tag handler also has access to the handler (called the parent) associated
with the enclosing tag.

How Is a Classic Tag Handler Invoked?
The Tag interface defines the basic protocol between a tag handler and a JSP page’s servlet. It
defines the life cycle and the methods to be invoked when the start and end tags are
encountered.

Programming Tags That Accept Scripting Elements

Chapter 9 • Scripting in JSP Pages 279

http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/IterationTag.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/BodyTag.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/TagSupport.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/BodyTagSupport.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/JspContext.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/PageContext.html

The JSP page’s servlet invokes the setPageContext, setParent, and attribute-setting methods
before calling doStartTag. The JSP page’s servlet also guarantees that release will be invoked
on the tag handler before the end of the page.

Here is a typical tag handler method invocation sequence:

ATag t = new ATag();

t.setPageContext(...);

t.setParent(...);

t.setAttribute1(value1);

t.setAttribute2(value2);

t.doStartTag();

t.doEndTag();

t.release();

The BodyTag interface extends Tag by defining additional methods that let a tag handler access
its body. The interface provides three new methods:

■ setBodyContent: Creates body content and adds to the tag handler
■ doInitBody: Called before evaluation of the tag body
■ doAfterBody: Called after evaluation of the tag body

A typical invocation sequence is as follows:

t.doStartTag();

out = pageContext.pushBody();

t.setBodyContent(out);

// perform any initialization needed after body content is set

t.doInitBody();

t.doAfterBody();

// while doAfterBody

returns EVAL_BODY_AGAIN

we

// iterate body evaluation

...

t.doAfterBody();

t.doEndTag();

out = pageContext.popBody();

t.release();

Tags with Bodies
A tag handler for a tag with a body is implemented differently depending on whether or not the
tag handler needs to manipulate the body. A tag handler manipulates the body when it reads or
modifies the contents of the body.

Programming Tags That Accept Scripting Elements

The Java EE 5 Tutorial • October 2008280

Tag Handler Does Not Manipulate the Body
If the tag handler does not need to manipulate the body, the tag handler should implement the
Tag interface. If the tag handler implements the Tag interface and the body of the tag needs to be
evaluated, the doStartTag method must return EVAL_BODY_INCLUDE; otherwise it should return
SKIP_BODY.

If a tag handler needs to iteratively evaluate the body, it should implement the IterationTag
interface. The tag handler should return EVAL_BODY_AGAIN from the doAfterBody method if it
determines that the body needs to be evaluated again.

Tag Handler Manipulates the Body
If the tag handler needs to manipulate the body, the tag handler must implement BodyTag (or
must be derived from BodyTagSupport).

When a tag handler implements the BodyTag interface, it must implement the doInitBody and
the doAfterBody methods. These methods manipulate body content passed to the tag handler
by the JSP page’s servlet.

A BodyContent object supports several methods to read and write its contents. A tag handler
can use the body content’s getString or getReader method to extract information from the
body, and the writeOut(out) method to write the body contents to an out stream. The writer
supplied to the writeOut method is obtained using the tag handler’s getPreviousOut method.
This method is used to ensure that a tag handler’s results are available to an enclosing tag
handler.

If the body of the tag needs to be evaluated, the doStartTag method must return
EVAL_BODY_BUFFERED; otherwise, it should return SKIP_BODY.

doInitBodyMethod

The doInitBody method is called after the body content is set but before it is evaluated. You
generally use this method to perform any initialization that depends on the body content.

doAfterBodyMethod

The doAfterBody method is called after the body content is evaluated. doAfterBody must
return an indication of whether to continue evaluating the body. Thus, if the body should be
evaluated again, as would be the case if you were implementing an iteration tag, doAfterBody
should return EVAL_BODY_AGAIN; otherwise, doAfterBody should return SKIP_BODY.

The following example reads the content of the body (which contains an SQL query) and passes
it to an object that executes the query. Because the body does not need to be reevaluated,
doAfterBody returns SKIP_BODY.

Programming Tags That Accept Scripting Elements

Chapter 9 • Scripting in JSP Pages 281

public class QueryTag extends BodyTagSupport {

public int doAfterBody() throws JspTagException {

BodyContent bc = getBodyContent();

// get the bc as string

String query = bc.getString();

// clean up

bc.clearBody();

try {

Statement stmt = connection.createStatement();

result = stmt.executeQuery(query);

} catch (SQLException e) {

throw new JspTagException("QueryTag: " +

e.getMessage());

}

return SKIP_BODY;

}

}

releaseMethod

A tag handler should reset its state and release any private resources in the release method.

Cooperating Tags
Tags cooperate by sharing objects. JSP technology supports two styles of object sharing.

The first style requires that a shared object be named and stored in the page context (one of the
implicit objects accessible to JSP pages as well as tag handlers). To access objects created and
named by another tag, a tag handler uses the pageContext.getAttribute(name,scope)
method.

In the second style of object sharing, an object created by the enclosing tag handler of a group of
nested tags is available to all inner tag handlers. This form of object sharing has the advantage
that it uses a private namespace for the objects, thus reducing the potential for naming conflicts.

To access an object created by an enclosing tag, a tag handler must first obtain its enclosing tag
using the static method TagSupport.findAncestorWithClass(from,class) or the
TagSupport.getParent method. The former method should be used when a specific nesting of
tag handlers cannot be guaranteed. After the ancestor has been retrieved, a tag handler can
access any statically or dynamically created objects. Statically created objects are members of
the parent. Private objects can also be created dynamically. Such objects can be stored in a tag
handler using the setValue method and can be retrieved using the getValue method.

The following example illustrates a tag handler that supports both the named approach and the
private object approach to sharing objects. In the example, the handler for a query tag checks
whether an attribute named connectionId has been set. If the connection attribute has been

Programming Tags That Accept Scripting Elements

The Java EE 5 Tutorial • October 2008282

set, the handler retrieves the connection object from the page context. Otherwise, the tag
handler first retrieves the tag handler for the enclosing tag and then retrieves the connection
object from that handler.

public class QueryTag extends BodyTagSupport {

public int doStartTag() throws JspException {

String cid = getConnectionId();

Connection connection;

if (cid != null) {

// there is a connection id, use it

connection =(Connection)pageContext.

getAttribute(cid);

} else {

ConnectionTag ancestorTag =

(ConnectionTag)findAncestorWithClass(this,

ConnectionTag.class);

if (ancestorTag == null) {

throw new JspTagException("A query without

a connection attribute must be nested

within a connection tag.");
}

connection = ancestorTag.getConnection();

...

}

}

}

The query tag implemented by this tag handler can be used in either of the following ways:

<tt:connection cid="con01" ... >

...

</tt:connection>

<tt:query id="balances" connectionId="con01">
SELECT account, balance FROM acct_table

where customer_number = ?

<tt:param value="${requestScope.custNumber}" />

</tt:query>

<tt:connection ... >

<tt:query cid="balances">
SELECT account, balance FROM acct_table

where customer_number = ?

<tt:param value="${requestScope.custNumber}" />

</tt:query>

</tt:connection>

The TLD for the tag handler use the following declaration to indicate that the connectionId
attribute is optional:

Programming Tags That Accept Scripting Elements

Chapter 9 • Scripting in JSP Pages 283

<tag>

...

<attribute>

<name>connectionId</name>

<required>false</required>

</attribute>

</tag>

Tags That Define Variables
The mechanisms for defining variables in classic tags are similar to those described in
Chapter 8, “Custom Tags in JSP Pages.” You must declare the variable in a variable element of
the TLD or in a tag extra info class. Use PageContext().setAttribute(name,value) or
PageContext.setAttribute(name,value,scope) methods in the tag handler to create or
update an association between a name that is accessible in the page context and the object that is
the value of the variable. For classic tag handlers, Table 9–3 illustrates how the availability of a
variable affects when you may want to set or update the variable’s value.

TABLE 9–3 Variable Availability

Value Availability In Methods

NESTED Between the start tag and the end tag doStartTag, doInitBody, and doAfterBody

AT_BEGIN From the start tag until the end of the page doStartTag, doInitBody, doAfterBody, and
doEndTag

AT_END After the end tag until the end of the page doEndTag

A variable defined by a custom tag can also be accessed in a scripting expression. For example,
the web service described in the preceding section can be encapsulated in a custom tag that
returns the response in a variable named by the var attribute, and then var can be accessed in a
scripting expression as follows:

<ws:hello var="response"
name="<%=request.getParameter("username")%>" />

<h2><%= response %>!</h2>

Remember that in situations where scripting is not allowed (in a tag body where the
body-content is declared as scriptless and in a page where scripting is specified to be
invalid), you wouldn’t be able to access the variable in a scriptlet or an expression. Instead, you
would have to use the JSP expression language to access the variable.

Programming Tags That Accept Scripting Elements

The Java EE 5 Tutorial • October 2008284

JavaServer Faces Technology

JavaServer Faces technology is a server-side user interface component framework for Java
technology-based web applications.

The main components of JavaServer Faces technology are as follows:

■ An API for representing UI components and managing their state; handling events,
server-side validation, and data conversion; defining page navigation; supporting
internationalization and accessibility; and providing extensibility for all these features

■ Two JavaServer Pages (JSP) custom tag libraries for expressing UI components within a JSP
page and for wiring components to server-side objects

The well-defined programming model and tag libraries significantly ease the burden of building
and maintaining web applications with server-side UIs. With minimal effort, you can

■ Drop components onto a page by adding component tags
■ Wire component-generated events to server-side application code
■ Bind UI components on a page to server-side data
■ Construct a UI with reusable and extensible components
■ Save and restore UI state beyond the life of server requests

JavaServer Faces Technology User Interface
As shown in Figure 10–1, the user interface you create with JavaServer Faces technology
(represented by myUI in the graphic) runs on the server and renders back to the client.

10C H A P T E R 1 0

285

http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html

The JSP page, myform.jsp, is a JavaServer Faces page, which is a JSP page that includes
JavaServer Faces tags. It expresses the user interface components by using custom tags defined
by JavaServer Faces technology. The UI for the web application (represented by myUI in the
figure) manages the objects referenced by the JSP page. These objects include

■ The UI component objects that map to the tags on the JSP page
■ Any event listeners, validators, and converters that are registered on the components
■ The JavaBeans components that encapsulate the data and application-specific functionality

of the components

This chapter gives an overview of JavaServer Faces technology. After going over some of the
primary benefits of using JavaServer Faces technology and explaining what a JavaServer Faces
application is, it describes a simple application and specifies which part of the application the
developers of each role work on. It then describes the UI component model, the navigation
model, and the backing bean features supported by JavaServer Faces technology. Finally, this
chapter uses a page from a simple application to summarize the life cycle of a JavaServer Faces
page.

JavaServer Faces Technology Benefits
One of the greatest advantages of JavaServer Faces technology is that it offers a clean separation
between behavior and presentation. Web applications built using JSP technology achieve this
separation in part. However, a JSP application cannot map HTTP requests to
component-specific event handling nor manage UI elements as stateful objects on the server, as
a JavaServer Faces application can. JavaServer Faces technology allows you to build web
applications that implement the finer-grained separation of behavior and presentation that is
traditionally offered by client-side UI architectures.

The separation of logic from presentation also allows each member of a web application
development team to focus on his or her piece of the development process, and it provides a
simple programming model to link the pieces. For example, page authors with no programming
expertise can use JavaServer Faces technology UI component tags to link to server-side objects
from within a web page without writing any scripts.

Browser

Web Container

myform.jsp

myUI

Access page
HTTP Request

Renders HTML
HTTP Response

FIGURE 10–1 The UI Runs on the Server

JavaServer Faces Technology Benefits

The Java EE 5 Tutorial • October 2008286

Another important goal of JavaServer Faces technology is to leverage familiar UI-component
and web-tier concepts without limiting you to a particular scripting technology or markup
language. Although JavaServer Faces technology includes a JSP custom tag library for
representing components on a JSP page, the JavaServer Faces technology APIs are layered
directly on top of the Servlet API, as shown in Figure 3–2. This layering of APIs enables several
important application use cases, such as using another presentation technology instead of JSP
pages, creating your own custom components directly from the component classes, and
generating output for various client devices.

Most importantly, JavaServer Faces technology provides a rich architecture for managing
component state, processing component data, validating user input, and handling events.

What Is a JavaServer Faces Application?
For the most part, a JavaServer Faces application is like any other Java web application. A typical
JavaServer Faces application includes the following pieces:

■ A set of JSP pages (although you are not limited to using JSP pages as your presentation
technology)

■ A set of backing beans, which are JavaBeans components that define properties and
functions for UI components on a page

■ An application configuration resource file, which defines page navigation rules and
configures beans and other custom objects, such as custom components

■ A deployment descriptor (a web.xml file)
■ Possibly a set of custom objects created by the application developer. These objects might

include custom components, validators, converters, or listeners.
■ A set of custom tags for representing custom objects on the page

A JavaServer Faces application that includes JSP pages also uses the standard tag libraries
defined by JavaServer Faces technology for representing UI components and other objects on
the page.

A Simple JavaServer Faces Application
This section describes the general steps involved in developing a simple JavaServer Faces
application from the perspective of different development roles. These roles are:

■ Page author, who creates pages by using the JavaServer Faces tag libraries.
■ Application developer, who programs custom converters, validators, listeners, and backing

beans.
■ Component author, who creates custom UI components and renderers.

A Simple JavaServer Faces Application

Chapter 10 • JavaServer Faces Technology 287

■ Application architect, who configures the application, including defining the navigation
rules, configuring custom objects, and creating deployment descriptors.

This application is quite simple, and so it does not include any custom components. See chapter
“Writing a Method to Handle a Value-Change Event” on page 409 to learn about the
responsibilities of a component writer.

Steps in the Development Process
Developing a simple JavaServer Faces application usually requires these tasks:

■ Mapping the FacesServlet instance.
■ Creating the pages using the UI component and core tags.
■ Defining page navigation in the application configuration resource file.
■ Developing the backing beans.
■ Adding managed bean declarations to the application configuration resource file.

The example used in this section is the guessNumber application, located in the
tut-install/javaeetutorial5/examples/web/ directory. It asks you to guess a number between
0 and 10, inclusive. The second page tells you whether you guessed correctly. The example also
checks the validity of your input. The system log prints Duke’s number. Figure 10–2 shows what
the first page looks like.

The source for the guessNumber application is located in the
tut-install/javaeetutorial5/examples/web/guessNumber/ directory created when you unzip
the tutorial bundle (see Chapter 2, “Using the Tutorial Examples”).

FIGURE 10–2 The greeting.jsp Page of the guessNumberApplication

A Simple JavaServer Faces Application

The Java EE 5 Tutorial • October 2008288

To build, package, deploy, and run this example using NetBeans IDE, follow these steps:

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

3. Select the guessNumber folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the guessNumber project, and select Undeploy and Deploy.
7. To run the application, open the URL http://localhost:8080/guessNumber in a browser.

To build, package, and deploy this example using Ant, follow these steps:

1. Go to tut-install/javaeetutorial5/examples/web/guessNumber/.
2. Type ant.
3. Start the Application Server.
4. Type ant deploy.
5. To run the application, open the URL http://localhost:8080/guessNumber in a browser.

To learn how to configure the example, refer to the deployment descriptor (the web.xml file),
which includes the following configurations:
■ A display-name element that specifies the name that tools use to identify the application.
■ A servlet element that identifies the FacesServlet instance.
■ A servlet-mapping element that maps FacesServlet to a URL pattern.

Mapping the FacesServlet Instance
All JavaServer Faces applications must include a mapping to the FacesServlet instance in their
deployment descriptors. The FacesServlet instance accepts incoming requests, passes them to
the life cycle for processing, and initializes resources. The following piece of the guessNumber
example’s deployment descriptor performs the mapping to the FacesServlet instance:

<servlet>

<display-name>FacesServlet</display-name>

<servlet-name>FacesServlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

A Simple JavaServer Faces Application

Chapter 10 • JavaServer Faces Technology 289

<servlet-name>FacesServlet</servlet-name>

<url-pattern>/guess/*</url-pattern>

</servlet-mapping>

The mapping to FacesServlet shown above uses a prefix mapping to identify a JSP page as
having JavaServer Faces components. Because of this, the URL to the first JSP page of the
application must include the mapping. To accomplish this, the guessNumber example includes
an HTML page that has the URL to the first JSP page:

See “Identifying the Servlet for Life Cycle Processing” on page 461 for more information on how
to map the FacesServlet instance.

Creating the Pages
Creating the pages is the page author’s responsibility. This task involves laying out UI
components on the pages, mapping the components to beans, and adding tags that register
converters, validators, or listeners onto the components.

In this section you will build the
tut-install/javaeetutorial5/examples/examples/web/guessNumber/web/greeting.jsp
page, the first page of the guessNumber application. As with any JSP page, you’ll need to add the
usual HTML and HEAD tags to the page:

<HTML xmlns="http://www.w3.org/1999/xhtml"xml:lang="en">
<HEAD> <title>Hello</title> </HEAD>

...

</HTML>

You’ll also need a page directive that specifies the content type:

<%@ page contentType="application/xhtml+xml" %>

Declaring the Tag Libraries
In order to use JavaServer Faces components in JSP pages, you need to give your pages access to
the two standard tag libraries, the HTML component tag library and the core tag library using
taglib declarations:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http:.//java.sun.com/jsf/core" prefix="f" %>

The first taglib declaration declares the HTML component tag library with a prefix, h. All
component tags in the page have this prefix. The core tag library is declared with the prefix f. All
core tags in the page have this prefix.

A Simple JavaServer Faces Application

The Java EE 5 Tutorial • October 2008290

“User Interface Component Model” on page 299 includes a table that lists all the component
tags included with JavaServer Faces technology. “Adding UI Components to a Page Using the
HTML Component Tags” on page 329 discusses the tags in more detail.

Adding the view and form Tags
All JavaServer Faces pages are represented by a tree of components, called a view. The view tag
represents the root of the view. All JavaServer Faces component tags must be inside of a view
tag, which is defined in the core tag library.

The form tag represents an input form component, which allows the user to input some data
and submit it to the server, usually by clicking a button. All UI component tags that represent
editable components (such as text fields and menus) must be nested inside the form tag. In the
case of the greeting.jsp page, some of the tags contained in the form are outputText,
inputText, commandButton, and message. You can specify an ID for the form tag. This ID maps
to the associated form UI component on the server.

With the view and form tags added, our page looks like this (minus the HTML and HEAD tags):

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

<h:form id="helloForm1">
</h:form>

</f:view>

Adding a Label Component
The outputText tag represents a label. The greeting.jsp page has two outputText tags. One
of the tags displays the number 0. The other tag displays the number 10:

<h:outputText lang="en_US"
value="#{UserNumberBean.minimum}"/>

<h:outputText value="#{UserNumberBean.maximum}"/>

The value attributes of the tags get the values from the minimum and maximum properties of
UserNumberBean using value expressions, which are used to reference data stored in other
objects, such as beans. See “Backing Beans” on page 310 for more information on value
expressions.

With the addition of the outputText tags (along with some static text), the greeting page looks
like the following:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

<h:form id="helloForm1">

A Simple JavaServer Faces Application

Chapter 10 • JavaServer Faces Technology 291

<h2>Hi. My name is Duke. I’m thinking of a number from

<h:outputText lang="en_US"
value="#{UserNumberBean.minimum}"/> to

<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>

</h:form>

</f:view>

Adding an Image
To display images on a page, you use the graphicImage tag. The url attribute of the tag specifies
the path to the image file. Let’s add Duke to the page using a graphicImage tag:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

<h:form id="helloForm1">
<h2>Hi. My name is Duke. I’m thinking of a number from

<h:outputText lang="en_US"
value="#{UserNumberBean.minimum}"/> to

<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>

<h:graphicImage id="waveImg" url="/wave.med.gif" />

</h:form>

</f:view>

Adding a Text Field
The inputText tag represents a text field component. In the guessNumber example, this text
field takes an integer input value. The instance of this tag included in greeting.jsp has three
attributes: id, label, and value.

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}">
...

</h:inputText>

The id attribute corresponds to the ID of the component object represented by this tag. In this
case, an id attribute is required because the message tag (which is used to display validation
error messages) needs it to refer to the userNo component.

The label attribute specifies the name to be used by error messages to refer to the component.
In this example, label is set to User Number. As an example, if a user were to enter 23, the error
message that would be displayed is:

User Number: Validation Error: Value is greater than allowable maximum of 10.

A Simple JavaServer Faces Application

The Java EE 5 Tutorial • October 2008292

The value attribute binds the userNo component value to the bean property
UserNumberBean.userNumber, which holds the data entered into the text field.

After adding the inputText tag, the greeting page looks like the following:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

<h:form id="helloForm1">
<h2>Hi. My name is Duke. I’m thinking of a number from

<h:outputText lang="en_US"
value="#{UserNumberBean.minimum}"/> to

<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>

<h:graphicImage id="waveImg" url="/wave.med.gif" />

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}">
...

</h:inputText>

</h:form>

</f:view>

See “Backing Beans” on page 310 for more information on creating beans, binding to bean
properties, referencing bean methods, and configuring beans.

See “Using Text Components” on page 332 for more information on the inputText tag.

Registering a Validator on a Text Field
By nesting the validateLongRange tag within a text field’s component’s tag, the page author
registers a LongRangeValidator onto the text field. This validator checks whether the
component’s local data is within a certain range, defined by the validateLongRange tag’s
minimum and maximum attributes.

In the case of the greeting page, you need to validate the number the user enters into the text
field. So, you add a validateLongRange tag inside the inputText tag. The maximum and minimum

attributes of the validateLongRange tag get their values from the minimum and maximum

properties of UserNumberBean using the value expressions #{UserNumberBean.minimum} and
#{UserNumberBean.maximum}. See “Backing Beans” on page 310 for details on value
expressions.

After adding the validateLongRange tag, the page looks like this:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

<h:form id="helloForm1">

A Simple JavaServer Faces Application

Chapter 10 • JavaServer Faces Technology 293

<h2>Hi. My name is Duke. I’m thinking of a number from

<h:outputText lang="en_US"
value="#{UserNumberBean.minimum}"/> to

<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>

<h:graphicImage id="waveImg" url="/wave.med.gif" />

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}">

<f:validateLongRange

minimum="#{UserNumberBean.minimum}"
maximum="#{UserNumberBean.maximum}" />

</h:inputText>

</h:form>

</f:view>

For more information on the standard validators included with JavaServer Faces technology,
see “Using the Standard Validators” on page 364.

Adding a Custom Message
JavaServer Faces technology provides standard error messages that display on the page when
conversion or validation fails. In some cases, you might need to override the standard message.
For example, if a user were to enter a letter into the text field on greeting.jsp, he or she would
see the following error message:

User Number: ’m’ must be a number between -2147483648 and 2147483647 Example: 9346

This is wrong because the field really only accepts values from 0 through 10.

To override this message, you add a converterMessage attribute on the inputText tag. This
attribute references the custom error message:

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}"
converterMessage="#{ErrMsg.userNoConvert}">

...

</h:inputText>

The expression that converterMessage uses references the userNoConvert key of the ErrMsg
resource bundle. The application architect needs to define the message in the resource bundle
and configure the resource bundle. See “Configuring Error Messages” on page 297 for more
information on this.

See “Referencing Error Messages” on page 355 for more information on referencing error
messages.

A Simple JavaServer Faces Application

The Java EE 5 Tutorial • October 2008294

Adding a Button
The commandButton tag represents the button used to submit the data entered in the text field.
The action attribute specifies an outcome that helps the navigation mechanism decide which
page to open next. “Defining Page Navigation” on page 296 discusses this further.

With the addition of the commandButton tag, the greeting page looks like the following:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

<h:form id="helloForm1">
<h2>Hi. My name is Duke. I’m thinking of a number from

<h:outputText lang="en_US"
value="#{UserNumberBean.minimum}"/> to

<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>

<h:graphicImage id="waveImg" url="/wave.med.gif" />

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}">

<f:validateLongRange

minimum="#{UserNumberBean.minimum}"
maximum="#{UserNumberBean.maximum}" />

</h:inputText>

<h:commandButton id="submit"
action="success" value="Submit" />

</h:form>

</f:view>

See “Using Command Components for Performing Actions and Navigation” on page 337 for
more information on the commandButton tag.

Displaying Error Messages
A message tag is used to display error messages on a page when data conversion or validation
fails after the user submits the form. The message tag in greeting.jsp displays an error
message if the data entered in the field does not comply with the rules specified by the
LongRangeValidator implementation, whose tag is registered on the text field component.

The error message displays wherever you place the message tag on the page. The message tag’s
style attribute allows you to specify the formatting style for the message text. Its for attribute
refers to the component whose value failed validation, in this case the userNo component
represented by the inputText tag in the greeting.jsp page.

Put the message tag near the end of the page:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

A Simple JavaServer Faces Application

Chapter 10 • JavaServer Faces Technology 295

<h:form id="helloForm1">
<h2>Hi. My name is Duke. I’m thinking of a number from

<h:outputText lang="en_US"
value="#{UserNumberBean.minimum}"/> to

<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>

<h:graphicImage id="waveImg" url="/wave.med.gif" />

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}"
converterMessage="#{ErrMsg.userNoConvert}">
<f:validateLongRange

minimum="#{UserNumberBean.minimum}"
maximum="#{UserNumberBean.maximum}" />

</h:inputText>

<h:commandButton id="submit"
action="success" value="Submit" />

<h:message showSummary="true" showDetail="false"
style="color: red;

font-family: ’New Century Schoolbook’, serif;

font-style: oblique;

text-decoration: overline"
id="errors1"
for="userNo"/>

</h:form>

</f:view>

Now you have completed the greeting page. Assuming you have also done the response.jsp
page, you can move on to defining the page navigation rules.

Defining Page Navigation
Defining page navigation involves determining which page to go to after the user clicks a button
or a hyperlink. Navigation for the application is defined in the application configuration
resource file using a powerful rule-based system. Here is one of the navigation rules defined for
the guessNumber example:

<navigation-rule>

<from-view-id>/greeting.jsp</from-view-id>

<navigation-case>

<from-outcome>success</from-outcome>

<to-view-id>/response.jsp</to-view-id>

</navigation-case>

</navigation-rule>

<navigation-rule>

<from-view-id>/response.jsp</from-view-id>

<navigation-case>

A Simple JavaServer Faces Application

The Java EE 5 Tutorial • October 2008296

<from-outcome>success</from-outcome>

<to-view-id>/greeting.jsp</to-view-id>

</navigation-case>

</navigation-rule>

This navigation rule states that when the button on the greeting page is clicked the application
will navigate to response.jsp if the navigation system is given a logical outcome of success.

In the case of the Guess Number example, the logical outcome is defined by the action attribute
of the UICommand component that submits the form:

<h:commandButton id="submit" action="success"
value="Submit" />

To learn more about how navigation works, see “Navigation Model” on page 308.

Configuring Error Messages
In case the standard error messages don’t meet your needs, you can create new ones in resource
bundles and configure the resource bundles in your application configuration resource file. The
guessNumber example has one custom converter message, as described in “Adding a Custom
Message” on page 294.

This message is stored in the resource bundle, ApplicationMessages.properties:

userNoConvert=The value you entered is not a number.

The resource bundle is configured in the application configuration file:

<application>

<resource-bundle>

<base-name>guessNumber.ApplicationMessages</base-name>

<var>ErrMsg</var>

</resource-bundle>

</application>

The base-name element indicates the fully-qualified name of the resource bundle. The var
element indicates the name by which page authors refer to the resource bundle with the
expression language. Here is the inputText tag again:

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}"

converterMessage="#{ErrMsg.userNoConvert}">
...

</h:inputText>

The expression on the converterMessage attribute references the userNoConvert key of the
ErrMsg resource bundle.

A Simple JavaServer Faces Application

Chapter 10 • JavaServer Faces Technology 297

See “Registering Custom Error Messages” on page 450 for more information on configuring
custom error messages.

Developing the Beans
Developing beans is one responsibility of the application developer. A typical JavaServer Faces
application couples a backing bean with each page in the application. The backing bean defines
properties and methods that are associated with the UI components used on the page.

The page author binds a component’s value to a bean property using the component tag’s value
attribute to refer to the property. Recall that the userNo component on the greeting.jsp page
references the userNumber property of UserNumberBean:

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}">

...

</h:inputText>

Here is the userNumber backing bean property that maps to the data for the userNo component:

Integer userNumber = null;

...

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

}

public String getResponse() {

if(userNumber != null &&

userNumber.compareTo(randomInt) == 0) {

return "Yay! You got it!";
} else {

return "Sorry, "+userNumber+" is incorrect.";
}

}

See “Backing Beans” on page 310 for more information on creating backing beans.

Adding Managed Bean Declarations
After developing the backing beans to be used in the application, you need to configure them in
the application configuration resource file so that the JavaServer Faces implementation can
automatically create new instances of the beans whenever they are needed.

A Simple JavaServer Faces Application

The Java EE 5 Tutorial • October 2008298

The task of adding managed bean declarations to the application configuration resource file is
the application architect’s responsibility. Here is a managed bean declaration for
UserNumberBean:

<managed-bean>

<managed-bean-name>UserNumberBean</managed-bean-name>

<managed-bean-class>

guessNumber.UserNumberBean

</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

<managed-property>

<property-name>minimum</property-name>

<property-class>long</property-class>

<value>0</value>

</managed-property>

<managed-property>

<property-name>maximum</property-name>

<property-class>long</property-class>

<value>10</value>

</managed-property>

</managed-bean>

This declaration configures UserNumberBean so that its minimum property is initialized to 0, its
maximum property is initialized to 10, and it is added to session scope when it is created.

A page author can use the unified EL to access one of the bean’s properties, like this:

<h:outputText value="#{UserNumberBean.minimum}"/>

For more information on configuring beans, see “Configuring a Bean” on page 311.

User Interface Component Model
JavaServer Faces UI components are configurable, reusable elements that compose the user
interfaces of JavaServer Faces applications. A component can be simple, such as a button, or
compound, such as a table, which can be composed of multiple components.

JavaServer Faces technology provides a rich, flexible component architecture that includes the
following:

■ A set of UIComponent classes for specifying the state and behavior of UI components
■ A rendering model that defines how to render the components in various ways
■ An event and listener model that defines how to handle component events
■ A conversion model that defines how to register data converters onto a component
■ A validation model that defines how to register validators onto a component

User Interface Component Model

Chapter 10 • JavaServer Faces Technology 299

This section briefly describes each of these pieces of the component architecture.

User Interface Component Classes
JavaServer Faces technology provides a set of UI component classes and associated behavioral
interfaces that specify all the UI component functionality, such as holding component state,
maintaining a reference to objects, and driving event handling and rendering for a set of
standard components.

The component classes are completely extensible, allowing component writers to create their
own custom components. See Chapter 13, “Creating Custom UI Components,” for an example
of a custom image map component.

All JavaServer Faces UI component classes extend UIComponentBase, which defines the default
state and behavior of a UI component. The following set of UI component classes is included
with JavaServer Faces technology:
■ UIColumn: Represents a single column of data in a UIData component.
■ UICommand: Represents a control that fires actions when activated.
■ UIData: Represents a data binding to a collection of data represented by a DataModel

instance.
■ UIForm: Encapsulates a group of controls that submit data to the application. This

component is analogous to the form tag in HTML.
■ UIGraphic: Displays an image.
■ UIInput: Takes data input from a user. This class is a subclass of UIOutput.
■ UIMessage: Displays a localized message.
■ UIMessages: Displays a set of localized messages.
■ UIOutput: Displays data output on a page.
■ UIPanel: Manages the layout of its child components.
■ UIParameter: Represents substitution parameters.
■ UISelectBoolean: Allows a user to set a boolean value on a control by selecting or

deselecting it. This class is a subclass of UIInput.
■ UISelectItem: Represents a single item in a set of items.
■ UISelectItems: Represents an entire set of items.
■ UISelectMany: Allows a user to select multiple items from a group of items. This class is a

subclass of UIInput.
■ UISelectOne: Allows a user to select one item from a group of items. This class is a subclass

of UIInput.
■ UIViewRoot: Represents the root of the component tree.

User Interface Component Model

The Java EE 5 Tutorial • October 2008300

In addition to extending UIComponentBase, the component classes also implement one or more
behavioral interfaces, each of which defines certain behavior for a set of components whose
classes implement the interface.

These behavioral interfaces are as follows:

■ ActionSource: Indicates that the component can fire an action event. This interface is
intended for use with components based on JavaServer Faces technology 1.1_01 and earlier
versions.

■ ActionSource2: Extends ActionSource, and therefore provides the same functionality.
However, it allows components to use the unified EL when referencing methods that handle
action events.

■ EditableValueHolder: Extends ValueHolder and specifies additional features for editable
components, such as validation and emitting value-change events.

■ NamingContainer: Mandates that each component rooted at this component have a unique
ID.

■ StateHolder: Denotes that a component has state that must be saved between requests.
■ ValueHolder: Indicates that the component maintains a local value as well as the option of

accessing data in the model tier.

UICommand implements ActionSource2 and StateHolder. UIOutput and component classes
that extend UIOutput implement StateHolder and ValueHolder. UIInput and component
classes that extend UIInput implement EditableValueHolder, StateHolder, and
ValueHolder. UIComponentBase implements StateHolder. See the JavaServer Faces
Technology 1.2 API Specification for more information on these interfaces.

Only component writers will need to use the component classes and behavioral interfaces
directly. Page authors and application developers will use a standard UI component by
including a tag that represents it on a JSP page. Most of the components can be rendered in
different ways on a page. For example, a UICommand component can be rendered as a button or a
hyperlink.

The next section explains how the rendering model works and how page authors choose how to
render the components by selecting the appropriate tags.

User Interface Component Model

Chapter 10 • JavaServer Faces Technology 301

http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/javax/faces/component/package-summary.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/javax/faces/component/package-summary.html

Component Rendering Model
The JavaServer Faces component architecture is designed such that the functionality of the
components is defined by the component classes, whereas the component rendering can be
defined by a separate renderer. This design has several benefits, including:

■ Component writers can define the behavior of a component once but create multiple
renderers, each of which defines a different way to render the component to the same client
or to different clients.

■ Page authors and application developers can change the appearance of a component on the
page by selecting the tag that represents the appropriate combination of component and
renderer.

A render kit defines how component classes map to component tags that are appropriate for a
particular client. The JavaServer Faces implementation includes a standard HTML render kit
for rendering to an HTML client.

The render kit defines a set of Renderer classes for each component that it supports. Each
Renderer class defines a different way to render the particular component to the output defined
by the render kit. For example, a UISelectOne component has three different renderers. One of
them renders the component as a set of radio buttons. Another renders the component as a
combo box. The third one renders the component as a list box.

Each JSP custom tag defined in the standard HTML render kit is composed of the component
functionality (defined in the UIComponent class) and the rendering attributes (defined by the
Renderer class). For example, the two tags in Table 10–1 represent a UICommand component
rendered in two different ways.

TABLE 10–1 UICommandTags

Tag Rendered As

commandButton

commandLink

The command part of the tags shown in Table 10–1 corresponds to the UICommand class,
specifying the functionality, which is to fire an action. The button and hyperlink parts of the
tags each correspond to a separate Renderer class, which defines how the component appears
on the page.

User Interface Component Model

The Java EE 5 Tutorial • October 2008302

The JavaServer Faces implementation provides a custom tag library for rendering components
in HTML. It supports all the component tags listed in Table 10–2. To learn how to use the tags
in an example, see “Adding UI Components to a Page Using the HTML Component Tags” on
page 329.

TABLE 10–2 The UI Component Tags

Tag Functions Rendered As Appearance

column Represents a column of data in
a UIData component.

A column of data in an
HTML table

A column in a table

commandButton Submits a form to the
application.

An HTML <input

type=type> element,
where the type value can
be submit, reset, or
image

A button

commandLink Links to another page or
location on a page.

An HTML <a href>

element
A hyperlink

dataTable Represents a data wrapper. An HTML <table>

element
A table that can be
updated dynamically

form Represents an input form. The
inner tags of the form receive
the data that will be submitted
with the form.

An HTML <form>

element
No appearance

graphicImage Displays an image. An HTML element An image

inputHidden Allows a page author to
include a hidden variable in a
page.

An HTML <input

type=hidden> element
No appearance

inputSecret Allows a user to input a string
without the actual string
appearing in the field.

An HTML <input

type=password> element
A text field, which
displays a row of
characters instead of
the actual string
entered

inputText Allows a user to input a string. An HTML <input

type=text> element
A text field

inputTextarea Allows a user to enter a
multiline string.

An HTML <textarea>

element
A multi-row text field

message Displays a localized message. An HTML tag if
styles are used

A text string

messages Displays localized messages. A set of HTML

tags if styles are used
A text string

User Interface Component Model

Chapter 10 • JavaServer Faces Technology 303

TABLE 10–2 The UI Component Tags (Continued)
Tag Functions Rendered As Appearance

outputFormat Displays a localized message. Plain text Plain text

outputLabel Displays a nested component
as a label for a specified input
field.

An HTML <label>

element
Plain text

outputLink Links to another page or
location on a page without
generating an action event.

An HTML <a> element A hyperlink

outputText Displays a line of text. Plain text Plain text

panelGrid Displays a table. An HTML <table>

element with <tr> and
<td> elements

A table

panelGroup Groups a set of components
under one parent.

A row in a table

selectBooleanCheckbox Allows a user to change the
value of a Boolean choice.

An HTML <input

type=checkbox> element.
A check box

selectItem Represents one item in a list of
items in a UISelectOne
component.

An HTML <option>

element
No appearance

selectItems Represents a list of items in a
UISelectOne component.

A list of HTML <option>

elements
No appearance

selectManyCheckbox Displays a set of check boxes
from which the user can select
multiple values.

A set of HTML <input>

elements of type checkbox
A set of check boxes

selectManyListbox Allows a user to select multiple
items from a set of items, all
displayed at once.

An HTML <select>

element
A list box

selectManyMenu Allows a user to select multiple
items from a set of items.

An HTML <select>

element
A scrollable combo
box

selectOneListbox Allows a user to select one
item from a set of items, all
displayed at once.

An HTML <select>

element
A list box

selectOneMenu Allows a user to select one
item from a set of items.

An HTML <select>

element
A scrollable combo
box

selectOneRadio Allows a user to select one
item from a set of items.

An HTML <input

type=radio> element
A set of radio buttons

User Interface Component Model

The Java EE 5 Tutorial • October 2008304

Conversion Model
A JavaServer Faces application can optionally associate a component with server-side object
data. This object is a JavaBeans component, such as a backing bean. An application gets and sets
the object data for a component by calling the appropriate object properties for that
component.

When a component is bound to an object, the application has two views of the component’s
data:

■ The model view, in which data is represented as data types, such as int or long.
■ The presentation view, in which data is represented in a manner that can be read or

modified by the user. For example, a java.util.Date might be represented as a text string
in the format mm/dd/yy or as a set of three text strings.

The JavaServer Faces implementation automatically converts component data between these
two views when the bean property associated with the component is of one of the types
supported by the component’s data. For example, if a UISelectBoolean component is
associated with a bean property of type java.lang.Boolean, the JavaServer Faces
implementation will automatically convert the component’s data from String to Boolean. In
addition, some component data must be bound to properties of a particular type. For example, a
UISelectBoolean component must be bound to a property of type boolean or
java.lang.Boolean.

Sometimes you might want to convert a component’s data to a type other than a standard type,
or you might want to convert the format of the data. To facilitate this, JavaServer Faces
technology allows you to register a Converter implementation on UIOutput components and
components whose classes subclass UIOutput. If you register the Converter implementation on
a component, the Converter implementation converts the component’s data between the two
views.

You can either use the standard converters supplied with the JavaServer Faces implementation
or create your own custom converter.

To create and use a custom converter in your application, three things must happen:

■ The application developer must implement the Converter class. See “Creating a Custom
Converter” on page 395.

■ The application architect must register the Converter with the application. See “Registering
a Custom Converter” on page 453.

■ The page author must refer to the Converter object from the tag of the component whose
data must be converted. See “Using a Custom Converter” on page 377.

User Interface Component Model

Chapter 10 • JavaServer Faces Technology 305

Event and Listener Model
The JavaServer Faces event and listener model is similar to the JavaBeans event model in that it
has strongly typed event classes and listener interfaces that an application can use to handle
events generated by UI components.

An Event object identifies the component that generated the event and stores information
about the event. To be notified of an event, an application must provide an implementation of
the Listener class and must register it on the component that generates the event. When the
user activates a component, such as by clicking a button, an event is fired. This causes the
JavaServer Faces implementation to invoke the listener method that processes the event.

JavaServer Faces technology supports three kinds of events: value-change events, action events,
and data-model events.

An action event occurs when the user activates a component that implements ActionSource.
These components include buttons and hyperlinks.

A value-change event occurs when the user changes the value of a component represented by
UIInput or one of its subclasses. An example is selecting a check box, an action that results in
the component’s value changing to true. The component types that can generate these types of
events are the UIInput, UISelectOne, UISelectMany, and UISelectBoolean components.
Value-change events are fired only if no validation errors were detected.

Depending on the value of the immediate property (see “The immediate Attribute” on page 330)
of the component emitting the event, action events can be processed during the invoke
application phase or the apply request values phase, and value-change events can be processed
during the process validations phase or the apply request values phase.

A data-model event occurs when a new row of a UIData component is selected. The discussion
of data-model events is an advanced topic. It is not covered in this tutorial but may be discussed
in future versions of this tutorial.

There are two ways to cause your application to react to action events or value-change events
emitted by a standard component:

■ Implement an event listener class to handle the event and register the listener on the
component by nesting either a valueChangeListener tag or an actionListener tag inside
the component tag.

■ Implement a method of a backing bean to handle the event and refer to the method with a
method expression from the appropriate attribute of the component’s tag.

See “Implementing an Event Listener” on page 397 for information on how to implement an
event listener. See “Registering Listeners on Components” on page 362 for information on how
to register the listener on a component.

User Interface Component Model

The Java EE 5 Tutorial • October 2008306

See “Writing a Method to Handle an Action Event” on page 408 and “Writing a Method to
Handle a Value-Change Event” on page 409 for information on how to implement backing bean
methods that handle these events.

See “Referencing a Backing Bean Method” on page 373 for information on how to refer to the
backing bean method from the component tag.

When emitting events from custom components, you must implement the appropriate Event
class and manually queue the event on the component in addition to implementing an event
listener class or a backing bean method that handles the event. “Handling Events for Custom
Components” on page 431 explains how to do this.

Validation Model
JavaServer Faces technology supports a mechanism for validating the local data of editable
components (such as text fields). This validation occurs before the corresponding model data is
updated to match the local value.

Like the conversion model, the validation model defines a set of standard classes for performing
common data validation checks. The JavaServer Faces core tag library also defines a set of tags
that correspond to the standard Validator implementations. See Table 11–7 for a list of all the
standard validation classes and corresponding tags.

Most of the tags have a set of attributes for configuring the validator’s properties, such as the
minimum and maximum allowable values for the component’s data. The page author registers
the validator on a component by nesting the validator’s tag within the component’s tag.

The validation model also allows you to create your own custom validator and corresponding
tag to perform custom validation. The validation model provides two ways to implement
custom validation:
■ Implement a Validator interface that performs the validation. See “Implementing the

Validator Interface” on page 401 for more information.
■ Implement a backing bean method that performs the validation. See “Writing a Method to

Perform Validation” on page 408 for more information.

If you are implementing a Validator interface, you must also:
■ Register the Validator implementation with the application. See “Registering a Custom

Validator” on page 452 for more information.
■ Create a custom tag or use a validator tag to register the validator on the component. See

“Creating a Custom Tag” on page 404 for more information.

If you are implementing a backing bean method to perform validation, you also must reference
the validator from the component tag’s validator attribute. See “Referencing a Method That
Performs Validation” on page 375 for more information.

User Interface Component Model

Chapter 10 • JavaServer Faces Technology 307

Navigation Model
The JavaServer Faces navigation model makes it easy to define page navigation and to handle
any additional processing needed to choose the sequence in which pages are loaded.

As defined by JavaServer Faces technology, navigation is a set of rules for choosing the next page
to be displayed after a button or hyperlink is clicked. These rules are defined by the application
architect in the application configuration resource file (see “Application Configuration
Resource File” on page 439) using a small set of XML elements.

To handle navigation in the simplest application, you simply

■ Define the rules in the application configuration resource file.
■ Refer to an outcome String from the button or hyperlink component’s action attribute.

This outcome String is used by the JavaServer Faces implementation to select the
navigation rule.

The Guess Number example uses this kind of simple navigation. Here is an example navigation
rule from the guessNumber application described in “Defining Page Navigation” on page 296:

<navigation-rule>

<from-view-id>/greeting.jsp</from-view-id>

<navigation-case>

<from-outcome>success</from-outcome>

<to-view-id>/response.jsp</to-view-id>

</navigation-case>

</navigation-rule>

This rule states that when the button component on greeting.jsp is activated, the application
will navigate from the greeting.jsp page to the
tut-install/javaeetutorial5/examples/web/guessNumber/web/response.jsp page if the
outcome referenced by the button component’s tag is success. Here is the commandButton tag
from greeting.jsp that specifies a logical outcome of success:

<h:commandButton id="submit" action="success"
value="Submit" />

As the example demonstrates, each navigation-rule element defines how to get from one page
(specified in the from-view-id element) to the other pages of the application. The
navigation-rule elements can contain any number of navigation-case elements, each of
which defines the page to open next (defined by to-view-id) based on a logical outcome
(defined by from-outcome).

In more complicated applications, the logical outcome can also come from the return value of
an action method in a backing bean. This method performs some processing to determine the
outcome. For example, the method can check whether the password the user entered on the
page matches the one on file. If it does, the method might return success; otherwise, it might

Navigation Model

The Java EE 5 Tutorial • October 2008308

return failure. An outcome of failure might result in the logon page being reloaded. An
outcome of success might cause the page displaying the user’s credit card activity to open. If
you want the outcome to be returned by a method on a bean, you must refer to the method
using a method expression, using the action attribute, as shown by this example:

<h:commandButton id="submit"
action="#{userNumberBean.getOrderStatus}" value="Submit" />

When the user clicks the button represented by this tag, the corresponding component
generates an action event. This event is handled by the default ActionListener instance, which
calls the action method referenced by the component that triggered the event. The action
method returns a logical outcome to the action listener.

The listener passes the logical outcome and a reference to the action method that produced the
outcome to the default NavigationHandler. The NavigationHandler selects the page to
display next by matching the outcome or the action method reference against the navigation
rules in the application configuration resource file by the following process:

1. The NavigationHandler selects the navigation rule that matches the page currently
displayed.

2. It matches the outcome or the action method reference it received from the default
ActionListener with those defined by the navigation cases.

3. It tries to match both the method reference and the outcome against the same navigation
case.

4. If the previous step fails, the navigation handler attempts to match the outcome.
5. Finally, the navigation handler attempts to match the action method reference if the

previous two attempts failed.

When the NavigationHandler achieves a match, the render response phase begins. During this
phase, the page selected by the NavigationHandler will be rendered.

For more information on how to define navigation rules, see “Configuring Navigation Rules”
on page 453.

For more information on how to implement action methods to handle navigation, see “Writing
a Method to Handle an Action Event” on page 408.

For more information on how to reference outcomes or action methods from component tags,
see “Referencing a Method That Performs Navigation” on page 374.

Navigation Model

Chapter 10 • JavaServer Faces Technology 309

Backing Beans
A typical JavaServer Faces application includes one or more backing beans, each of which is a
JavaServer Faces managed bean that is associated with the UI components used in a particular
page. Managed beans are JavaBeans components (see “JavaBeans Components” on page 167)
that you can configure using the managed bean facility, which is described in “Configuring
Beans” on page 441. This section introduces the basic concepts on creating, configuring, and
using backing beans in an application.

Creating a Backing Bean Class
In addition to defining a no-arg constructor, as all JavaBeans components must do, a backing
bean class also defines a set of UI component properties and possibly a set of methods that
perform functions for a component.

Each of the component properties can be bound to one of the following:
■ A component’s value
■ A component instance
■ A converter instance
■ A listener instance
■ A validator instance

The most common functions that backing bean methods perform include the following:
■ Validating a component’s data
■ Handling an event fired by a component
■ Performing processing to determine the next page to which the application must navigate

As with all JavaBeans components, a property consists of a private data field and a set of
accessor methods, as shown by this code from the Guess Number example:

Integer userNumber = null;

...

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

}

public String getResponse() {

...

}

Because backing beans follow JavaBeans component conventions, you can reference beans
you’ve already written from your JavaServer Faces pages.

Backing Beans

The Java EE 5 Tutorial • October 2008310

When a bean property is bound to a component’s value, it can be any of the basic primitive and
numeric types or any Java object type for which the application has access to an appropriate
converter. For example, a property can be of type Date if the application has access to a
converter that can convert the Date type to a String and back again. See “Writing Bean
Properties” on page 381 for information on which types are accepted by which component tags.

When a bean property is bound to a component instance, the property’s type must be the same
as the component object. For example, if a UISelectBoolean is bound to the property, the
property must accept and return a UISelectBoolean object.

Likewise, if the property is bound to a converter, validator, or listener instance then the
property must be of the appropriate converter, validator, or listener type.

For more information on writing beans and their properties, see “Writing Bean Properties” on
page 381.

Configuring a Bean
JavaServer Faces technology supports a sophisticated managed bean creation facility, which
allows application architects to do the following:

■ Configure simple beans and more complex trees of beans
■ Initialize bean properties with values
■ Place beans in a particular scope
■ Expose the beans to the unified EL so that page authors can access them

An application architect configures the beans in the application configuration resource file. To
learn how to configure a managed bean, see “Configuring Beans” on page 441. The managed
bean configuration used by the Guess Number example is the following:

<managed-bean>

<managed-bean-name>UserNumberBean</managed-bean-name>

<managed-bean-class>

guessNumber.UserNumberBean

</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

<managed-property>

<property-name>minimum</property-name>

<property-class>long</property-class>

<value>0</value>

</managed-property>

<managed-property>

<property-name>maximum</property-name>

<property-class>long</property-class>

<value>10</value>

</managed-property>

</managed-bean>

Backing Beans

Chapter 10 • JavaServer Faces Technology 311

The JavaServer Faces implementation processes this element on application startup time. When
UserNumberBean is first referenced from the page, the JavaServer Faces implementation
initializes it and sets the values of the properties, maximum and minimum. The bean is then stored
in session scope if no instance exists. As such, the bean is available for all pages in the
application.

A page author can then access the bean properties from the component tags on the page using
the unified EL, as shown here:

<h:outputText value="#{UserNumberBean.minimum}"/>

The part of the expression before the . matches the name defined by the managed-bean-name
element. The part of the expression after the . matches the name defined by the property-name
element corresponding to the same managed-bean declaration.

Notice that the application configuration resource file does not configure the userNumber
property. Any property that does not have a corresponding managed-property element will be
initialized to whatever the constructor of the bean class has the instance variable set to. The next
section explains more about using the unified EL to reference backing beans.

For more information on configuring beans using the managed bean creation Facility, see
“Configuring Beans” on page 441.

Using the Unified EL to Reference Backing Beans
To bind UI component values and objects to backing bean properties or to reference backing
bean methods from UI component tags, page authors use the unified expression language (EL)
syntax defined by JSP 2.1. As explained in “Unified Expression Language” on page 146, some of
the features this language offers are:

■ Deferred evaluation of expressions
■ The ability to use a value expression to both read and write data
■ Method expressions

These features are all especially important for supporting the sophisticated UI component
model offered by JavaServer Faces technology.

Deferred evaluation of expressions is important because the JavaServer Faces life cycle is split
into separate phases so that component event handling, data conversion and validation, and
data propagation to external objects are all performed in an orderly fashion. The
implementation must be able to delay the evaluation of expressions until the proper phase of
the life cycle has been reached. Therefore, its tag attributes always use deferred evaluation
syntax, which is distinguished by the #{} delimiters. “The Life Cycle of a JavaServer Faces Page”
on page 314 describes the life cycle in detail.

In order to store data in external objects, almost all JavaServer Faces tag attributes use lvalue
value expressions, which are expressions that allow both getting and setting data on external
objects.

Backing Beans

The Java EE 5 Tutorial • October 2008312

Finally, some component tag attributes accept method expressions that reference methods that
handle component events, or validate or convert component data.

To illustrate a JavaServer Faces tag using the unified EL, let’s suppose that the userNo tag of the
guessNumber application referenced a method rather than using LongRangeValidator to
perform the validation of user input :

<h:inputText id="userNo"
value="#{UserNumberBean.userNumber}"
validator="#{UserNumberBean.validate}" />

This tag binds the userNo component’s value to the UserNumberBean.userNumber backing bean
property using an lvalue expression. It uses a method expression to refer to the
UserNumberBean.validate method, which performs validation of the component’s local value.
The local value is whatever the user enters into the field corresponding to this tag. This method
is invoked when the expression is evaluated, which is during the process validation phase of the
life cycle.

Nearly all JavaServer Faces tag attributes accept value expressions. In addition to referencing
bean properties, value expressions can also reference lists, maps, arrays, implicit objects, and
resource bundles.

Another use of value expressions is binding a component instance to a backing bean property.
A page author does this by referencing the property from the binding attribute:

<inputText binding="#{UserNumberBean.userNoComponent}" />

Those component tags that use method expressions are UIInput component tags and
UICommand component tags. See sections “Using Text Components” on page 332 and “Using
Command Components for Performing Actions and Navigation” on page 337 for more
information on how these component tags use method expressions.

In addition to using expressions with the standard component tags, you can also configure your
custom component properties to accept expressions by creating ValueExpression or
MethodExpression instances for them. See “Creating Custom Component Classes” on page 421
and “Enabling Component Properties to Accept Expressions” on page 426 for more information
on enabling your component’s attributes to support expressions.

To learn more about using expressions to bind to backing bean properties, see “Binding
Component Values and Instances to External Data Sources” on page 367.

For information on referencing backing bean methods from component tags, see “Referencing
a Backing Bean Method” on page 373.

Backing Beans

Chapter 10 • JavaServer Faces Technology 313

The Life Cycle of a JavaServer Faces Page
The life cycle of a JavaServer Faces page is somewhat similar to that of a JSP page: The client
makes an HTTP request for the page, and the server responds with the page translated to
HTML. However, the JavaServer Faces life cycle differs from the JSP life cycle in that it is split up
into multiple phases in order to support the sophisticated UI component model. This model
requires that component data be converted and validated, component events be handled, and
component data be propagated to beans in an orderly fashion.

A JavaServer Faces page is also different from a JSP page in that it is represented by a tree of UI
components, called a view. During the life cycle, the JavaServer Faces implementation must
build the view while considering state saved from a previous submission of the page. When the
client submits a page, the JavaServer Faces implementation performs several tasks, such as
validating the data input of components in the view and converting input data to types specified
on the server side.

The JavaServer Faces implementation performs all these tasks as a series of steps in the
JavaServer Faces request-response life cycle. Figure 10–3 illustrates these steps.

The life cycle handles both kinds of requests: initial requests and postbacks. When a user makes
an initial request for a page, he or she is requesting the page for the first time. When a user
executes a postback, he or she submits the form contained on a page that was previously loaded

Restore
View

Apply
Requests

Process
Events

Process
Validations

Process
Events

Update
Model
Values

Process
Events

Invoke
Application

Process
Events

Render
Response

Faces
Request

Response
Complete

Response
Complete

Response
Complete

Response
Complete

Render
Response

Conversion Errors/
Render Response Validation/

Conversion Errors/
Render Response

Faces
Response

FIGURE 10–3 JavaServer Faces Standard Request-Response Life Cycle

The Life Cycle of a JavaServer Faces Page

The Java EE 5 Tutorial • October 2008314

into the browser as a result of executing an initial request. When the life cycle handles an initial
request, it only executes the restore view and render response phases because there is no user
input or actions to process. Conversely, when the life cycle handles a postback, it executes all of
the phases.

Usually, the first request for a JavaServer Faces pages comes in as a result of clicking a hyperlink
on an HTML page that links to the JavaServer Faces page. To render a response that is another
JavaServer Faces page, the application creates a new view and stores it in the FacesContext
instance, which represents all of the contextual information associated with processing an
incoming request and creating a response. The application then acquires object references
needed by the view and calls FacesContext.renderResponse, which forces immediate
rendering of the view by skipping to the “Render Response Phase” on page 318 of the life cycle,
as is shown by the arrows labelled Render Response in the diagram.

Sometimes, an application might need to redirect to a different web application resource, such
as a web service, or generate a response that does not contain JavaServer Faces components. In
these situations, the developer must skip the rendering phase (“Render Response Phase” on
page 318) by calling FacesContext.responseComplete. This situation is also shown in the
diagram, this time with the arrows labelled Response Complete.

The most common situation is that a JavaServer Faces component submits a request for another
JavaServer Faces page. In this case, the JavaServer Faces implementation handles the request
and automatically goes through the phases in the life cycle to perform any necessary
conversions, validations, and model updates, and to generate the response.

This rest of this section explains each of the life cycle phases using the guessNumber example.

The details of the life cycle explained in this section are primarily intended for developers who
need to know information such as when validations, conversions, and events are usually
handled and what they can do to change how and when they are handled. Page authors don’t
necessarily need to know the details of the life cycle.

Restore View Phase
When a request for a JavaServer Faces page is made, such as when a link or a button is clicked,
the JavaServer Faces implementation begins the restore view phase.

During this phase, the JavaServer Faces implementation builds the view of the page, wires event
handlers and validators to components in the view, and saves the view in the FacesContext
instance, which contains all the information needed to process a single request. All the
application’s component tags, event handlers, converters, and validators have access to the
FacesContext instance.

If the request for the page is an initial request, the JavaServer Faces implementation creates an
empty view during this phase and the life cycle advances to the render response phase, during
which the empty view is populated with the components referenced by the tags in the page.

The Life Cycle of a JavaServer Faces Page

Chapter 10 • JavaServer Faces Technology 315

If the request for the page is a postback, a view corresponding to this page already exists. During
this phase, the JavaServer Faces implementation restores the view by using the state information
saved on the client or the server.

The view for the greeting.jsp page of the guessNumber example would have the UIView
component at the root of the tree, with helloForm as its child and the rest of the JavaServer
Faces UI components as children of helloForm.

Apply Request Values Phase
After the component tree is restored, each component in the tree extracts its new value from the
request parameters by using its decode method. The value is then stored locally on the
component. If the conversion of the value fails, an error message associated with the
component is generated and queued on FacesContext. This message will be displayed during
the render response phase, along with any validation errors resulting from the process
validations phase.

In the case of the userNo component on the greeting.jsp page, the value is whatever the user
entered in the field. Because the object property bound to the component has an Integer type,
the JavaServer Faces implementation converts the value from a String to an Integer.

If any decode methods or event listeners called renderResponse on the current FacesContext
instance, the JavaServer Faces implementation skips to the render response phase.

If events have been queued during this phase, the JavaServer Faces implementation broadcasts
the events to interested listeners.

If some components on the page have their immediate attributes (see “The immediate
Attribute” on page 330) set to true, then the validation, conversion, and events associated with
these components will be processed during this phase.

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call
FacesContext.responseComplete.

At the end of this phase, the components are set to their new values, and messages and events
have been queued.

Process Validations Phase
During this phase, the JavaServer Faces implementation processes all validators registered on
the components in the tree. It examines the component attributes that specify the rules for the
validation and compares these rules to the local value stored for the component.

If the local value is invalid, the JavaServer Faces implementation adds an error message to the
FacesContext instance, and the life cycle advances directly to the render response phase so that
the page is rendered again with the error messages displayed. If there were conversion errors
from the apply request values phase, the messages for these errors are also displayed.

The Life Cycle of a JavaServer Faces Page

The Java EE 5 Tutorial • October 2008316

If any validate methods or event listeners called renderResponse on the current
FacesContext, the JavaServer Faces implementation skips to the render response phase.

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call
FacesContext.responseComplete.

If events have been queued during this phase, the JavaServer Faces implementation broadcasts
them to interested listeners.

In the case of the greeting.jsp page, the JavaServer Faces implementation processes the
standard validator registered on the userNo inputText tag. It verifies that the data the user
entered in the text field is an integer in the range 0 to 10. If the data is invalid or if conversion
errors occurred during the apply request values phase, processing jumps to the render response
phase, during which the greeting.jsp page is rendered again, with the validation and
conversion error messages displayed in the component associated with the message tag.

Update Model Values Phase
After the JavaServer Faces implementation determines that the data is valid, it can walk the
component tree and set the corresponding server-side object properties to the components’
local values. The JavaServer Faces implementation will update only the bean properties pointed
at by an input component’s value attribute. If the local data cannot be converted to the types
specified by the bean properties, the life cycle advances directly to the render response phase so
that the page is re-rendered with errors displayed. This is similar to what happens with
validation errors.

If any updateModels methods or any listeners called renderResponse on the current
FacesContext instance, the JavaServer Faces implementation skips to the render response
phase.

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call
FacesContext.responseComplete.

If events have been queued during this phase, the JavaServer Faces implementation broadcasts
them to interested listeners.

At this stage, the userNo property of the UserNumberBean is set to the local value of the
userNumber component.

Invoke Application Phase
During this phase, the JavaServer Faces implementation handles any application-level events,
such as submitting a form or linking to another page.

The Life Cycle of a JavaServer Faces Page

Chapter 10 • JavaServer Faces Technology 317

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call
FacesContext.responseComplete.

If the view being processed was reconstructed from state information from a previous request
and if a component has fired an event, these events are broadcast to interested listeners.

The greeting.jsp page from the guessNumber example has one application-level event
associated with the UICommand component. When processing this event, a default
ActionListener implementation retrieves the outcome, success, from the component’s
action attribute. The listener passes the outcome to the default NavigationHandler. The
NavigationHandler matches the outcome to the proper navigation rule defined in the
application’s application configuration resource file to determine which page needs to be
displayed next. See “Configuring Navigation Rules” on page 453 for more information on
managing page navigation. The JavaServer Faces implementation then sets the response view to
that of the new page. Finally, the JavaServer Faces implementation transfers control to the
render response phase.

Render Response Phase
During this phase, the JavaServer Faces implementation delegates authority for rendering the
page to the JSP container if the application is using JSP pages. If this is an initial request, the
components represented on the page will be added to the component tree as the JSP container
executes the page. If this is not an initial request, the components are already added to the tree
so they needn’t be added again. In either case, the components will render themselves as the JSP
container traverses the tags in the page.

If the request is a postback and errors were encountered during the apply request values phase,
process validations phase, or update model values phase, the original page is rendered during
this phase. If the pages contain message or messages tags, any queued error messages are
displayed on the page.

After the content of the view is rendered, the state of the response is saved so that subsequent
requests can access it and it is available to the restore view phase.

In the case of the guessNumber example, if a request for the greeting.jsp page is an initial
request, an empty view representing this page is built and saved in FacesContext during the
restore view phase. During this phase, the empty view is populated with the components
referenced in the page and then rendered during this phase. If a request for the page is a
postback (such as when the user enters some invalid data and clicks Submit), the tree is rebuilt
during the restore view phase and continues through the request processing life cycle phases.

The Life Cycle of a JavaServer Faces Page

The Java EE 5 Tutorial • October 2008318

Further Information about JavaServer Faces Technology
For more information on JavaServer Faces technology, see:

■ The JavaServer Faces 1.2 TLD documentation:
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html

■ The JavaServer Faces 1.2 standard Render Kit documentation:
http://java.sun.com/

javaee/javaserverfaces/1.2/docs/renderkitdocs/index.html

■ The JavaServer Faces 1.1 API Specification:
http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/index.html

■ The JavaServer Faces 1.1 Specification:
http://java.sun.com/javaee/javaserverfaces/download.html

■ The JavaServer Faces web site:
http://java.sun.com/javaee/javaserverfaces

Further Information about JavaServer Faces Technology

Chapter 10 • JavaServer Faces Technology 319

http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/renderkitdocs/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/renderkitdocs/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/index.html
http://java.sun.com/javaee/javaserverfaces/download.html
http://java.sun.com/javaee/javaserverfaces

320

Using JavaServer Faces Technology in JSP Pages

The page author’s responsibility is to design the pages of a JavaServer Faces application. This
includes laying out the components on the page and wiring them to backing beans, validators,
converters, and other server-side objects associated with the page. This chapter uses the Duke’s
Bookstore application and the Coffee Break application (see Chapter 36, “The Coffee Break
Application”) to describe how page authors use the JavaServer Faces tags to perform the
following tasks:

■ Lay out standard UI components on a page
■ Reference localized messages
■ Register converters, validators, and listeners on components
■ Bind components and their values to server-side objects
■ Reference backing bean methods that perform navigation processing, handle events, and

perform validation

This chapter also describes how to include custom objects created by application developers
and component writers on a JSP page.

The Example JavaServer Faces Application
The JavaServer Faces technology chapters of this tutorial primarily use a rewritten version of the
Duke’s Bookstore example to illustrate the basic concepts of JavaServer Faces technology. This
version of the Duke’s Bookstore example includes several JavaServer Faces technology features:

■ The JavaServer Faces implementation provides FacesServlet, whose instances accept
incoming requests and pass them to the implementation for processing. Therefore, the
application does not need to include a servlet (such as the Dispatcher servlet) that processes
request parameters and dispatches to application logic, as do the other versions of Duke’s
Bookstore.

■ A custom image map component that allows you to select the locale for the application.

11C H A P T E R 1 1

321

■ Navigation configured in a centralized application configuration resource file. This
eliminates the need to calculate URLs, as other versions of the Duke’s Bookstore application
must do.

■ Backing beans associated with the pages. These beans hold the component data and perform
other processing associated with the components. This processing includes handling the
event generated when a user clicks a button or a hyperlink.

■ The table that displays the books from the database and the shopping cart are rendered with
the dataTable tag, which is used to dynamically render data in a table. The dataTable tag
on tut-install/javaeetutorial5/examples/web/bookstore6/web/bookshowcart.jsp also
includes input components.

■ The table that displays the books from the database uses a c:forEach JSTL tag,
demonstrating that you can easily use JavaServer Faces component tags with JSTL tags.

■ A custom validator and a custom converter are registered on the credit card field of the
bookcashier.jsp page.

■ A value-change listener is registered on the Name field of bookcashier.jsp. This listener
saves the name in a parameter so that
tut-install/javaeetutorial5/examples/web/bookstore6/web/bookreceipt.jsp can
access it.

This version of Duke’s Bookstore includes the same pages listed in Table 5–1. It also includes the
tut-install/javaeetutorial5/examples/web/bookstore6/web/chooselocale.jsp page,
which displays the custom image map that allows you to select the locale of the application. This
page is displayed first and advances directly to the bookstore.jsp page after the locale is
selected.

The packages of the Duke’s Bookstore application are:

■ backing: Includes the backing bean classes
■ components: Includes the custom UI component classes
■ converters: Includes the custom converter class
■ listeners: Includes the event handler and event listener classes
■ model: Includes a model bean class
■ renderers: Includes the custom renderers
■ resources: Includes custom error messages for the custom converter and validator
■ taglib: Includes custom tag handler classes
■ util: Includes a message factory class
■ validators: Includes a custom validator class

The Example JavaServer Faces Application

The Java EE 5 Tutorial • October 2008322

Chapter 12, “Developing with JavaServer Faces Technology,” describes how to program backing
beans, custom converters and validators, and event listeners. Chapter 13, “Creating Custom UI
Components,” describes how to program event handlers, custom components, renderers, and
tag handlers.

The source code for the application is located in the
tut-install/javaeetutorial5/examples/web/bookstore6/ directory.

To deploy and run the application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

2. In NetBeans 5.5, select File→Open Project.
3. In the Open Project dialog, navigate to:

tut-install/javaeetutorial5/examples/web/

4. Select the bookstore6 folder.
5. Select the Open as Main Project check box and the Open Required Projects check box.
6. Click Open Project.
7. In the Projects tab, right-click the bookstore6 project, and select Undeploy and Deploy.
8. To run the application, open the bookstore URL http://localhost:8080/bookstore6.

To deploy and run the application using Ant, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/web/bookstore6/.
2. Type ant. This target will spawn any necessary compilations, copy files to the

tut-install/javaeetutorial5/examples/web/bookstore6/build/ directory, and create a
WAR file and copy it to the
tut-install/javaeetutorial5/examples/web/bookstore6/dist/ directory.

3. Start the Application Server.
4. Perform all the operations described in “Creating a Data Source in the Application Server”

on page 98.
5. To deploy the example, type ant deploy. The deploy target outputs a URL for running the

application. Ignore this URL, and instead use the one shown in the next step.
6. To run the application, open the bookstore URL http://localhost:8080/bookstore6/.

To learn how to configure the example, refer to the web.xml file, which includes the following
elements:

■ A display-name element that specifies the name that tools use to identify the application.
■ A context-param element that specifies that the javax.faces.STATE_SAVING_METHOD

parameter has a value of client, meaning that state is saved on the client.

The Example JavaServer Faces Application

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 323

■ A listener element that identifies the ContextListener class used to create and remove
the database access.

■ A servlet element that identifies the FacesServlet instance.
■ A servlet-mapping element that maps FacesServlet to a URL pattern.
■ Nested inside a jsp-config element is a jsp-property-group element, which sets the

properties for the group of pages included in this version of Duke’s Bookstore. See “Setting
Properties for Groups of JSP Pages” on page 179 for more information.

To run the example, open the URL http://localhost:8080/bookstore6 in a browser.

Setting Up a Page
A typical JavaServer Faces page includes the following elements:

■ A set of tag library declarations that declare the two JavaServer Faces tag libraries
■ A view tag
■ A form tag

This section tells you how to add these elements to your pages and briefly describes the subview
tag for including JavaServer Faces pages inside other pages.

To use the JavaServer Faces UI components in your JSP page, you need to give the page access to
the two standard tag libraries: the JavaServer Faces HTML render kit tag library and the
JavaServer Faces core tag library. The JavaServer Faces standard HTML render kit tag library
defines tags that represent common HTML user interface components. The JavaServer Faces
core tag library defines tags that perform core actions and are independent of a particular
render kit.

Using these tag libraries is similar to using any other custom tag library. This chapter assumes
that you are familiar with the basics of using custom tags in JSP pages (see “Using Custom Tags”
on page 172).

As is the case with any tag library, each JavaServer Faces tag library must have a TLD that
describes it. The html_basic TLD describes the JavaServer Faces standard HTML render kit tag
library. The jsf_core TLD describes the JavaServer Faces core tag library.

Refer to the TLD documentation at
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html for a
complete list of the JavaServer Faces tags and their attributes.

To use any of the JavaServer Faces tags, you need to include these taglib directives at the top of
each page containing the tags defined by these tag libraries:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

Setting Up a Page

The Java EE 5 Tutorial • October 2008324

http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html

The uri attribute value uniquely identifies the TLD. The prefix attribute value is used to
distinguish tags belonging to the tag library. You can use other prefixes rather than the h or f
prefixes. However, you must use the prefix you have chosen when including the tag in the page.
For example, the form tag must be referenced in the page using the h prefix because the
preceding tag library directive uses the h prefix to distinguish the tags defined in
html_basic.tld:

<h:form ...>

A page containing JavaServer Faces tags is represented by a tree of components. At the root of
the tree is the UIViewRoot component. The view tag represents this component on the page.
Therefore, all component tags on the page must be enclosed in the view tag, which is defined in
the jsf_core TLD:

<f:view>

... other JavaServer Faces tags, possibly mixed with other

content ...

</f:view>

You can enclose other content, including HTML and other JSP tags, within the view tag, but all
JavaServer Faces tags must be enclosed within the view tag.

The view tag has four optional attributes:

■ A locale attribute. If this attribute is present, its value overrides the Locale stored in the
UIViewRoot component. This value is specified as a String and must be of this form:

:language:[{-,_}:country:[{-,_}:variant]

The language, country, and variant parts of the expression are as specified in
java.util.Locale.

■ A renderKitId attribute. A page author uses this attribute to refer to the ID of the render kit
used to render the page, therefore allowing the use of custom render kits. If this attribute is
not specified, the default HTML render kit is assumed. The process of creating custom
render kits is outside the scope of this tutorial.

■ A beforePhase attribute. This attribute references a method that takes a PhaseEvent object
and returns void, causing the referenced method to be called before each phase (except
restore view) of the life cycle begins.

■ An afterPhase attribute. This attribute references a method that takes a PhaseEvent object
and returns void, causing the referenced method to be called after each phase (except restore
view) in the life cycle ends.

An advanced developer might implement the methods referenced by beforePhase and
afterPhase to perform such functions as initialize or release resources on a per-page basis. This
feature is outside of the scope of this tutorial.

Setting Up a Page

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 325

The form tag is nested inside of the view tag. As its name suggests, the form tag represents a
form, which is submitted when a button or hyperlink on the page is clicked. For the data of
other components on the page to be submitted with the form, the tags representing the
components must be nested inside the form tag. See “Adding a Form Component” on page 331
for more details on using the form tag.

If you want to include a page containing JavaServer Faces tags within another JSP page that
includes JavaServer Faces tags, you must enclose the entire nested page in a subview tag. You
can add the subview tag on the parent page and nest a jsp:include inside it to include the page:

<f:subview id="myNestedPage">
<jsp:include page="theNestedPage.jsp" />

</f:subview>

You can also include the subview tag inside the nested page, but it must enclose all the
JavaServer Faces tags on the nested page.

The subview tag has two optional attributes: binding and rendered. The binding attribute
binds to a component that implements NamingContainer. One potential use case of binding a
subview component to a bean is if you want to dynamically add components to the subview in
the backing bean.

The rendered attribute can be set to true or false, indicating whether or not the components
nested in the subview tag should be rendered.

In summary, a typical JSP page that uses JavaServer Faces tags will look somewhat like this:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

<h:form>

other JavaServer Faces tags and core tags,

including one or more button or hyperlink components for

submitting the form

</h:form>

</f:view>

The sections “Using the Core Tags” on page 327 and “Adding UI Components to a Page Using
the HTML Component Tags” on page 329 describe how to use the core tags from the JavaServer
Faces core tag library and the component tags from the JavaServer Faces standard HTML
render kit tag library.

Setting Up a Page

The Java EE 5 Tutorial • October 2008326

Using the Core Tags
The tags included in the JavaServer Faces core tag library are used to perform core actions that
are independent of a particular render kit. These tags are listed in Table 11–1.

TABLE 11–1 The jsf_coreTags

Tag Categories Tags Functions

Event-handling
tags

actionListener Registers an action listener on a parent component

phaseListener Registers a PhaseListener instance on a UIViewRoot
component

setPropertyActionListener Registers a special action listener whose sole purpose is
to push a value into a backing bean when a form is
submitted

valueChangeListener Registers a value-change listener on a parent
component

Attribute
configuration tag

attribute Adds configurable attributes to a parent component

Data conversion
tags

converter Registers an arbitrary converter on the parent
component

convertDateTime Registers a DateTime converter instance on the parent
component

convertNumber Registers a Number converter instance on the parent
component

Facet tag facet Signifies a nested component that has a special
relationship to its enclosing tag

Localization tag loadBundle Specifies a ResourceBundle that is exposed as a Map

Parameter
substitution tag

param Substitutes parameters into a MessageFormat instance
and adds query string name-value pairs to a URL

Tags for
representing
items in a list

selectItem Represents one item in a list of items in a UISelectOne
or UISelectMany component

selectItems Represents a set of items in a UISelectOne or
UISelectMany component

Container tag subview Contains all JavaServer Faces tags in a page that is
included in another JSP page containing JavaServer
Faces tags

Using the Core Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 327

TABLE 11–1 The jsf_coreTags (Continued)
Tag Categories Tags Functions

Validator tags validateDoubleRange Registers a DoubleRangeValidator on a component

validateLength Registers a LengthValidator on a component

validateLongRange Registers a LongRangeValidator on a component

validator Registers a custom validator on a component

Output tag verbatim Generates a UIOutput component that gets its content
from the body of this tag

Container for
form tags

view Encloses all JavaServer Faces tags on the page

These tags are used in conjunction with component tags and are therefore explained in other
sections of this tutorial. Table 11–2 lists the sections that explain how to use specific jsf_core
tags.

TABLE 11–2 Where the jsf_coreTags Are Explained

Tags Where Explained

Event-handling tags “Registering Listeners on Components” on page 362

Data conversion tags “Using the Standard Converters” on page 357

facet “Using Data-Bound Table Components” on page 339 and “Laying Out Components
with the UIPanel Component” on page 343

loadBundle “Rendering Components for Selecting Multiple Values” on page 348

param “Displaying a Formatted Message with the outputFormat Tag” on page 336

selectItem and
selectItems

“The UISelectItem, UISelectItems, and UISelectItemGroup Components” on
page 349

subview “Setting Up a Page” on page 324

verbatim “Rendering a Hyperlink with the outputLink Tag” on page 336

view “Setting Up a Page” on page 324

Validator tags “Using the Standard Validators” on page 364 and “Creating a Custom Validator” on
page 400

Using the Core Tags

The Java EE 5 Tutorial • October 2008328

Adding UI Components to a Page Using the HTML Component
Tags

The tags defined by the JavaServer Faces standard HTML render kit tag library represent HTML
form components and other basic HTML elements. These components display data or accept
data from the user. This data is collected as part of a form and is submitted to the server, usually
when the user clicks a button. This section explains how to use each of the component tags
shown in Table 10–2.

The next section explains the more important tag attributes that are common to most
component tags. Please refer to the TLD documentation at
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html for a
complete list of tags and their attributes.

For each of the components discussed in the following sections, “Writing Bean Properties” on
page 381 explains how to write a bean property bound to a particular UI component or its value.

UI Component Tag Attributes
In general, most of the component tags support these attributes:
■ id: Uniquely identifies the component.
■ immediate: If set to true, indicates that any events, validation, and conversion associated

with the component should happen in the apply request values phase rather than a later
phase.

■ rendered: Specifies a condition in which the component should be rendered. If the
condition is not satisfied, the component is not rendered.

■ style: Specifies a Cascading Style Sheet (CSS) style for the tag.
■ styleClass: Specifies a CSS stylesheet class that contains definitions of the styles.
■ value: Identifies an external data source and binds the component’s value to it.
■ binding: Identifies a bean property and binds the component instance to it.

All of the UI component tag attributes (except id) can accept expressions, as defined by the
unified EL described in “Unified Expression Language” on page 146.

The idAttribute
The id attribute is not required for a component tag except in the case when another
component or a server-side class must refer to the component. If you don’t include an id

attribute, the JavaServer Faces implementation automatically generates a component ID. Unlike
most other JavaServer Faces tag attributes, the id attribute only takes expressions using the
immediate evaluation syntax, which uses the ${} delimiters.

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 329

http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html

The immediateAttribute
UIInput components and command components (those that implement ActionSource, such
as buttons and hyperlinks) can set the immediate attribute to true to force events, validations,
and conversions to be processed during the apply request values phase of the life cycle. Page
authors need to carefully consider how the combination of an input component’s immediate
value and a command component’s immediate value determines what happens when the
command component is activated.

Assume that you have a page with a button and a field for entering the quantity of a book in a
shopping cart. If both the button’s and the field’s immediate attributes are set to true, the new
value of the field will be available for any processing associated with the event that is generated
when the button is clicked. The event associated with the button and the event, validation, and
conversion associated with the field are all handled during the apply request values phase.

If the button’s immediate attribute is set to true but the field’s immediate attribute is set to
false, the event associated with the button is processed without updating the field’s local value
to the model layer. This is because any events, conversion, or validation associated with the field
occurs during its usual phases of the life cycle, which come after the apply request values phase.

The bookshowcart.jsp page of the Duke’s Bookstore application has examples of components
using the immediate attribute to control which component’s data is updated when certain
buttons are clicked. The quantity field for each book has its immediate attribute set to false.
(The quantity fields are generated by the UIData component. See “Using Data-Bound Table
Components” on page 339, for more information.) The immediate attribute of the Continue
Shopping hyperlink is set to true. The immediate attribute of the Update Quantities hyperlink
is set to false.

If you click the Continue Shopping hyperlink, none of the changes entered into the quantity
input fields will be processed. If you click the Update Quantities hyperlink, the values in the
quantity fields will be updated in the shopping cart.

The renderedAttribute
A component tag uses a Boolean JavaServer Faces expression language (EL) expression, along
with the rendered attribute, to determine whether or not the component will be rendered. For
example, the check commandLink component on the bookcatalog.jsp page is not rendered if
the cart contains no items:

<h:commandLink id="check"
...

rendered="#{cart.numberOfItems > 0}">
<h:outputText

value="#{bundle.CartCheck}"/>
</h:commandLink>

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008330

Unlike nearly every other JavaServer Faces tag attribute, the rendered attribute is restricted to
using rvalue expressions. As explained in “Unified Expression Language” on page 146, rvalue
expressions can only read data; they cannot write the data back to the data source. Therefore,
expressions used with rendered attributes can use the arithmetic operators and literals that
rvalue expressions can use but lvalue expressions cannot use. For example, the expression in the
preceding example uses the > operator.

The style and styleClassAttributes
The style and styleClass attributes allow you to specify Cascading Style Sheets (CSS) styles
for the rendered output of your component tags. “Displaying Error Messages with the message
and messages Tags” on page 352 describes an example of using the style attribute to specify
styles directly in the attribute. A component tag can instead refer to a CSS stylesheet class. The
dataTable tag on the bookcatalog.jsp page of the Duke’s Bookstore application references the
style class list-background:

<h:dataTable id="books"
...

styleClass="list-background"
value="#{bookDBAO.books}"
var="book">

The stylesheet that defines this class is stylesheet.css, which is included in the application.
For more information on defining styles, please the see Cascading Style Sheets Specification at
http://www.w3.org/Style/CSS/.

The value and bindingAttributes
A tag representing a component defined by UIOutput or a subclass of UIOutput uses value and
binding attributes to bind its component’s value or instance respectively to an external data
source. “Binding Component Values and Instances to External Data Sources” on page 367
explains how to use these attributes.

Adding a Form Component
A UIForm component class represents an input form, which includes child components that
contain data that is either presented to the user or submitted with the form.

Figure 11–1 shows a typical login form, in which a user enters a user name and password, and
submits the form by clicking the Login button.

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 331

http://www.w3.org/Style/CSS/

The form tag represents the UIForm component on the page and encloses all the components
that display or collect data from the user, as shown here:

<h:form>

... other JavaServer Faces tags and other content...

</h:form>

The form tag can also include HTML markup to lay out the components on the page. The form
tag itself does not perform any layout; its purpose is to collect data and to declare attributes that
can be used by other components in the form. A page can include multiple form tags, but only
the values from the form that the user submits will be included in the postback.

Using Text Components
Text components allow users to view and edit text in web applications. The basic kinds of text
components are:

■ Label, which displays read-only text.
■ Text field, which allows users to enter text, often to be submitted as part of a form.
■ Password field, which is one kind of text field that displays a set of characters, such as

asterisks, instead of the password that the user enters.
■ Text area, which is another kind of text field that allow users to enter multiple lines of text.

Figure 11–2 shows examples of these text components.

FIGURE 11–1 A Typical Form

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008332

An editable text component in a JavaServer Faces application is represented by a UIInput
component. One example is a text field. A read-only text component in a JavaServer Faces
application is represented by a UIOutput component. One example is a label.

The UIInput and UIOutput components can each be rendered in four ways to display more
specialized text components. Table 11–3 lists all the renderers of UIInput and UIOutput and the
tags that represent the component and renderer combination. Recall from “Component
Rendering Model” on page 302 that the name of a tag is composed of the name of the
component and the name of the renderer. For example, the inputText tag refers to a UIInput
component that is rendered with the Text renderer.

TABLE 11–3 UIInput and UIOutputTags

Component Renderer Tag Function

UIInput Hidden inputHidden Allows a page author to include a hidden variable in a
page

Secret inputSecret The standard password field: Accepts one line of text with
no spaces and displays it as a set of asterisks as it is typed

Text inputText The standard text field: Accepts a text string of one line

TextArea inputTextarea The standard text area: Accepts multiple lines of text

UIOutput Label outputLabel The standard read-only label: Displays a component as a
label for a specified input field

Link outputLink Displays an <a href> tag that links to another page
without generating an action event

OutputMessage outputFormat Displays a localized message

Text outputText Displays a text string of one line

The UIInput component tags support the following tag attributes in addition to those described
at the beginning of “Adding UI Components to a Page Using the HTML Component Tags” on
page 329. This list does not include all the attributes supported by the UIInput component tags,
just those that page authors will use most often. Please refer to the html_basic.tld file for the
complete list.

FIGURE 11–2 Example Text Components

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 333

■ converter: Identifies a converter that will be used to convert the component’s local data. See
“Using the Standard Converters” on page 357 for more information on how to use this
attribute.

■ converterMessage: Specifies an error message to display when the converter registered on
the component fails.

■ dir: Specifies the direction of the text displayed by this component. Acceptable values are
LTR, meaning left-to-right, and RTL, meaning right-to-left.

■ label: Specifies a name that can be used to identify this component in error messages.
■ lang: Specifies the code for the language used in the rendered markup, such as en_US.
■ required: Takes a boolean value that indicates whether or not the user must enter a value in

this component.
■ requiredMessage: Specifies an error message to display when the user does not enter a value

into the component.
■ validator: Identifies a method expression pointing to a backing bean method that

performs validation on the component’s data. See “Referencing a Method That Performs
Validation” on page 375 for an example of using the validator tag.

■ validatorMessage: Specifies an error message to display when the validator registered on
the component fails to validate the component’s local value.

■ valueChangeListener: Identifies a method expression that points to a backing bean
method that handles the event of entering a value in this component. See “Referencing a
Method That Handles a Value-change Event” on page 375 for an example of using
valueChangeListener.

The UIOutput component tags support the converter tag attribute in addition to those listed in
“Adding UI Components to a Page Using the HTML Component Tags” on page 329. The rest of
this section explains how to use selected tags listed in Table 11–3. The other tags are written in a
similar way.

Rendering a Text Field with the inputText Tag
The inputText tag is used to display a text field. It represents the combination of a Text
renderer and a UIInput component. A similar tag, the outputText tag, displays a read-only,
single-line string. It represents the combination of a Text renderer and a UIOutput component.
This section shows you how to use the inputText tag. The outputText tag is written in a similar
way.

Here is an example of an inputText tag from the bookcashier.jsp page:

<h:inputText id="name" label="Customer Name" size="50"
value="#{cashier.name}"
required="true"
requiredMessage="#{customMessages.CustomerName}">

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008334

<f:valueChangeListener

type="com.sun.bookstore6.listeners.NameChanged" />

</h:inputText>

The label attribute specifies a user-friendly name that will be used in the substitution
parameters of error messages displayed for this component.

The value attribute refers to the name property of CashierBean. This property holds the data
for the name component. After the user submits the form, the value of the name property in
CashierBean will be set to the text entered in the field corresponding to this tag.

The required attribute causes the page to reload with errors displayed if the user does not enter
a value in the name text field. The JavaServer Faces implementation checks whether the value of
the component is null or is an empty String.

If your component must have a non-null value or a String value at least one character in
length, you should add a required attribute to your component tag and set it to true. If your
tag does have a required attribute that is set to true and the value is null or a zero-length
string, no other validators registered on the tag are called. If your tag does not have a required
attribute set to true, other validators registered on the tag are called, but those validators must
handle the possibility of a null or zero-length string.

The requiredMessage attribute references an error message from a resource bundle, which is
declared in the application configuration file. Refer to “Registering Custom Error Messages” on
page 450 for details on how to declare and reference the resource bundle.

Rendering a Label with the outputLabel Tag
The outputLabel tag is used to attach a label to a specified input field for accessibility purposes.
The bookcashier.jsp page uses an outputLabel tag to render the label of a check box:

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}" >

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

...

The for attribute of the outputLabel tag maps to the id of the input field to which the label is
attached. The outputText tag nested inside the outputLabel tag represents the actual label
component. The value attribute on the outputText tag indicates the text that is displayed next
to the input field.

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 335

Instead of using an outputText tag for the text displayed as a label, you can simply use the
outputLabel tag’s value attribute. The following code snippet shows what the previous code
snippet would look like if it used the value attribute of the outputLabel tag to specify the text of
the label.

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

...

Rendering a Hyperlink with the outputLink Tag
The outputLink tag is used to render a hyperlink that, when clicked, loads another page but
does not generate an action event. You should use this tag instead of the commandLink tag if you
always want the URL (specified by the outputLink tag’s value attribute) to open and do not
have to perform any processing when the user clicks on the link. The Duke’s Bookstore
application does not utilize this tag, but here is an example of it:

<h:outputLink value="javadocs">
Documentation for this demo

</h:outputLink>

The text in the body of the outputLink tag identifies the text the user clicks to get to the next
page.

Displaying a Formatted Message with the outputFormat Tag
The outputFormat tag allows a page author to display concatenated messages as a
MessageFormat pattern, as described in the API documentation for java.text.MessageFormat
(see http://java.sun.com/javase/6/docs/api/java/text/MessageFormat.html). Here is
an example of an outputFormat tag from the bookshowcart.jsp page of the Duke’s Bookstore
application:

<h:outputFormat value="#{bundle.CartItemCount}">
<f:param value="#{cart.numberOfItems}"/>

</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The param tag specifies the
substitution parameters for the message.

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008336

http://java.sun.com/javase/6/docs/api/java/text/MessageFormat.html

In the example outputFormat tag, the value for the parameter maps to the number of items in
the shopping cart. When the message is displayed on the page, the number of items in the cart
replaces the {0} in the message corresponding to the CartItemCount key in the bundle
resource bundle:

Your shopping cart contains " + "{0,choice,0#no items|1#one item|1< {0} items

This message represents three possibilities:
■ Your shopping cart contains no items.
■ Your shopping cart contains one item.
■ Your shopping cart contains {0} items.

The value of the parameter replaces the {0} from the message in the sentence in the third bullet.
This is an example of a value-expression-enabled tag attribute accepting a complex EL
expression.

An outputFormat tag can include more than one param tag for those messages that have more
than one parameter that must be concatenated into the message. If you have more than one
parameter for one message, make sure that you put the param tags in the proper order so that
the data is inserted in the correct place in the message.

A page author can also hard code the data to be substituted in the message by using a literal
value with the value attribute on the param tag.

Rendering a Password Field with the inputSecret Tag
The inputSecret tag renders an <input type="password"> HTML tag. When the user types a
string into this field, a row of asterisks is displayed instead of the text the user types. The Duke’s
Bookstore application does not include this tag, but here is an example of one:

<h:inputSecret redisplay="false"
value="#{LoginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password from
being displayed in a query string or in the source file of the resulting HTML page.

Using Command Components for Performing Actions
and Navigation
The button and hyperlink components are used to perform and action, such as submitting a
form, and for navigating to another page.

Command components in JavaServer Faces applications are represented by the UICommand
component, which performs an action when it is activated. The UICommand component
supports two renderers: Button and Link as UICommand component renderers.

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 337

The commandButton tag represents the combination of a UICommand component and a Button
renderer and is rendered as a button. The commandLink tag represents the combination of a
UICommand component and a Link renderer and is rendered as a hyperlink.

In addition to the tag attributes listed in “Adding UI Components to a Page Using the HTML
Component Tags” on page 329, the commandButton and commandLink tags can use these
attributes:

■ action, which is either a logical outcome String or a method expression pointing to a bean
method that returns a logical outcome String. In either case, the logical outcome String is
used by the default NavigationHandler instance to determine what page to access when the
UICommand component is activated.

■ actionListener, which is a method expression pointing to a bean method that processes an
action event fired by the UICommand component.

See “Referencing a Method That Performs Navigation” on page 374 for more information on
using the action attribute.

See “Referencing a Method That Handles an Action Event” on page 374 for details on using the
actionListener attribute.

Rendering a Button with the commandButton Tag
The bookcashier.jsp page of the Duke’s Bookstore application includes a commandButton tag.
When a user clicks the button, the data from the current page is processed, and the next page is
opened. Here is the commandButton tag from bookcashier.jsp:

<h:commandButton value="#{bundle.Submit}"
action="#{cashier.submit}"/>

Clicking the button will cause the submit method of CashierBean to be invoked because the
action attribute references the submit method of the CashierBean backing bean. The submit
method performs some processing and returns a logical outcome. This is passed to the default
NavigationHandler, which matches the outcome against a set of navigation rules defined in the
application configuration resource file.

The value attribute of the preceding example commandButton tag references the localized
message for the button’s label. The bundle part of the expression refers to the ResourceBundle
that contains a set of localized messages. The Submit part of the expression is the key that
corresponds to the message that is displayed on the button. For more information on
referencing localized messages, see “Rendering Components for Selecting Multiple Values” on
page 348. See “Referencing a Method That Performs Navigation” on page 374 for information on
how to use the action attribute.

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008338

Rendering a Hyperlink with the commandLink Tag
The commandLink tag represents an HTML hyperlink and is rendered as an HTML <a> element.
The commandLink tag is used to submit an action event to the application. See “Implementing
Action Listeners” on page 399 for more information on action events.

A commandLink tag must include a nested outputText tag, which represents the text the user
clicks to generate the event. The following tag is from the chooselocale.jsp page from the
Duke’s Bookstore application.

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">
<h:outputText value="#{bundle.English}" />

</h:commandLink>

This tag will render the following HTML:

<a id="_id3:NAmerica" href="#"
onclick="document.forms[’_id3’][’_id3:NAmerica’].
value=’_id3:NAmerica’;
document.forms[’_id3’].submit();
return false;">English

Note – The commandLink tag will render JavaScript. If you use this tag, make sure your browser is
JavaScript-enabled.

Using Data-Bound Table Components
Data-bound table components display relational data in a tabular format. Figure 11–3 shows an
example of this kind of table.

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 339

In a JavaServer Faces application, the UIData component supports binding to a collection of
data objects. It does the work of iterating over each record in the data source. The standard
Table renderer displays the data as an HTML table. The UIColumn component represents a
column of data within the table. Here is a portion of the dataTable tag used by the
bookshowcart.jsp page of the Duke’s Bookstore example:

<h:dataTable id="items"
captionClass="list-caption"
columnClasses="list-column-center, list-column-left,

list-column-right, list-column-center"
footerClass="list-footer"
headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
summary="#{bundle.ShoppingCart}"
value="#{cart.items}"
var="item">
<h:column headerClass="list-header-left">

<f:facet name="header">
<h:outputText value="#{bundle.ItemQuantity}" />

</f:facet>

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >

...

</h:inputText>

...

</h:column>

<h:column>

<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>

</f:facet>

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>

</h:commandLink>

FIGURE 11–3 Table on the bookshowcart.jspPage

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008340

</h:column>

...

<f:facet name="footer"
<h:panelGroup>

<h:outputText value="#{bundle.Subtotal}"/>
<h:outputText value="#{cart.total}" />

<f:convertNumber type="currency" />

</h:outputText>

</h:panelGroup>

</f:facet>

<f:facet name="caption"
<h:outputText value="#{bundle.Caption}"/>

</h:dataTable>

Figure 11–3 shows a data grid that this dataTable tag can display.

The example dataTable tag displays the books in the shopping cart as well as the quantity of
each book in the shopping cart, the prices, and a set of buttons, which the user can click to
remove books from the shopping cart.

The column tags represent columns of data in a UIData component. While the UIData
component is iterating over the rows of data, it processes the UIColumn component associated
with each column tag for each row in the table.

The UIData component shown in the preceding code example iterates through the list of books
(cart.items) in the shopping cart and displays their titles, authors, and prices. Each time
UIData iterates through the list of books, it renders one cell in each column.

The dataTable and column tags use facets to represent parts of the table that are not repeated or
updated. These include headers, footers, and captions.

In the preceding example, column tags include facet tags for representing column headers or
footers. The column tag allows you to control the styles of these headers and footers by
supporting the headerClass and footerClass attributes. These attributes accept
space-separated lists of CSS style classes, which will be applied to the header and footer cells of
the corresponding column in the rendered table.

Facets can have only one child, and so a panelGroup tag is needed if you want to group more
than one component within a facet. Because the facet tag representing the footer includes
more than one tag, the panelGroup is needed to group those tags. Finally, this dataTable tag
includes a facet tag with its name attribute set to caption, causing a table caption to be
rendered below the table.

This table is a classic use case for a UIData component because the number of books might not
be known to the application developer or the page author at the time the application is
developed. The UIData component can dynamically adjust the number of rows of the table to
accommodate the underlying data.

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 341

The value attribute of a dataTable tag references the data to be included in the table. This data
can take the form of

■ A list of beans
■ An array of beans
■ A single bean
■ A javax.faces.model.DataModel

■ A java.sql.ResultSet

■ A javax.servlet.jsp.jstl.sql.ResultSet

■ A javax.sql.RowSet

All data sources for UIData components have a DataModel wrapper. Unless you explicitly
construct a DataModel wrapper, the JavaServer Faces implementation will create one around
data of any of the other acceptable types. See “Writing Bean Properties” on page 381 for more
information on how to write properties for use with a UIData component.

The var attribute specifies a name that is used by the components within the dataTable tag as
an alias to the data referenced in the value attribute of dataTable.

In the dataTable tag from the bookshowcart.jsp page, the value attribute points to a list of
books. The var attribute points to a single book in that list. As the UIData component iterates
through the list, each reference to item points to the current book in the list.

The UIData component also has the ability to display only a subset of the underlying data. This
is not shown in the preceding example. To display a subset of the data, you use the optional
first and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies the
number of rows, starting with the first row, to be displayed. For example, if you wanted to
display records 2 through 10 of the underlying data, you would set first to 2 and rows to 9.
When you display a subset of the data in your pages, you might want to consider including a
link or button that causes subsequent rows to display when clicked. By default, both first and
rows are set to zero, and this causes all the rows of the underlying data to display.

The dataTable tag also has a set of optional attributes for adding styles to the table:

■ captionClass: Defines styles for the table caption
■ columnClasses: Defines styles for all the columns
■ footerClass: Defines styles for the footer
■ headerClass: Defines styles for the header
■ rowClasses: Defines styles for the rows
■ styleClass: Defines styles for the entire table

Each of these attributes can specify more than one style. If columnClasses or rowClasses
specifies more than one style, the styles are applied to the columns or rows in the order that the
styles are listed in the attribute. For example, if columnClasses specifies styles

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008342

list-column-center and list-column-right and if there are two columns in the table, the
first column will have style list-column-center, and the second column will have style
list-column-right.

If the style attribute specifies more styles than there are columns or rows, the remaining styles
will be assigned to columns or rows starting from the first column or row. Similarly, if the style
attribute specifies fewer styles than there are columns or rows, the remaining columns or rows
will be assigned styles starting from the first style.

Adding Graphics and Images with the graphicImage
Tag
In a JavaServer Faces application, the UIGraphic component represents an image. The
graphicImage tag is used to render a UIGraphic component on a page. The Duke’s Bookstore
application uses a graphicImage tag to display the map image on the chooselocale.jsp page:

<h:graphicImage id="mapImage" url="/template/world.jpg"
alt="#{bundle.chooseLocale}" usemap="#worldMap" />

The url attribute specifies the path to the image. It also corresponds to the local value of the
UIGraphic component so that the URL can be retrieved, possibly from a backing bean. The
URL of the example tag begins with a /, which adds the relative context path of the web
application to the beginning of the path to the image.

The title attribute specifies the alternative text displayed when the user mouses over the
image. In this example, the title attribute refers to a localized message. See “Performing
Localization” on page 392 for details on how to localize your JavaServer Faces application.

The usemap attribute refers to the image map defined by the custom component,
MapComponent, which is on the same page. See Chapter 13, “Creating Custom UI Components,”
for more information on the image map.

Laying Out Components with the UIPanelComponent
In a JavaServer Faces application, you use the UIPanel component as a layout container for a set
of component components. When you use the renderers from the HTML render kit, UIPanel is
rendered as an HTML table. This component differs from UIData in that UIData can
dynamically add or delete rows to accommodate the underlying data source, whereas UIPanel
must have the number of rows predetermined. Table 11–4 lists all the renderers and tags
corresponding to the UIPanel component.

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 343

TABLE 11–4 UIPanelRenderers and Tags

Renderer Tag Renderer Attributes Function

Grid panelGrid columnClasses, columns, footerClass,
headerClass, panelClass, rowClasses

Displays a table

Group panelGroup layout Groups a set of components
under one parent

The panelGrid tag is used to represent an entire table. The panelGroup tag is used to represent
rows in a table. Other UI component tags are used to represent individual cells in the rows.

The panelGrid tag has a set of attributes that specify CSS stylesheet classes: columnClasses,
footerClass, headerClass, panelClass, and rowClasses. These stylesheet attributes are
optional. The panelGrid tag also has a columns attribute. The columns attribute is required if
you want your table to have more than one column because the columns attribute tells the
renderer how to group the data in the table.

If the headerClass attribute value is specified, the panelGrid must have a header as its first
child. Similarly, if a footerClass attribute value is specified, the panelGrid must have a footer
as its last child.

The Duke’s Bookstore application includes three panelGrid tags on the bookcashier.jsp page.
Here is a portion of one of them:

<h:panelGrid columns="3" headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
title="#{bundle.Checkout}">
<f:facet name="header">

<h:outputText value="#{bundle.Checkout}"/>
</f:facet>

<h:outputText value="#{bundle.Name}" />

<h:inputText id="name" size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener

type="listeners.NameChanged" />

</h:inputText>

<h:message styleClass="validationMessage" for="name"/>
<h:outputText value="#{bundle.CCNumber}"/>
<h:inputText id="ccno" size="19"

converter="CreditCardConverter" required="true">
<bookstore:formatValidator

formatPatterns="9999999999999999|
9999 9999 9999 9999|9999-9999-9999-9999"/>

</h:inputText>

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008344

<h:message styleClass="validationMessage" for="ccno"/>
...

</h:panelGrid>

This panelGrid tag is rendered to a table that contains components for the customer of the
bookstore to input personal information. This panelGrid tag uses stylesheet classes to format
the table. The CSS classes are defined in the stylesheet.css file in the
tut-install/javaeetutorial5/examples/web/bookstore6/web/ directory. The list-header
definition is

.list-header {

background-color: #ffffff;

color: #000000;

text-align: center;

}

Because the panelGrid tag specifies a headerClass, the panelGrid must contain a header. The
example panelGrid tag uses a facet tag for the header. Facets can have only one child, and so a
panelGroup tag is needed if you want to group more than one component within a facet.
Because the example panelGrid tag has only one cell of data, a panelGroup tag is not needed.

The panelGroup tag has one attribute, called layout, in addition to those listed in “UI
Component Tag Attributes” on page 329. If the layout attribute has the value block then an
HTML div element is rendered to enclose the row; otherwise, an HTML span element is
rendered to enclose the row. If you are specifying styles for the panelGroup tag, you should set
the layout attribute to block in order for the styles to be applied to the components within the
panelGroup tag. This is because styles such as those that set width and height are not applied to
inline elements, which is how content enclosed by the span element is defined.

A panelGroup tag can also be used to encapsulate a nested tree of components so that the tree of
components appears as a single component to the parent component.

The data represented by the nested component tags is grouped into rows according to the value
of the columns attribute of the panelGrid tag. The columns attribute in the example is set to 3,
and therefore the table will have three columns. In which column each component is displayed
is determined by the order that the component is listed on the page modulo 3. So if a
component is the fifth one in the list of components, that component will be in the 5 modulo 3
column, or column 2.

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 345

Rendering Components for Selecting One Value
Another common UI component is one that allows a user to select one value, whether it be the
only value available or one of a set of choices. The most common examples of this kind of
component are:
■ A check box, which represents boolean state
■ A set of radio buttons
■ A drop-down menu, which displays a scrollable list
■ A list box, which displays an unscrollable list

Figure 11–4 shows examples of these components.

Displaying a Check Box Using the selectBooleanCheckbox Tag
The UISelectBoolean class defines components that have a boolean value. The
selectBooleanCheckbox tag is the only tag that JavaServer Faces technology provides for
representing boolean state. The Duke’s Bookstore application includes a
selectBooleanCheckbox tag on the bookcashier.jsp page:

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel

for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}">
<h:outputText

id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

FIGURE 11–4 Example Select One Components

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008346

This example tag displays a check box to allow users to indicate whether they want to join the
Duke Fan Club. The label for the check box is rendered by the outputLabel tag. The actual text
is represented by the nested outputText tag. “Binding a Component Instance to a Bean
Property” on page 371 discusses this example in more detail.

Displaying a Menu Using the selectOneMenu Tag
A UISelectOne component allows the user to select one value from a set of values. This
component can be rendered as a list box, a set of radio buttons, or a menu. This section explains
the selectOneMenu tag. The selectOneRadio and selectOneListbox tags are written in a
similar way. The selectOneListbox tag is similar to the selectOneMenu tag except that
selectOneListbox defines a size attribute that determines how many of the items are
displayed at once.

The selectOneMenu tag represents a component that contains a list of items, from which a user
can choose one item. The menu is also commonly known as a drop-down list or a combo box.
The following code snippet shows the selectOneMenu tag from the bookcashier.jsp page of
the Duke’s Bookstore application. This tag allows the user to select a shipping method:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The value attribute of the selectOneMenu tag maps to the property that holds the currently
selected item’s value. You are not required to provide a value for the currently selected item. If
you don’t provide a value, the first item in the list is selected by default.

Like the selectOneRadio tag, the selectOneMenu tag must contain either a selectItems tag or
a set of selectItem tags for representing the items in the list. “The UISelectItem,
UISelectItems, and UISelectItemGroup Components” on page 349 explains these tags.

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 347

Rendering Components for Selecting Multiple Values
In some cases, you need to allow your users to select multiple values rather than just one value
from a list of choices. You can do this using one of the following kinds of components:

■ A set of check boxes
■ A drop-down menu
■ A list box

Figure 11–5 shows examples of these components.

The UISelectMany class defines a component that allows the user to select zero or more values
from a set of values. This component can be rendered as a set of check boxes, a list box, or a
menu. This section explains the selectManyCheckbox tag. The selectManyListbox tag and
selectManyMenu tag are written in a similar way.

A list box differs from a menu in that it displays a subset of items in a box, whereas a menu
displays only one item at a time when the user is not selecting the menu. The size attribute of
the selectManyListbox tag determines the number of items displayed at one time. The list box
includes a scroll bar for scrolling through any remaining items in the list.

The selectManyCheckbox tag renders a set of check boxes, with each check box representing
one value that can be selected. Duke’s Bookstore uses a selectManyCheckbox tag on the
bookcashier.jsp page to allow the user to subscribe to one or more newsletters:

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

FIGURE 11–5 Example Select Many Components

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008348

value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the selectManyCheckbox tag identifies the CashierBean backing bean
property, newsletters, for the current set of newsletters. This property holds the values of the
currently selected items from the set of check boxes. You are not required to provide a value for
the currently selected items. If you don’t provide a value, the first item in the list is selected by
default.

The layout attribute indicates how the set of check boxes are arranged on the page. Because
layout is set to pageDirection, the check boxes are arranged vertically. The default is
lineDirection, which aligns the check boxes horizontally.

The selectManyCheckbox tag must also contain a tag or set of tags representing the set of check
boxes. To represent a set of items, you use the selectItems tag. To represent each item
individually, you use a selectItem tag for each item. The following subsection explains these
tags in more detail.

The UISelectItem, UISelectItems, and
UISelectItemGroupComponents
UISelectItem and UISelectItems represent components that can be nested inside a
UISelectOne or a UISelectMany component. UISelectItem is associated with a SelectItem
instance, which contains the value, label, and description of a single item in the UISelectOne or
UISelectMany component.

The UISelectItems instance represents either of the following:

■ A set of SelectItem instances, containing the values, labels, and descriptions of the entire
list of items

■ A set of SelectItemGroup instances, each of which represents a set of SelectItem instances

Figure 11–6 shows an example of a list box constructed with a SelectItems component
representing two SelectItemGroup instances, each of which represents two categories of beans.
Each category is an array of SelectItem instances.

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 349

The selectItem tag represents a UISelectItem component. The selectItems tag represents a
UISelectItems component. You can use either a set of selectItem tags or a single
selectItems tag within your selectOne or selectMany tag.

The advantages of using the selectItems tag are as follows:

■ You can represent the items using different data structures, including Array, Map and
Collection. The data structure is composed of SelectItem instances or SelectItemGroup
instances.

■ You can concatenate different lists together into a single UISelectMany or UISelectOne
component and group the lists within the component, as shown in Figure 11–6.

■ You can dynamically generate values at runtime.

The advantages of using selectItem are as follows:

■ The page author can define the items in the list from the page.
■ You have less code to write in the bean for the selectItem properties.

For more information on writing component properties for the UISelectItems components,
see “Writing Bean Properties” on page 381. The rest of this section shows you how to use the
selectItems and selectItem tags.

Using the selectItems Tag
Here is the selectManyCheckbox tag from the section “Rendering Components for Selecting
Multiple Values” on page 348:

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

FIGURE 11–6 An Example List Box Created Using SelectItemGroup Instances

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008350

The value attribute of the selectItems tag is bound to the newsletters managed bean, which
is configured in the application configuration resource file. The newsletters managed bean is
configured as a list:

<managed-bean>

<managed-bean-name>newsletters</managed-bean-name>

<managed-bean-class>

java.util.ArrayList</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

<list-entries>

<value-class>javax.faces.model.SelectItem</value-class>

<value>#{newsletter0}</value>

<value>#{newsletter1}</value>

<value>#{newsletter2}</value>

<value>#{newsletter3}</value>

</list-entries>

</managed-bean>

<managed-bean>

<managed-bean-name>newsletter0</managed-bean-name>

<managed-bean-class>

javax.faces.model.SelectItem</managed-bean-class>

<managed-bean-scope>none</managed-bean-scope>

<managed-property>

<property-name>label</property-name>

<value>Duke’s Quarterly</value>

</managed-property>

<managed-property>

<property-name>value</property-name>

<value>200</value>

</managed-property>

</managed-bean>

...

As shown in the managed-bean element, the UISelectItems component is a collection of
SelectItem instances. See “Initializing Array and List Properties” on page 447 for more
information on configuring collections as beans.

You can also create the list corresponding to a UISelectMany or UISelectOne component
programmatically in the backing bean. See “Writing Bean Properties” on page 381 for
information on how to write a backing bean property corresponding to a UISelectMany or
UISelectOne component.

The arguments to the SelectItem constructor are:

■ An Object representing the value of the item
■ A String representing the label that displays in the UISelectMany component on the page
■ A String representing the description of the item

Adding UI Components to a Page Using the HTML Component Tags

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 351

“UISelectItems Properties” on page 387 describes in more detail how to write a backing bean
property for a UISelectItems component.

Using the selectItem Tag
The selectItem tag represents a single item in a list of items. Here is the example from
“Displaying a Menu Using the selectOneMenu Tag” on page 347:

<h:selectOneMenu

id="shippingOption" required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The itemValue attribute represents the default value of the SelectItem instance. The
itemLabel attribute represents the String that appears in the drop-down menu component on
the page.

The itemValue and itemLabel attributes are value-binding-enabled, meaning that they can use
value-binding expressions to refer to values in external objects. They can also define literal
values, as shown in the example selectOneMenu tag.

Displaying Error Messages with the message and
messages Tags
The message and messages tags are used to display error messages when conversion or
validation fails. The message tag displays error messages related to a specific input component,
whereas the messages tag displays the error messages for the entire page.

Here is an example message tag from the guessNumber application, discussed in “Steps in the
Development Process” on page 288:

<h:inputText id="userNo" value="#{UserNumberBean.userNumber}">
<f:validateLongRange minimum="0" maximum="10" />

<h:commandButton id="submit"
action="success" value="Submit" /><p>

<h:message

Adding UI Components to a Page Using the HTML Component Tags

The Java EE 5 Tutorial • October 2008352

style="color: red;

font-family: ’New Century Schoolbook’, serif;

font-style: oblique;

text-decoration: overline" id="errors1" for="userNo"/>

The for attribute refers to the ID of the component that generated the error message. The error
message is displayed at the same location that the message tag appears in the page. In this case,
the error message will appear after the Submit button.

The style attribute allows you to specify the style of the text of the message. In the example in
this section, the text will be red, New Century Schoolbook, serif font family, and oblique style,
and a line will appear over the text. The message and messages tags support many other
attributes for defining styles. Please refer to the TLD documentation for more information on
these attributes.

Another attribute the messages tag supports is the layout attribute. Its default value is list,
which indicates that the messages are displayed in a bulleted list using the HTML ul and li

elements. If you set the attribute to table, the messages will be rendered in a table using the
HTML table element.

The preceding example shows a standard validator is registered on input component. The
message tag displays the error message associated with this validator when the validator cannot
validate the input component’s value. In general, when you register a converter or validator on a
component, you are queueing the error messages associated with the converter or validator on
the component. The message and messages tags display the appropriate error messages that are
queued on the component when the validators or converters registered on that component fail
to convert or validate the component’s value.

All the standard error messages that come with the standard converters and validators are listed
in section 2.5.4 of the JavaServer Faces specification. An application architect can override these
standard messages and supply error messages for custom converters and validators by
registering custom error messages with the application by means of the message-bundle
element of the application configuration file. “Referencing Error Messages” on page 355
explains more about error messages.

Using Localized Data
JavaServer Faces applications make use of three different kinds of data that can be localized:
■ Static text, such as labels, alternative text, and tool tips
■ Error messages, such as those displayed when validation of user input data fails
■ Dynamic data, which is data that must be set dynamically by server-side objects, such as by

backing beans

This section discusses how to access the first two kinds of data from the page. “Performing
Localization” on page 392 explains how to produce localized error messages as well as how to

Using Localized Data

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 353

localize dynamic data. If you are not familiar with the basics of localizing web applications, see
Chapter 15, “Internationalizing and Localizing Web Applications.”

All data in the Duke’s Bookstore application have been localized for Spanish, French, German,
and American English. The image map on the first page allows you to select your preferred
locale. See Chapter 13, “Creating Custom UI Components,” for information on how the image
map custom component was created.

All the localized data is stored in resource bundles, which are represented as either
ResourceBundle classes or text files, usually with the extension .properties. For more
information about resource bundles, see
http://java.sun.com/docs/books/tutorial/i18n/index.html.

After the application developer has produced a resource bundle, the application architect puts it
in the same directory as the application classes. The static text data for the Duke’s Bookstore
application is stored in a ResourceBundle class called BookstoreMessages. The error messages
are stored in another resource bundle called ApplicationMessages. After the resource bundles
have been created and before their data can be accessed, they must be made available to the
application, as explained in the following section.

Loading a Resource Bundle
To reference error messages or static data from the page, you first need to make available the
resource bundle containing the data.

To make available resource bundles that contain static data, you need to do one of two things:
■ Register the resource bundle with the application in the configuration file using the

resource-bundle element, as explained in “Registering Custom Localized Static Text” on
page 451.

■ Load the resource bundle into the current view using the loadBundle tag.

Here is an example loadBundle tag from bookstore.jsp:

<f:loadBundle var="bundle"
basename="messages.BookstoreMessages" />

The basename attribute value specifies the fully-qualified class name of the ResourceBundle
class, which in this case is located in the messages package of the bookstore application.

The var attribute is an alias to the ResourceBundle class. This alias can be used by other tags in
the page in order to access the localized messages.

In the case of resource bundles that contain error messages, you need to register the resource
bundle with the application in the configuration file using the message-bundle element, as
explained in “Registering Custom Error Messages” on page 450. One exception is if you are

Using Localized Data

The Java EE 5 Tutorial • October 2008354

http://java.sun.com/docs/books/tutorial/i18n/index.html

referencing the error messages from the input component attributes described in “Referencing
Error Messages” on page 355. In that case, you load the resource bundles containing these
messages in the same way you load resource bundles containing static text.

Referencing Localized Static Data
To reference static localized data from a resource bundle, you use a value expression from an
attribute of the component tag that will display the localized data. You can reference the
message from any component tag attribute that is enabled to accept value expressions.

The value expression has the notation var.message, in which var matches the var attribute of
the loadBundle tag or the var element in the configuration file, and message matches the key of
the message contained in the resource bundle, referred to by the var attribute. Here is an
example from bookstore.jsp:

<h:outputText value="#{bundle.Talk}"/>

Notice that bundle matches the var attribute from the loadBundle tag and that Talk matches
the key in the ResourceBundle.

Another example is the graphicImage tag from chooselocale.jsp:

<h:graphicImage id="mapImage" url="/template/world.jpg"
alt="#{bundle.ChooseLocale}"
usemap="#worldMap" />

The alt attribute is enabled to accept value expressions. In this case, the alt attribute refers to
localized text that will be included in the alternative text of the image rendered by this tag.

See “Creating Custom Component Classes” on page 421 and “Enabling Component Properties
to Accept Expressions” on page 426 for information on how to enable value binding on your
custom component’s attributes.

Referencing Error Messages
A JavaServer Faces page uses the message or messages tags to access error messages, as
explained in “Displaying Error Messages with the message and messages Tags” on page 352.

Using Localized Data

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 355

The error messages that these tags access include:

■ The standard error messages that accompany the standard converters and validators that
ship with the API. See section 2.5.4 of the JavaServer Faces specification, version 1.2, for a
complete list of standard error messages.

■ Custom error messages contained in resource bundles registered with the application by the
application architect using the message-bundle element in the configuration file.

■ Custom error messages hard coded in custom converter and validator classes.

When a converter or validator is registered on an input component, the appropriate error
message is automatically queued on the component.

A page author can override the error messages queued on a component by using the following
attributes of the component’s tag:

■ converterMessage: References the error message to display when the data on the enclosing
component can not be converted by the converter registered on this component.

■ requiredMessage: References the error message to display when no value has been entered
into the enclosing component.

■ validatorMessage: References the error message to display when the data on the enclosing
component cannot be validated by the validator registered on this component.

All three attributes are enabled to take literal values and value expressions. If an attribute uses a
value expression, this expression references the error message in a resource bundle. This
resource bundle must be made available to the application in one of the following ways:

■ By the page author using the loadBundle tag
■ By the application architect using the resource-bundle element in the configuration file

Conversely, the message-bundle element must be used to make available to the application
those resource bundles containing custom error messages that are queued on the component as
a result of a custom converter or validator being registered on the component.

The bookcashier.jsp page includes an example of the requiredMessage attribute using a
value expression to reference an error message:

<h:inputText id="ccno" size="19"
required="true"
requiredMessage="#{customMessages.ReqMessage}" >

...

</h:inputText>

<h:message styleClass="error-message" for="ccno"/>

The value expression that requiredMessage is using in this example references the error
message with the ReqMessage key in the resource bundle, customMessages.

Using Localized Data

The Java EE 5 Tutorial • October 2008356

This message replaces the corresponding message queued on the component and will display
wherever the message or messages tag is placed on the page.

See “Registering Custom Error Messages” on page 450 and “Registering Custom Localized Static
Text” on page 451 for information on how to use the message-bundle and resource-bundle

element to register resource bundles that contain error messages.

Using the Standard Converters
The JavaServer Faces implementation provides a set of Converter implementations that you
can use to convert component data. For more information on the conceptual details of the
conversion model, see “Conversion Model” on page 305.

The standard Converter implementations, located in the javax.faces.convert package, are
as follows:

■ BigDecimalConverter

■ BigIntegerConverter

■ BooleanConverter

■ ByteConverter

■ CharacterConverter

■ DateTimeConverter

■ DoubleConverter

■ FloatConverter

■ IntegerConverter

■ LongConverter

■ NumberConverter

■ ShortConverter

Each of these converters has a standard error message associated with them. If you have
registered one of these converters onto a component on your page, and the converter is not able
to convert the component’s value, the converter’s error message will display on the page. For
example, the error message that displays if BigIntegerConverter fails to convert a value is:

{0} must be a number consisting of one or more digits

In this case the {0} substitution parameter will be replaced with the name of the input
component on which the converter is registered. See section 2.4.5 of the JavaServer Faces
specification, version 1.2, for a complete list of error messages.

Two of the standard converters (DateTimeConverter and NumberConverter) have their own
tags, which allow you to configure the format of the component data using the tag attributes.
“Using DateTimeConverter” on page 359 discusses using DateTimeConverter. “Using
NumberConverter” on page 360 discusses using NumberConverter. The following section
explains how to convert a component’s value including how to register the other standard
converters with a component.

Using the Standard Converters

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 357

Converting a Component’s Value
To use a particular converter to convert a component’s value, you need to register the converter
onto the component. You can register any of the standard converters on a component in one of
four ways:
■ Nest one of the standard converter tags inside the component’s tag. These tags are

convertDateTime and convertNumber and are described in “Using DateTimeConverter”
on page 359 and “Using NumberConverter” on page 360, respectively.

■ Bind the value of the component to a backing bean property of the same type as the
converter.

■ Refer to the converter from the component tag’s converter attribute.
■ Nest a converter tag inside of the component tag and use either the converter tag’s

converterId attribute or its binding attribute to refer to the converter.

As an example of the second approach, if you want a component’s data to be converted to an
Integer, you can simply bind the component’s value to a property similar to this:

Integer age = 0;

public Integer getAge(){ return age;}

public void setAge(Integer age) {this.age = age;}

If the component is not bound to a bean property, you can employ the third technique by using
the converter attribute on the component tag:

<h:inputText

converter="javax.faces.convert.IntegerConverter" />

This example shows the converter attribute referring to the fully-qualified class name of the
converter. The converter attribute can also take the ID of the component. If the converter is a
custom converter, the ID is defined in the application configuration resource file (see
“Application Configuration Resource File” on page 439).

The data corresponding to this example inputText tag will be converted to a
java.lang.Integer. Notice that the Integer type is already a supported type of the
NumberConverter. If you don’t need to specify any formatting instructions using the
convertNumber tag attributes, and if one of the other converters will suffice, you can simply
reference that converter using the component tag’s converter attribute.

Finally, you can nest a converter tag within the component tag and use either the converter
tag’s converterId attribute or its binding attribute to reference the converter.

The converterId attribute must reference the converter’s ID. Again, if the converter is a custom
converter, the value of converterID must match the ID in the application configuration
resource file; otherwise it must match the ID as defined in the converter class. Here is an
example:

Using the Standard Converters

The Java EE 5 Tutorial • October 2008358

<h:inputText value="#{LoginBean.Age}" />

<f:converter converterId="Integer" />

</h:inputText>

Instead of using the converterId attribute, the converter tag can use the binding attribute.
The binding attribute must resolve to a bean property that accepts and returns an appropriate
Converter instance. See “Binding Converters, Listeners, and Validators to Backing Bean
Properties” on page 372 for more information.

Using DateTimeConverter

You can convert a component’s data to a java.util.Date by nesting the convertDateTime tag
inside the component tag. The convertDateTime tag has several attributes that allow you to
specify the format and type of the data. Table 11–5 lists the attributes.

Here is a simple example of a convertDateTime tag from the bookreceipt.jsp page:

<h:outputText id= "shipDate" value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

When binding the DateTime converter to a component, ensure that the backing bean property
to which the component is bound is of type java.util.Date. In the case of the preceding
example, cashier.shipDate must be of type java.util.Date.

Here is an example of a date and time that the preceding tag can display:

Saturday, Feb 22, 2003

You can also display the same date and time using this tag:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime

pattern="EEEEEEEE, MMM dd, yyyy" />

</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:inputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"

locale="Locale.SPAIN"
timeStyle="long" type="both" />

</h:inputText>

This tag would display

sabado 23 de septiembre de 2006

Using the Standard Converters

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 359

Please refer to the Customizing Formats lesson of the Java Tutorial at
http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFormat.html for
more information on how to format the output using the pattern attribute of the
convertDateTime tag.

TABLE 11–5 convertDateTimeTag Attributes

Attribute Type Description

binding DateTimeConverter Used to bind a converter to a backing bean property

dateStyle String Defines the format, as specified by java.text.DateFormat, of a date or
the date part of a date string. Applied only if type is date (or both) and
pattern is not defined. Valid values: default, short, medium, long, and
full. If no value is specified, default is used.

locale String or Locale Locale whose predefined styles for dates and times are used during
formatting or parsing. If not specified, the Locale returned by
FacesContext.getLocale will be used.

pattern String Custom formatting pattern that determines how the date/time string
should be formatted and parsed. If this attribute is specified, dateStyle,
timeStyle, and type attributes are ignored.

timeStyle String Defines the format, as specified by java.text.DateFormat, of a time or
the time part of a date string. Applied only if type is time and pattern is
not defined. Valid values: default, short, medium, long, and full. If no
value is specified, default is used.

timeZone String or TimeZone Time zone in which to interpret any time information in the date string.

type String Specifies whether the string value will contain a date, a time, or both.
Valid values are date, time, or both. If no value is specified, date is used.

Using NumberConverter

You can convert a component’s data to a java.lang.Number by nesting the convertNumber tag
inside the component tag. The convertNumber tag has several attributes that allow you to
specify the format and type of the data. Table 11–6 lists the attributes.

The bookcashier.jsp page of Duke’s Bookstore uses a convertNumber tag to display the total
prices of the books in the shopping cart:

<h:outputText value="#{cart.total}" >

<f:convertNumber type="currency"/>
</h:outputText>

When binding the Number converter to a component, ensure that the backing bean property to
which the component is bound is of primitive type or has a type of java.lang.Number. In the
case of the preceding example, cart.total is of type java.lang.Number.

Using the Standard Converters

The Java EE 5 Tutorial • October 2008360

http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFormat.html

Here is an example of a number this tag can display

$934

This number can also be displayed using this tag:

<h:outputText id="cartTotal"
value="#{cart.Total}" >

<f:convertNumber pattern="
$####"
/>

</h:outputText>

Please refer to the Customizing Formats lesson of the Java Tutorial at
http://java.sun.com/docs/books/tutorial/i18n/format/decimalFormat.html for more
information on how to format the output using the pattern attribute of the convertNumber tag.

TABLE 11–6 convertNumberAttributes

Attribute Type Description

binding NumberConverter Used to bind a converter to a backing bean property

currencyCode String ISO 4217 currency code, used only when formatting
currencies.

currencySymbol String Currency symbol, applied only when formatting currencies.

groupingUsed boolean Specifies whether formatted output contains grouping
separators.

integerOnly boolean Specifies whether only the integer part of the value will be
parsed.

locale String or Locale Locale whose number styles are used to format or parse data.

maxFractionDigits int Maximum number of digits formatted in the fractional part
of the output.

maxIntegerDigits int Maximum number of digits formatted in the integer part of
the output.

minFractionDigits int Minimum number of digits formatted in the fractional part
of the output.

minIntegerDigits int Minimum number of digits formatted in the integer part of
the output.

pattern String Custom formatting pattern that determines how the number
string is formatted and parsed.

Using the Standard Converters

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 361

http://java.sun.com/docs/books/tutorial/i18n/format/decimalFormat.html

TABLE 11–6 convertNumberAttributes (Continued)
Attribute Type Description

type String Specifies whether the string value is parsed and formatted as
a number, currency, or percentage. If not specified, number
is used.

Registering Listeners on Components
An application developer can implement listeners as classes or as backing bean methods. If a
listener is a backing bean method, the page author references the method from either the
component’s valueChangeListener attribute or its actionListener attribute. If the listener is
a class, the page author can reference the listener from either a valueChangeListener tag or an
actionListener tag and nest the tag inside the component tag in order to register the listener
on the component.

“Referencing a Method That Handles an Action Event” on page 374 and “Referencing a Method
That Handles a Value-change Event” on page 375 describe how a page author uses the
valueChangeListener and actionListener attributes to reference backing bean methods that
handle events.

The Duke’s Bookstore application includes a ValueChangeListener implementation class but
does not use an ActionListener implementation class. This section explains how to register
the NameChanged value-change listener and a hypothetical LocaleChange action listener
implementation on components. “Implementing Value-Change Listeners” on page 398 explains
how to implement NameChanged. “Implementing Action Listeners” on page 399 explains how to
implement the hypothetical LocaleChange listener.

Registering a Value-Change Listener on a Component
A page author can register a ValueChangeListener implementation on a component that
implements EditableValueHolder by nesting a valueChangeListener tag within the
component’s tag on the page. The valueChangeListener tag supports two attributes:

■ type: References the fully qualified class name of a ValueChangeListener implementation
■ binding: References an object that implements ValueChangeListener

A page author must use one of these attributes to reference the value-change listener. The type
attribute accepts a literal or a value expression. The binding attribute only accepts a value
expression, which must point to a backing bean property that accepts and returns a
ValueChangeListener implementation.

Following is the tag corresponding to the name component from the bookcashier.jsp page. It
uses the type attribute to reference a value-change listener:

Registering Listeners on Components

The Java EE 5 Tutorial • October 2008362

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

The type attribute specifies the custom NameChanged listener as the ValueChangeListener
implementation to register on the name component.

After this component tag is processed and local values have been validated, its corresponding
component instance will queue the ValueChangeEvent associated with the specified
ValueChangeListener to the component.

The binding attribute is used to bind a ValueChangeListener implementation to a backing
bean property. It works in a similar way to the binding attribute supported by the standard
converter tags. “Binding Component Values and Instances to External Data Sources” on
page 367 explains more about binding listeners to backing bean properties.

Registering an Action Listener on a Component
A page author can register an ActionListener implementation on a UICommand component by
nesting an actionListener tag within the component’s tag on the page. Similarly to the
valueChangeListener tag, the actionListener tag supports both the type and binding

attributes. A page author must use one of these attributes to reference the action listener.

Duke’s Bookstore does not use any ActionListener implementations. Here is one of the
commandLink tags on the chooselocale.jsp page, changed to reference an ActionListener

implementation rather than a backing bean method:

<h:commandLink id="NAmerica" action="bookstore">
<f:actionListener type="listeners.LocaleChange" />

</h:commandLink>

The type attribute of the actionListener tag specifies the fully qualified class name of the
ActionListener implementation. Similarly to the valueChangeListener tag, the
actionListener tag also supports the binding attribute. “Binding Converters, Listeners, and
Validators to Backing Bean Properties” on page 372 explains more about how to bind listeners
to backing bean properties.

When this tag’s component is activated, the component’s decode method (or its associated
Renderer) automatically queues the ActionEvent implementation associated with the specified
ActionListener implementation onto the component.

In addition to the actionListener tag that allows you register a custom listener onto a
component, the core tag library includes the setPropertyActionListener tag. You use this tag
to register a special action listener onto the ActionSource instance associated with a
component. When the component is activated, the listener will store the object referenced by
the tag’s value attribute into the object referenced by the tag’s target attribute.

Registering Listeners on Components

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 363

The bookcatalog.jsp page uses setPropertyActionListener with two components: the
commandLink component used to link to the bookdetails.jsp page and the commandButton
component used to add a book to the cart:

<c:forEach items="#{bookDBAO.books}" var="book"
varStatus="stat">
<c:set var="book" scope="request" value="${book}"/>

...

<h:commandLink action="#{catalog.details}"
value="#{book.title}">
<f:setPropertyActionListener

target="#{requestScope.book}" value="#{book}"/>
</h:commandLink>

...

<h:commandButton id="add"
action="#{catalog.add}" value="#{bundle.CartAdd}">
<f:setPropertyActionListener

target="#{requestScope.book}" value="#{book}"/>
</h:commandButton>

<c:remove var="book" scope="request"/>
</c:forEach>

As shown in the preceding code, the commandLink and commandButton components are within a
forEach tag, which iterates over the list of books. The var attribute refers to a single book in the
list of books.

The object referenced by the var attribute of a forEach tag is in page scope. However, in this
case, you need to put this object into request scope so that when the user activates the
commandLink component to go to bookdetails.jsp or activates the commandButton
component to go to bookcatalog.jsp, the book data is available to those pages. Therefore, the
setPropertyActionListener tag is used to set the current book object into request scope when
the commandLink or commandButton component is activated.

In the preceding example, the setPropertyActionListener tag’s value attribute references the
book object. The setPropertyActionListener tag’s target attribute references the value
expression requestScope.book, which is where the book object referenced by the value
attribute is stored when the commandLink or the commandButton component is activated.

Using the Standard Validators
JavaServer Faces technology provides a set of standard classes and associated tags that page
authors and application developers can use to validate a component’s data. Table 11–7 lists all
the standard validator classes and the tags that allow you to use the validators from the page.

Using the Standard Validators

The Java EE 5 Tutorial • October 2008364

TABLE 11–7 The Validator Classes

Validator Class Tag Function

DoubleRangeValidator validateDoubleRange Checks whether the local value of a component is within
a certain range. The value must be floating-point or
convertible to floating-point.

LengthValidator validateLength Checks whether the length of a component’s local value
is within a certain range. The value must be a
java.lang.String.

LongRangeValidator validateLongRange Checks whether the local value of a component is within
a certain range. The value must be any numeric type or
String that can be converted to a long.

All these validator classes implement the Validator interface. Component writers and
application developers can also implement this interface to define their own set of constraints
for a component’s value.

Similarly to the standard converters, each of these validators has one or more standard error
messages associated with it. If you have registered one of these validators onto a component on
your page, and the validator is not able to validate the component’s value, the validator’s error
message will display on the page. For example, the error message that displays when the
component’s value exceeds the maximum value allowed by LongRangeValidator is the
following:

{1}: Validation Error: Value is greater than allowable maximum of "{0}"

In this case the {1} substitution parameter is replaced by the component’s label or ID, and the
{0} substitution parameter is replaced with the maximum value allowed by the validator.

See section 2.5.4 of the JavaServer Faces specification for the complete list of error messages. See
“Displaying Error Messages with the message and messages Tags” on page 352 for information
on how to display validation error messages on the page when validation fails.

Validating a Component’s Value
In order to validate a component’s value using a particular validator, you need to register the
validator on the component. You have three ways to do this:

■ Nest the validator’s corresponding tag (shown in Table 11–7) inside the component’s tag.
“Using the LongRangeValidator” on page 366 describes how to use the validateLongRange
tag. You can use the other standard tags in the same way.

■ Refer to a method that performs the validation from the component tag’s validator
attribute.

Using the Standard Validators

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 365

■ Nest a validator tag inside the component tag and use either the validator tag’s
validatorId attribute or its binding attribute to refer to the validator.

See “Referencing a Method That Performs Validation” on page 375“Referencing a Method That
Performs Validation” on page 375 for more information on using the validator attribute.

The validatorId attribute works similarly to the converterId attribute of the converter tag,
as described in “Converting a Component’s Value” on page 358. See “Binding Converters,
Listeners, and Validators to Backing Bean Properties” on page 372 for more information on
using the binding attribute of the validator tag.

Keep in mind that validation can be performed only on components that implement
EditableValueHolder because these components accept values that can be validated.

Using the LongRangeValidator
The Duke’s Bookstore application uses a validateLongRange tag on the quantity input field of
the bookshowcart.jsp page:

<h:inputText id="quantity" size="4"
value=

"#{item.quantity}
" >

<f:validateLongRange minimum="1"/>
</h:inputText>

<h:message for="quantity"/>

This tag requires that the user enter a number that is at least 1. The size attribute specifies that
the number can have no more than four digits. The validateLongRange tag also has a maximum
attribute, with which you can set a maximum value of the input.

The attributes of all the standard validator tags accept value expressions. This means that the
attributes can reference backing bean properties rather than specify literal values. For example,
the validateLongRange tag in the preceding example can reference a backing bean property
called minimum to get the minimum value acceptable to the validator implementation:

<f:validateLongRange minimum="#{ShowCartBean.minimum}" />

Using the Standard Validators

The Java EE 5 Tutorial • October 2008366

Binding Component Values and Instances to External Data
Sources

As explained in “Backing Beans” on page 310, a component tag can wire its component’s data to
a back-end data object by doing one of the following:

■ Binding its component’s value to a bean property or other external data source
■ Binding its component’s instance to a bean property

A component tag’s value attribute uses a value expression to bind the component’s value to an
external data source, such as a bean property. A component tag’s binding attribute uses a value
expression to bind a component instance to a bean property.

When a component instance is bound to a backing bean property, the property holds the
component’s local value. Conversely, when a component’s value is bound to a backing bean
property, the property holds the value stored in the backing bean. This value is updated with the
local value during the update model values phase of the life cycle. There are advantages to both
of these techniques.

Binding a component instance to a bean property has these advantages:

■ The backing bean can programmatically modify component attributes.
■ The backing bean can instantiate components rather than let the page author do so.

Binding a component’s value to a bean property has these advantages:

■ The page author has more control over the component attributes.
■ The backing bean has no dependencies on the JavaServer Faces API (such as the UI

component classes), allowing for greater separation of the presentation layer from the
model layer.

■ The JavaServer Faces implementation can perform conversions on the data based on the
type of the bean property without the developer needing to apply a converter.

In most situations, you will bind a component’s value rather than its instance to a bean property.
You’ll need to use a component binding only when you need to change one of the component’s
attributes dynamically. For example, if an application renders a component only under certain
conditions, it can set the component’s rendered property accordingly by accessing the property
to which the component is bound.

When referencing the property using the component tag’s value attribute, you need to use the
proper syntax. For example, suppose a backing bean called MyBean has this int property:

int currentOption = null;

int getCurrentOption(){...}

void setCurrentOption(int option){...}

The value attribute that references this property must have this value-binding expression:

Binding Component Values and Instances to External Data Sources

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 367

#{MyBean.currentOption}

In addition to binding a component’s value to a bean property, the value attribute can specify a
literal value or can map the component’s data to any primitive (such as int), structure (such as
an array), or collection (such as a list), independent of a JavaBeans component. Table 11–8 lists
some example value-binding expressions that you can use with the value attribute.

TABLE 11–8 Example Value-binding Expressions

Value Expression

A Boolean cart.numberOfItems > 0

A property initialized from a context init parameter initParam.quantity

A bean property CashierBean.name

Value in an array books[3]

Value in a collection books["fiction"]

Property of an object in an array of objects books[3].price

The next two sections explain in more detail how to use the value attribute to bind a
component’s value to a bean property or other external data sources and how to use the binding
attribute to bind a component instance to a bean property.

Binding a Component Value to a Property
To bind a component’s value to a bean property, you specify the name of the bean and the
property using the value attribute. As explained in “Backing Beans” on page 310, the value
expression of the component tag’s value attribute must match the corresponding managed
bean declaration in the application configuration resource file.

This means that the name of the bean in the value expression must match the
managed-bean-name element of the managed bean declaration up to the first period (.) in the
expression. Similarly, the part of the value expression after the period must match the name
specified in the corresponding property-name element in the application configuration
resource file.

For example, consider this managed bean configuration, which configures the ImageArea bean
corresponding to the North America part of the image map on the chooselocale.jsp page of
the Duke’s Bookstore application:

<managed-bean>

<managed-bean-name> NA </managed-bean-name>

<managed-bean-class> model.ImageArea </managed-bean-class>

Binding Component Values and Instances to External Data Sources

The Java EE 5 Tutorial • October 2008368

<managed-bean-scope> application </managed-bean-scope>

<managed-property>

<property-name>shape</property-name>

<value>poly</value>

</managed-property>

<managed-property>

<property-name>alt</property-name>

<value>NAmerica</value>

</managed-property>

...

</managed-bean>

This example configures a bean called NA, which has several properties, one of which is called
shape.

Although the area tags on the chooselocale.jsp page do not bind to an ImageArea property
(they bind to the bean itself), to do this, you refer to the property using a value expression from
the value attribute of the component’s tag:

<h:outputText value="#{NA.shape}" />

Much of the time you will not include definitions for a managed bean’s properties when
configuring it. You need to define a property and its value only when you want the property to
be initialized with a value when the bean is initialized.

If a component tag’s value attribute must refer to a property that is not initialized in the
managed-bean configuration, the part of the value-binding expression after the period must
match the property name as it is defined in the backing bean.

See “Application Configuration Resource File” on page 439 for information on how to configure
beans in the application configuration resource file.

“Writing Bean Properties” on page 381 explains in more detail how to write the backing bean
properties for each of the component types.

Binding a Component Value to an Implicit Object
One external data source that a value attribute can refer to is an implicit object.

The bookreceipt.jsp page of the Duke’s Bookstore application includes a reference to an
implicit object from a parameter substitution tag:

<h:outputFormat title="thanks" value="#{bundle.ThankYouParam}">
<f:param value="#{sessionScope.name}"/>

</h:outputFormat>

Binding Component Values and Instances to External Data Sources

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 369

This tag gets the name of the customer from the session scope and inserts it into the
parameterized message at the key ThankYouParam from the resource bundle. For example, if the
name of the customer is Gwen Canigetit, this tag will render:

Thank you, Gwen Canigetit, for purchasing your books from us.

The name tag on the bookcashier.jsp page has the NameChanged listener implementation
registered on it. This listener saves the customer’s name in the session scope when the
bookcashier.jsp page is submitted. See “Implementing Value-Change Listeners” on page 398
for more information on how this listener works. See “Registering a Value-Change Listener on
a Component” on page 362 to learn how the listener is registered on the tag.

Retrieving values from other implicit objects is done in a similar way to the example shown in
this section. Table 11–9 lists the implicit objects that a value attribute can refer to. All of the
implicit objects except for the scope objects are read-only and therefore should not be used as a
value for a UIInput component.

TABLE 11–9 Implicit Objects

Implicit Object What It Is

applicationScope A Map of the application scope attribute values, keyed by attribute name

cookie A Map of the cookie values for the current request, keyed by cookie name

facesContext The FacesContext instance for the current request

header A Map of HTTP header values for the current request, keyed by header name

headerValues A Map of String arrays containing all the header values for HTTP headers in the
current request, keyed by header name

initParam A Map of the context initialization parameters for this web application

param A Map of the request parameters for this request, keyed by parameter name

paramValues A Map of String arrays containing all the parameter values for request parameters in
the current request, keyed by parameter name

requestScope A Map of the request attributes for this request, keyed by attribute name

sessionScope A Map of the session attributes for this request, keyed by attribute name

view The root UIComponent in the current component tree stored in the FacesRequest for
this request

Binding Component Values and Instances to External Data Sources

The Java EE 5 Tutorial • October 2008370

Binding a Component Instance to a Bean Property
A component instance can be bound to a bean property using a value expression with the
binding attribute of the component’s tag. You usually bind a component instance rather than
its value to a bean property if the bean must dynamically change the component’s attributes.

Here are two tags from the bookcashier.jsp page that bind components to bean properties:

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}" >

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}"

/>

</h:outputLabel>

The selectBooleanCheckbox tag renders a check box and binds the fanClub UISelectBoolean
component to the specialOffer property of CashierBean. The outputLabel tag binds the
component representing the check box’s label to the specialOfferText property of
CashierBean. If the application’s locale is English, the outputLabel tag renders:

I’d like to join the Duke Fan Club, free with my purchase of over $100

The rendered attributes of both tags are set to false, which prevents the check box and its label
from being rendered. If the customer orders more than $100 (or 100 euros) worth of books and
clicks the Submit button, the submit method of CashierBean sets both components’ rendered
properties to true, causing the check box and its label to be rendered.

These tags use component bindings rather than value bindings because the backing bean must
dynamically set the values of the components’ rendered properties.

If the tags were to use value bindings instead of component bindings, the backing bean would
not have direct access to the components, and would therefore require additional code to access
the components from the FacesContext instance to change the components’ rendered
properties.

“Writing Properties Bound to Component Instances” on page 390 explains how to write the
bean properties bound to the example components and also discusses how the submit method
sets the rendered properties of the components.

Binding Component Values and Instances to External Data Sources

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 371

Binding Converters, Listeners, and Validators to Backing Bean
Properties

As described previously in this chapter, a page author can bind converter, listener, and validator
implementations to backing bean properties using the binding attributes of the tags used to
register the implementations on components.

This technique has similar advantages to binding component instances to backing bean
properties, as described in “Binding Component Values and Instances to External Data
Sources” on page 367. In particular, binding a converter, listener, or validator implementation
to a backing bean property yields the following benefits:

■ The backing bean can instantiate the implementation instead of allowing the page author to
do so.

■ The backing bean can programmatically modify the attributes of the implementation. In the
case of a custom implementation, the only other way to modify the attributes outside of the
implementation class would be to create a custom tag for it and require the page author to
set the attribute values from the page.

Whether you are binding a converter, listener, or validator to a backing bean property, the
process is the same for any of the implementations:

■ Nest the converter, listener, or validator tag within an appropriate component tag.
■ Make sure that the backing bean has a property that accepts and returns the converter,

listener, or validator implementation class that you want to bind to the property.
■ Reference the backing bean property using a value expression from the binding attribute of

the converter, listener, or validator tag.

For example, say that you want to bind the standard DateTime converter to a backing bean
property because the application developer wants the backing bean to set the formatting pattern
of the user’s input rather than let the page author do it. First, the page author registers the
converter onto the component by nesting the convertDateTime tag within the component tag.
Then, the page author references the property with the binding attribute of the
convertDateTime tag:

<h:inputText value="#{LoginBean.birthDate}">
<f:convertDateTime binding="#{LoginBean.convertDate}" />

</h:inputText>

The convertDate property would look something like this:

private DateTimeConverter convertDate;

public DateTimeConverter getConvertDate() {

...

return convertDate;

Binding Converters, Listeners, and Validators to Backing Bean Properties

The Java EE 5 Tutorial • October 2008372

{

public void setConvertDate(DateTimeConverter convertDate) {

convertDate.setPattern("EEEEEEEE, MMM dd, yyyy");
this.convertDate = convertDate;

}

See “Writing Properties Bound to Converters, Listeners, or Validators” on page 391 for more
information on writing backing bean properties for converter, listener, and validator
implementations.

Referencing a Backing Bean Method
A component tag has a set of attributes for referencing backing bean methods that can perform
certain functions for the component associated with the tag. These attributes are summarized in
Table 11–10.

TABLE 11–10 Component Tag Attributes That Reference Backing Bean Methods

Attribute Function

action Refers to a backing bean method that performs navigation processing for the
component and returns a logical outcome String

actionListener Refers to a backing bean method that handles action events

validator Refers to a backing bean method that performs validation on the component’s value

valueChangeListener Refers to a backing bean method that handles value-change events

Only components that implement ActionSource can use the action and actionListener

attributes. Only components that implement EditableValueHolder can use the validator or
valueChangeListener attributes.

The component tag refers to a backing bean method using a method expression as a value of
one of the attributes. The method referenced by an attribute must follow a particular signature,
which is defined by the tag attribute’s definition in the TLD. For example, the definition of the
validator attribute of the inputText tag in html_basic.tld is the following:

void validate(javax.faces.context.FacesContext,

javax.faces.component.UIComponent, java.lang.Object)

The following four sections give examples of how to use the four different attributes.

Referencing a Backing Bean Method

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 373

Referencing a Method That Performs Navigation
If your page includes a component (such as a button or hyperlink) that causes the application to
navigate to another page when the component is activated, the tag corresponding to this
component must include an action attribute. This attribute does one of the following

■ Specifies a logical outcome String that tells the application which page to access next
■ References a backing bean method that performs some processing and returns a logical

outcome String

The bookcashier.jsp page of the Duke’s Bookstore application has a commandButton tag that
refers to a backing bean method that calculates the shipping date. If the customer has ordered
more than $100 (or 100 euros) worth of books, this method also sets the rendered properties of
some of the components to true and returns null; otherwise it returns receipt, which causes
the bookreceipt.jsp page to display. Here is the commandButton tag from the
bookcashier.jsp page:

<h:commandButton

value="#{bundle.Submit}"
action="#{cashier.submit}" />

The action attribute uses a method expression to refer to the submit method of CashierBean.
This method will process the event fired by the component corresponding to this tag.

“Writing a Method to Handle Navigation” on page 406 describes how to implement the submit
method of CashierBean.

The application architect must configure a navigation rule that determines which page to access
given the current page and the logical outcome, which is either returned from the backing bean
method or specified in the tag. See “Configuring Navigation Rules” on page 453 for information
on how to define navigation rules in the application configuration resource file.

Referencing a Method That Handles an Action Event
If a component on your page generates an action event, and if that event is handled by a backing
bean method, you refer to the method by using the component’s actionListener attribute.

The chooselocale.jsp page of the Duke’s Bookstore application includes some components
that generate action events. One of them is the NAmerica component:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">

The actionListener attribute of this component tag references the chooseLocaleFromLink
method using a method expression. The chooseLocaleFromLink method handles the event of a
user clicking on the hyperlink rendered by this component.

Referencing a Backing Bean Method

The Java EE 5 Tutorial • October 2008374

“Writing a Method to Handle an Action Event” on page 408 describes how to implement a
method that handles an action event.

Referencing a Method That Performs Validation
If the input of one of the components on your page is validated by a backing bean method, you
refer to the method from the component’s tag using the validator attribute.

The Coffee Break application includes a method that performs validation of the email input
component on the checkoutForm.jsp page. Here is the tag corresponding to this component:

<h:inputText id="email" value="#{checkoutFormBean.email}"
size="25" maxlength="125"
validator="#{checkoutFormBean.validateEmail}"/>

This tag references the validate method described in “Writing a Method to Perform
Validation” on page 408 using a method expression.

Referencing a Method That Handles a Value-change
Event
If you want a component on your page to generate a value-change event and you want that
event to be handled by a backing bean method, you refer to the method using the component’s
valueChangeListener attribute.

The name component on the bookcashier.jsp page of the Duke’s Bookstore application
references a ValueChangeListener implementation that handles the event of a user entering a
name in the name input field:

<h:inputText

id="name"
size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

For illustration, “Writing a Method to Handle a Value-Change Event” on page 409 describes
how to implement this listener with a backing bean method instead of a listener
implementation class. To refer to this backing bean method, the tag uses the
valueChangeListener attribute:

<h:inputText

id="name"
size="50"

Referencing a Backing Bean Method

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 375

value="#{cashier.name}"
required="true"
valueChangeListener="#{cashier.processValueChange}" />

</h:inputText>

The valueChangeListener attribute of this component tag references the
processValueChange method of CashierBean using a method expression. The
processValueChange method handles the event of a user entering his name in the input field
rendered by this component.

“Writing a Method to Handle a Value-Change Event” on page 409 describes how to implement a
method that handles a ValueChangeEvent.

Using Custom Objects
As a page author, you might need to use custom converters, validators, or components
packaged with the application on your JSP pages.

A custom converter is applied to a component in one of the following ways:

■ Reference the converter from the component tag’s converter attribute.
■ Nest a converter tag inside the component’s tag and reference the custom converter from

one of the converter tag’s attributes.

A custom validator is applied to a component in one of the following ways:

■ Nest a validator tag inside the component’s tag and reference the custom validator from
the validator tag.

■ Nest the validator’s custom tag (if there is one) inside the component’s tag.

To use a custom component, you add the custom tag associated with the component to the
page.

As explained in “Setting Up a Page” on page 324, you must ensure that the TLD that defines any
custom tags is packaged in the application if you intend to use the tags in your pages. TLD files
are stored in the WEB-INF/ directory or subdirectory of the WAR file or in the META-INF/
directory or subdirectory of a tag library packaged in a JAR file.

You also need to include a taglib declaration in the page so that the page has access to the tags.
All custom objects for the Duke’s Bookstore application are defined in bookstore.tld. Here is
the taglib declaration that you would include on your page so that you can use the tags from
this TLD:

<%@ taglib uri="/WEB-INF/bookstore.tld" prefix="bookstore" %>

When including the custom tag in the page, you can consult the TLD to determine which
attributes the tag supports and how they are used.

Using Custom Objects

The Java EE 5 Tutorial • October 2008376

The next three sections describe how to use the custom converter, validator, and UI
components included in the Duke’s Bookstore application.

Using a Custom Converter
As described in the previous section, to apply the data conversion performed by a custom
converter to a particular component’s value, you must either reference the custom converter
from the component tag’s converter attribute or from a converter tag nested inside the
component tag.

If you are using the component tag’s converter attribute, this attribute must reference the
Converter implementation’s identifier or the fully-qualified class name of the converter. The
application architect provides this identifier when registering the Converter implementation
with the application, as explained in “Registering a Custom Converter” on page 453. “Creating a
Custom Converter” on page 395 explains how a custom converter is implemented.

The identifier for the credit card converter is CreditCardConverter. The
CreditCardConverter instance is registered on the ccno component, as shown in this tag from
the bookcashier.jsp page:

<h:inputText id="ccno"
size="19"
converter="CreditCardConverter"
required="true">
...

</h:inputText>

By setting the converter attribute of a component’s tag to the converter’s identifier or its class
name, you cause that component’s local value to be automatically converted according to the
rules specified in the Converter implementation.

Instead of referencing the converter from the component tag’s converter attribute, you can
reference the converter from a converter tag nested inside the component’s tag. To reference
the custom converter using the converter tag, you do one of the following:

■ Set the converter tag’s converterId attribute to the Converter implementation’s identifier
defined in the application configuration file.

■ Bind the Converter implementation to a backing bean property using the converter tag’s
binding attribute, as described in “Binding Converters, Listeners, and Validators to Backing
Bean Properties” on page 372.

Using Custom Objects

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 377

Using a Custom Validator
To register a custom validator on a component, you must do one of the following:

■ Nest the validator’s custom tag inside the tag of the component whose value you want to be
validated.

■ Nest the standard validator tag within the tag of the component and reference the custom
Validator implementation from the validator tag.

Here is the custom formatValidator tag from the ccno field on the bookcashier.jsp page of
the Duke’s Bookstore application:

<h:inputText id="ccno" size="19"
...

required="true">
<bookstore:formatValidator

formatPatterns="9999999999999999|9999 9999 9999 9999|

9999-9999-9999-9999" />

</h:inputText>

<h:message styleClass="validationMessage" for="ccno"/>

This tag validates the input of the ccno field against the patterns defined by the page author in
the formatPatterns attribute.

You can use the same custom validator for any similar component by simply nesting the custom
validator tag within the component tag.

“Creating a Custom Validator” on page 400 describes how to create the custom validator and its
custom tag.

If the application developer who created the custom validator prefers to configure the attributes
in the Validator implementation rather than allow the page author to configure the attributes
from the page, the developer will not create a custom tag for use with the validator.

In this case, the page author must nest the validator tag inside the tag of the component whose
data needs to be validated. Then the page author needs to do one of the following:

1. Set the validator tag’s validatorId attribute to the ID of the validator that is defined in the
application configuration resource file. “Registering a Custom Validator” on page 452
explains how to configure the validator in the application configuration resource file.

2. Bind the custom Validator implementation to a backing bean property using the
validator tag’s binding attribute, as described in “Binding Converters, Listeners, and
Validators to Backing Bean Properties” on page 372.

The following tag registers a hypothetical validator on a component using a validator tag and
references the ID of the validator:

Using Custom Objects

The Java EE 5 Tutorial • October 2008378

<h:inputText id="name" value="#{CustomerBean.name}"
size="10" ... >

<f:validator validatorId="customValidator" />

...

</h:inputText>

Using a Custom Component
In order to use a custom component in a page, you need to declare the tag library that defines
the custom tag that renders the custom component, as explained in “Using Custom Objects” on
page 376, and you add the component’s tag to the page.

The Duke’s Bookstore application includes a custom image map component on the
chooselocale.jsp page. This component allows you to select the locale for the application by
clicking on a region of the image map:

...

<h:graphicImage id="mapImage" url="/template/world.jpg"
alt="#{bundle.chooseLocale}"
usemap="#worldMap" />

<bookstore:map id="worldMap" current="NAmericas"
immediate="true"
action="bookstore"
actionListener="#{localeBean.chooseLocaleFromMap}">
<bookstore:area id="NAmerica" value="#{NA}"

onmouseover="/template/world_namer.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

...

<bookstore:area id="France" value="#{fraA}"
onmouseover="/template/world_france.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

</bookstore:map>

The standard graphicImage tag associates an image (world.jpg) with an image map that is
referenced in the usemap attribute value.

The custom map tag that represents the custom component, MapComponent, specifies the image
map, and contains a set of area tags. Each custom area tag represents a custom AreaComponent

and specifies a region of the image map.

On the page, the onmouseover and onmouseout attributes specify the image that is displayed
when the user performs the actions described by the attributes. The page author defines what
these images are. The custom renderer also renders an onclick attribute.

Using Custom Objects

Chapter 11 • Using JavaServer Faces Technology in JSP Pages 379

In the rendered HTML page, the onmouseover, onmouseout, and onclick attributes define
which JavaScript code is executed when these events occur. When the user moves the mouse
over a region, the onmouseover function associated with the region displays the map with that
region highlighted. When the user moves the mouse out of a region, the onmouseout function
redisplays the original image. When the user clicks a region, the onclick function sets the value
of a hidden input tag to the ID of the selected area and submits the page.

When the custom renderer renders these attributes in HTML, it also renders the JavaScript
code. The custom renderer also renders the entire onclick attribute rather than let the page
author set it.

The custom renderer that renders the map tag also renders a hidden input component that
holds the current area. The server-side objects retrieve the value of the hidden input field and
set the locale in the FacesContext instance according to which region was selected.

Chapter 13, “Creating Custom UI Components,” describes the custom tags in more detail and
also explains how to create the custom image map components, renderers, and tags.

Using Custom Objects

The Java EE 5 Tutorial • October 2008380

Developing with JavaServer Faces Technology

Chapter 11, “Using JavaServer Faces Technology in JSP Pages,” shows how the page author can
bind components to server-side objects by using the component tags and core tags on the JSP
page. The application developer’s responsibility is to program the server-side objects of a
JavaServer Faces application. These objects include backing beans, converters, event handlers,
and validators.

This chapter uses the Duke’s Bookstore application (see “The Example JavaServer Faces
Application” on page 321) to explain all of the application developer’s responsibilities, including

■ Programming properties and methods of a backing bean
■ Localizing an application
■ Creating custom converters and validators
■ Implementing event listeners
■ Writing backing bean methods to perform navigation processing and validation and handle

events

Writing Bean Properties
As explained in “Backing Beans” on page 310, a backing bean property can be bound to one of
the following items:

■ A component value
■ A component instance
■ A Converter implementation
■ A Listener implementation
■ A Validator implementation

These properties follow JavaBeans component conventions (see “JavaBeans Components” on
page 167).

12C H A P T E R 1 2

381

The UI component’s tag binds the component’s value to a property using its value attribute and
binds the component’s instance to a property using its binding attribute, as explained in
“Binding Component Values and Instances to External Data Sources” on page 367. Likewise, all
the converter, listener, and validator tags use their binding attributes to bind their associated
implementations to backing bean properties, as explained in “Binding Converters, Listeners,
and Validators to Backing Bean Properties” on page 372.

To bind a component’s value to a backing bean property, the type of the property must match
the type of the component’s value to which it is bound. For example, if a backing bean property
is bound to a UISelectBoolean component’s value, the property should accept and return a
boolean value or a Boolean wrapper Object instance.

To bind a component instance, the property must match the component type. For example, if a
backing bean property is bound to a UISelectBoolean instance, the property should accept and
return UISelectBoolean.

Similarly, in order to bind a converter, listener, or validator implementation to a property, the
property must accept and return the same type of converter, listener, or validator object. For
example, if you are using the convertDateTime tag to bind a DateTime converter to a property,
that property must accept and return a DateTime instance.

The rest of this section explains how to write properties that can be bound to component values,
to component instances for the component objects described in “Adding UI Components to a
Page Using the HTML Component Tags” on page 329, and to converter, listener, and validator
implementations.

Writing Properties Bound to Component Values
To write a backing bean property bound to a component’s value, you must know the types that
the component’s value can be so that you can make the property match the type of the
component’s value.

Table 12–1 lists all the component classes described in “Adding UI Components to a Page
Using the HTML Component Tags” on page 329 and the acceptable types of their values.

When page authors bind components to properties using the value attributes of the
component tags, they need to ensure that the corresponding properties match the types of the
components’ values.

Writing Bean Properties

The Java EE 5 Tutorial • October 2008382

TABLE 12–1 Acceptable Types of Component Values

Component Acceptable Types of Component Values

UIInput, UIOutput,
UISelectItem, UISelectOne

Any of the basic primitive and numeric types or any Java programming
language object type for which an appropriate Converter implementation
is available.

UIData array of beans, List of beans, single bean, java.sql.ResultSet,
javax.servlet.jsp.jstl.sql.Result, javax.sql.RowSet.

UISelectBoolean boolean or Boolean.

UISelectItems java.lang.String, Collection, Array, Map.

UISelectMany array or List. Elements of the array or List can be any of the standard
types.

UIInput and UIOutputProperties
The following tag binds the name component to the name property of CashierBean.

<h:inputText id="name" size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener

type="com.sun.bookstore6.listeners.NameChanged" />

</h:inputText>

Here is the bean property bound to the name component:

protected String name = null;

public void setName(String name) {

this.name = name;

}

public String getName() {

return this.name;

}

As “Using the Standard Converters” on page 357 describes, to convert the value of a UIInput or
UIOutput component, you can either apply a converter or create the bean property bound to the
component with the desired type. Here is the example tag explained in “Using
DateTimeConverter” on page 359 that displays the date books will be shipped:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

The application developer must ensure that the property bound to the component represented
by this tag has a type of java.util.Date. Here is the shipDate property in CashierBean:

Writing Bean Properties

Chapter 12 • Developing with JavaServer Faces Technology 383

protected Date shipDate;

public Date getShipDate() {

return this.shipDate;

}

public void setShipDate(Date shipDate) {

this.shipDate = shipDate;

}

See “Binding Component Values and Instances to External Data Sources” on page 367 for more
information on applying a Converter implementation.

UIDataProperties
UIData components must be bound to one of the types listed in Table 12–1. The UIData
component from the bookshowcart.jsp page of the Duke’s Bookstore example is discussed in
the section “Using Data-Bound Table Components” on page 339. Here is part of the start tag of
dataTable from that section:

<h:dataTable id="items"
...

value="#{cart.items}"
var="item" >

The value expression points to the items property of the ShoppingCart bean. The
ShoppingCart bean maintains a map of ShoppingCartItem beans.

The getItems method from ShoppingCart populates a List with ShoppingCartItem instances
that are saved in the items map from when the customer adds books to the cart:

public synchronized List getItems() {

List results = new ArrayList();

results.addAll(this.items.values());

return results;

}

All the components contained in the UIData component are bound to the properties of the
ShoppingCart bean that is bound to the entire UIData component. For example, here is the
outputText tag that displays the book title in the table:

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>

</h:commandLink>

The book title is actually a hyperlink to the bookdetails.jsp page. The outputText tag uses
the value expression #{item.item.title} to bind its UIOutput component to the title
property of the Book bean. The first item in the expression is the ShoppingCartItem instance
that the dataTable tag is referencing while rendering the current row. The second item in the

Writing Bean Properties

The Java EE 5 Tutorial • October 2008384

expression refers to the item property of ShoppingCartItem, which returns a Book bean. The
title part of the expression refers to the title property of Book. The value of the UIOutput
component corresponding to this tag is bound to the title property of the Book bean:

private String title = null;

public String getTitle() {

return this.title;

}

public void setTitle(String title) {

this.title=title;

}

UISelectBooleanProperties
Properties that hold the UISelectBoolean component’s data must be of boolean or Boolean
type. The example selectBooleanCheckbox tag from the section “Rendering Components for
Selecting One Value” on page 346 binds a component to a property. Here is an example that
binds a component value to a property:

<h:selectBooleanCheckbox title="#{bundle.receiveEmails}"
value="#{custFormBean.receiveEmails}" >

</h:selectBooleanCheckbox>

<h:outputText value="#{bundle.receiveEmails}">

Here is an example property that can be bound to the component represented by the example
tag:

protected boolean receiveEmails = false;

...

public void setReceiveEmails(boolean receiveEmails) {

this.receiveEmails = receiveEmails;

}

public boolean getReceiveEmails() {

return receiveEmails;

}

UISelectManyProperties
Because a UISelectMany component allows a user to select one or more items from a list of
items, this component must map to a bean property of type List or array. This bean property
represents the set of currently selected items from the list of available items.

Here is the example selectManyCheckbox tag from “Rendering Components for Selecting
Multiple Values” on page 348:

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"

Writing Bean Properties

Chapter 12 • Developing with JavaServer Faces Technology 385

value="#{cashier.newsletters}">
<f:selectItems value="#{newsletters}"/>

</h:selectManyCheckbox>

Here is a bean property that maps to the value of this selectManyCheckbox example:

protected String newsletters[] = new String[0];

public void setNewsletters(String newsletters[]) {

this.newsletters = newsletters;

}

public String[] getNewsletters() {

return this.newsletters;

}

As explained in the section “Rendering Components for Selecting Multiple Values” on
page 348, the UISelectItem and UISelectItems components are used to represent all the
values in a UISelectMany component. See “UISelectItem Properties” on page 387 and
“UISelectItems Properties” on page 387 for information on how to write the bean properties
for the UISelectItem and UISelectItems components.

UISelectOneProperties
UISelectOne properties accept the same types as UIInput and UIOutput properties. This is
because a UISelectOne component represents the single selected item from a set of items. This
item can be any of the primitive types and anything else for which you can apply a converter.

Here is the example selectOneMenu tag from “Displaying a Menu Using the selectOneMenu
Tag” on page 347:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

Here is the property corresponding to this tag:

protected String shippingOption = "2";

public void setShippingOption(String shippingOption) {

Writing Bean Properties

The Java EE 5 Tutorial • October 2008386

this.shippingOption = shippingOption;

}

public String getShippingOption() {

return this.shippingOption;

}

Note that shippingOption represents the currently selected item from the list of items in the
UISelectOne component.

As explained in the section “Displaying a Menu Using the selectOneMenu Tag” on page 347, the
UISelectItem and UISelectItems components are used to represent all the values in a
UISelectOne component. See “UISelectItem Properties” on page 387 and “UISelectItems
Properties” on page 387 for information on how to write the backing bean properties for the
UISelectItem and UISelectItems components.

UISelectItemProperties
A UISelectItem component represents one value in a set of values in a UISelectMany or
UISelectOne component. The backing bean property that a UISelectItem component is
bound to must be of type SelectItem. A SelectItem object is composed of an Object

representing the value, along with two Strings representing the label and description of the
SelectItem object.

The Duke’s Bookstore application does not use any UISelectItem components whose values
are bound to backing beans. The example selectOneMenu tag from “Displaying a Menu Using
the selectOneMenu Tag” on page 347 contains selectItem tags that set the values of the list of
items in the page. Here is an example bean property that can set the values for this list in the
bean:

SelectItem itemOne = null;

SelectItem getItemOne(){

return itemOne;

}

void setItemOne(SelectItem item) {

itemOne = item;

}

UISelectItemsProperties
UISelectItems components are children of UISelectMany and UISelectOne components.
Each UISelectItems component is composed of either a set of SelectItem instances or a set of
SelectItemGroup instances. As described in “Using the selectItems Tag” on page 350, a
SelectItemGroup is composed of a set of SelectItem instances. This section describes how to
write the properties for selectItems tags containing SelectItem instances and for
selectItems tags containing SelectItemGroup instances.

Writing Bean Properties

Chapter 12 • Developing with JavaServer Faces Technology 387

Properties for SelectItems Composed of SelectItem Instances

“Using the selectItems Tag” on page 350 describes how the newsletters list of the Duke’s
Bookstore application is populated using the application configuration resource file. You can
also populate the SelectItems with SelectItem instances programmatically in the backing
bean. This section explains how to do this.

In your backing bean, you create a list that is bound to the SelectItem component. Then you
define a set of SelectItem objects, set their values, and populate the list with the SelectItem
objects. Here is an example code snippet that shows how to create a SelectItems property:

import javax.faces.component.SelectItem;

...

protected ArrayList options = null;

protected SelectItem newsletter0 =

new SelectItem("200", "Duke’s Quarterly", "");
...

//in constructor, populate the list

options.add(newsletter0);

options.add(newsletter1);

options.add(newsletter2);

...

public SelectItem getNewsletter0(){

return newsletter0;

}

void setNewsletter0(SelectItem firstNL) {

newsletter0 = firstNL;

}

// Other SelectItem properties

public Collection[] getOptions(){

return options;

}

public void setOptions(Collection[] options){

this.options = new ArrayList(options);

}

The code first initializes options as a list. Each newsletter property is defined with values. Then,
each newsletter SelectItem is added to the list. Finally, the code includes the obligatory
setOptions and getOptions accessor methods.

Properties for SelectItems Composed of SelectItemGroup Instances

The preceding section explains how to write the bean property for a SelectItems component
composed of SelectItem instances. This section explains how to change the example property
from the preceding section so that the SelectItems is composed of SelectItemGroup
instances.

Writing Bean Properties

The Java EE 5 Tutorial • October 2008388

Let’s separate the newsletters into two groups: One group includes Duke’s newsletters, and the
other group includes the Innovator’s Almanac and Random Ramblings newsletters.

In your backing bean, you need a list that contains two SelectItemGroup instances. Each
SelectItemGroup instance contains two SelectItem instances, each representing a newsletter:

import javax.faces.model.SelectItemGroup;

...

private ArrayList optionsGroup = null;

optionsGroup = new ArrayList(2);

private static final SelectItem options1[] = {

new SelectItem("200", "Duke’s Quarterly", "");
new SelectItem("202",

"Duke’s Diet and Exercise Journal", "");
};

private static final SelectItem options2[] = {

new SelectItem("201", "Innovator’s Almanac", "");
new SelectItem("203", "Random Ramblings", "");

};

SelectItemGroup group1 =

new SelectItemGroup("Duke’s", null, true, options1);

SelectItemGroup group2 =

new SelectItemGroup("General Interest", null, true,

options2);

optionsGroup.add(group1);

optionsGroup.add(group2);

...

public Collection getOptionsGroup() {

return optionsGroup;

}

public void setOptionsGroup(Collection newGroupOptions) {

optionsGroup = new ArrayList(newGroupOptions);

}

The code first initializes optionsGroup as a list. The optionsGroup list contains two
SelectItemGroup objects. Each object is initialized with the label of the group appearing in the
list or menu; a value; a Boolean indicating whether or not the label is disabled; and an array
containing two SelectItem instances. Then each SelectItemGroup is added to the list. Finally,
the code includes the setOptionsGroup and getOptionsGroup accessor methods so that the tag
can access the values. The selectItems tag references the optionsGroup property to get the
SelectItemGroup objects for populating the list or menu on the page.

Writing Bean Properties

Chapter 12 • Developing with JavaServer Faces Technology 389

Writing Properties Bound to Component Instances
A property bound to a component instance returns and accepts a component instance rather
than a component value. Here are the tags described in “Binding a Component Instance to a
Bean Property” on page 371 that bind components to backing bean properties:

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}" >

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

As “Binding a Component Instance to a Bean Property” on page 371 explains, the
selectBooleanCheckbox tag renders a check box and binds the fanClub UISelectBoolean
component to the specialOffer property of CashierBean. The outputLabel tag binds the
fanClubLabel component (which represents the check box’s label) to the specialOfferText
property of CashierBean. If the user orders more than $100 (or 100 euros) worth of books and
clicks the Submit button, the submit method of CashierBean sets both components’ rendered
properties to true, causing the check box and label to display when the page is re-rendered.

Because the components corresponding to the example tags are bound to the backing bean
properties, these properties must match the components’ types. This means that the
specialOfferText property must be of UIOutput type, and the specialOffer property must
be of UISelectBoolean type:

UIOutput specialOfferText = null;

public UIOutput getSpecialOfferText() {

return this.specialOfferText;

}

public void setSpecialOfferText(UIOutput specialOfferText) {

this.specialOfferText = specialOfferText;

}

UISelectBoolean specialOffer = null;

public UISelectBoolean getSpecialOffer() {

return this.specialOffer;

}

public void setSpecialOffer(UISelectBoolean specialOffer) {

this.specialOffer = specialOffer;

}

Writing Bean Properties

The Java EE 5 Tutorial • October 2008390

See “Backing Beans” on page 310 for more general information on component binding.

See “Referencing a Method That Performs Navigation” on page 374 for information on how to
reference a backing bean method that performs navigation when a button is clicked.

See “Writing a Method to Handle Navigation” on page 406 for more information on writing
backing bean methods that handle navigation.

Writing Properties Bound to Converters, Listeners, or
Validators
All of the standard converter, listener, and validator tags that are included with JavaServer Faces
technology support binding attributes that allow page authors to bind converter, listener, or
validator implementations to backing bean properties.

The following example from “Binding Converters, Listeners, and Validators to Backing Bean
Properties” on page 372 shows a standard convertDateTime tag using a value expression with
its binding attribute to bind the DateTimeConverter instance to the convertDate property of
LoginBean:

<h:inputText value="#{LoginBean.birthDate}">
<f:convertDateTime binding="#{LoginBean.convertDate}" />

</h:inputText>

The convertDate property must therefore accept and return a DateTimeConverter object, as
shown here:

private DateTimeConverter convertDate;

public DateTimeConverter getConvertDate() {

...

return convertDate;

{

public void setConvertDate(DateTimeConverter convertDate) {

convertDate.setPattern("EEEEEEEE, MMM dd, yyyy");
this.convertDate = convertDate;

}

Because the converter is bound to a backing bean property, the backing bean property is able to
modify the attributes of the converter or add new functionality to it. In the case of the preceding
example, the property sets the date pattern that the converter will use to parse the user’s input
into a Date object.

The backing bean properties that are bound to validator or listener implementations are written
in the same way and have the same general purpose.

Writing Bean Properties

Chapter 12 • Developing with JavaServer Faces Technology 391

Performing Localization
As mentioned in “Rendering Components for Selecting Multiple Values” on page 348, data and
messages in the Duke’s Bookstore application have been localized for French, German, Spanish,
and American English.

This section explains how to produce the localized error messages as well as how to localize
dynamic data and messages.

“Rendering Components for Selecting Multiple Values” on page 348 describes how page
authors access localized data from the page.

If you are not familiar with the basics of localizing web applications, see Chapter 15,
“Internationalizing and Localizing Web Applications.”

Creating a Resource Bundle
A ResourceBundle contains a set of localized messages. To learn how to create a
ResourceBundle, see http://java.sun.com/docs/books/tutorial/i18n/index.html.

After you create the ResourceBundle, put it in the same directory as your classes. Much of the
data for the Duke’s Bookstore application is stored in a ResourceBundle called
BookstoreMessages, located in tut-install/javaeetutorial5/examples/web/bookstore/
src/com/sun/bookstore/messages/.

Localizing Dynamic Data
The Duke’s Bookstore application has some data that is set dynamically in backing beans.
Because of this, the beans must load the localized data themselves; the data can’t be loaded from
the page.

The message method in
tut-install/javaeetutorial5/examples/web/bookstore6/src/java/com/sun/bookstore6/backing/AbstractBean.java
is a general-purpose method that looks up localized data used in the backing beans:

protected void message(String clientId, String key) {

// Look up the requested message text

String text = null;

try {

ResourceBundle bundle =

ResourceBundle.getBundle("messages.BookstoreMessages",
context().getViewRoot().getLocale());

text = bundle.getString(key);

} catch (Exception e) {

Performing Localization

The Java EE 5 Tutorial • October 2008392

http://java.sun.com/docs/books/tutorial/i18n/index.html

text = "???" + key + "???";
}

// Construct and add a FacesMessage containing it

context().addMessage(clientId, new FacesMessage(text));

}

This method gets the current locale from the UIViewRoot instance of the current request and
loads the localized data for the messages using the getBundle method, passing in the path to the
ResourceBundle and the current locale.

The other backing beans call this method by using the key to the message that they are trying to
retrieve from the resource bundle. Here is a call to the message method from
tut-install/javaeetutorial5/examples/web/bookstore6/src/java/com/sun/bookstore6/backing/ShowCartBean.ja

message(null, "Quantities Updated");

Localizing Messages
The JavaServer Faces API provides two ways to create messages from a resource bundle:
■ You can register the ResourceBundle instance with the application configuration resource

file and use a message factory pattern to examine the ResourceBundle and to generate
localized FacesMessage instances, which represent single localized messages. The message
factory pattern is required to access messages that are registered with the Application
instance. Instead of writing your own message factory pattern, you can use the one included
with the Duke’s Bookstore application. It is called MessageFactory and is located in
tut-install/javaeetutorial5/examples/web/
bookstore6/src/java/com/sun/bookstore6/util/.

■ You can use the FacesMessage class to get the localized string directly from the
ResourceBundle instance.

“Registering Custom Error Messages” on page 450 includes an example of registering a
ResourceBundle in the application configuration resource file.

Creating a Message with a Message Factory
To use a message factory to create a message, follow these steps:

1. Register the ResourceBundle instance with the application. This is explained in “Registering
Custom Error Messages” on page 450.

2. Create a message factory implementation. You can simply copy the MessageFactory class
included with the Duke’s Bookstore application to your application.

3. Access a message from your application by calling the getMessage(FacesContext,
String, Object) method of the MessageFactory class. The MessageFactory class uses the
FacesContext to access the Application instance on which the messages are registered.
The String argument is the key that corresponds to the message in the ResourceBundle.

Performing Localization

Chapter 12 • Developing with JavaServer Faces Technology 393

The Object instance typically contains the substitution parameters that are embedded in the
message. For example, the custom validator described in “Implementing the Validator
Interface” on page 401 will substitute the format pattern for the {0} in this error message:

Input must match one of the following patterns {0}

“Implementing the Validator Interface” on page 401 gives an example of accessing messages.

Using FacesMessage to Create a Message
Instead of registering messages in the application configuration resource file, you can access the
ResourceBundle directly from the code. The validateEmail method from the Coffee Break
example does this:

...

String message = "";
...

message = CoffeeBreakBean.loadErrorMessage(context,

CoffeeBreakBean.CB_RESOURCE_BUNDLE_NAME,

"EMailError");
context.addMessage(toValidate.getClientId(context),

new FacesMessage(message));

...

These lines also call the loadErrorMessage to get the message from the ResourceBundle. Here
is the loadErrorMessage method from CoffeeBreakBean:

public static String loadErrorMessage(FacesContext context,

String basename, String key) {

if (bundle == null) {

try {

bundle = ResourceBundle.getBundle(basename,

context.getViewRoot().getLocale());

} catch (Exception e) {

return null;

}

}

return bundle.getString(key);

}

Performing Localization

The Java EE 5 Tutorial • October 2008394

Creating a Custom Converter
As explained in “Conversion Model” on page 305, if the standard converters included with
JavaServer Faces technology don’t perform the data conversion that you need, you can easily
create a custom converter to perform this specialized conversion.

All custom converters must implement the Converter interface. This implementation, at a
minimum, must define how to convert data both ways between the two views of the data
described in “Conversion Model” on page 305.

This section explains how to implement the Converter interface to perform a custom data
conversion. To make this implementation available to the application, the application architect
registers it with the application, as explained in “Registering a Custom Converter” on page 453.
To use the implementation, the page author must register it on a component, as explained in
“Registering a Custom Converter” on page 453.

The Duke’s Bookstore application uses a custom Converter implementation, called
tut-install/javaeetutorial5/examples/web/bookstore6/src/java/com/sun/bookstore6/converters/CreditCardCo
to convert the data entered in the Credit Card Number field on the bookcashier.jsp page. It
strips blanks and hyphens from the text string and formats it so that a blank space separates
every four characters.

To define how the data is converted from the presentation view to the model view, the
Converter implementation must implement the getAsObject(FacesContext, UIComponent,
String) method from the Converter interface. Here is the implementation of this method
from CreditCardConverter:

public Object getAsObject(FacesContext context,

UIComponent component, String newValue)

throws ConverterException {

String convertedValue = null;

if (newValue == null) {

return newValue;

}

// Since this is only a String to String conversion,

// this conversion does not throw ConverterException.

convertedValue = newValue.trim();

if ((convertedValue.contains("-")) ||

(convertedValue.contains(" "))) {

char[] input = convertedValue.toCharArray();

StringBuffer buffer = new StringBuffer(input.length);

for (int i = 0; i < input.length; ++i) {

if (input[i] == ’-’ || input[i] == ’ ’) {

continue;

} else {

Creating a Custom Converter

Chapter 12 • Developing with JavaServer Faces Technology 395

buffer.append(input[i]);

}

}

convertedValue = buffer.toString();

}

return convertedValue;

}

During the apply request values phase, when the components’ decode methods are processed,
the JavaServer Faces implementation looks up the component’s local value in the request and
calls the getAsObject method. When calling this method, the JavaServer Faces implementation
passes in the current FacesContext instance, the component whose data needs conversion, and
the local value as a String. The method then writes the local value to a character array, trims the
hyphens and blanks, adds the rest of the characters to a String, and returns the String.

To define how the data is converted from the model view to the presentation view, the
Converter implementation must implement the getAsString(FacesContext, UIComponent,
Object) method from the Converter interface. Here is the implementation of this method
from CreditCardConverter:

public String getAsString(FacesContext context,

UIComponent component, Object value)

throws ConverterException {

String inputVal = null;

if (value == null) {

return null;

}

// value must be of the type that can be cast to a String.

try {

inputVal = (String)value;

} catch (ClassCastException ce) {

FacesMessage errMsg = MessageFactory.getMessage(

CONVERSION_ERROR_MESSAGE_ID,

(new Object[] { value, inputVal }));

throw new ConverterException(errMsg.getSummary());

}

// insert spaces after every four characters for better

// readability if it doesn’t already exist.

char[] input = inputVal.toCharArray();

StringBuffer buffer = new StringBuffer(input.length + 3);

for (int i = 0; i < input.length; ++i) {

if ((i % 4) == 0 && i != 0) {

if (input[i] != ’ ’ || input[i] != ’-’){
buffer.append(" ");
// if there are any "-"’s convert them to blanks.

} else if (input[i] == ’-’) {

buffer.append(" ");

Creating a Custom Converter

The Java EE 5 Tutorial • October 2008396

}

}

buffer.append(input[i]);

}

String convertedValue = buffer.toString();

return convertedValue;

}

During the render response phase, in which the components’ encode methods are called, the
JavaServer Faces implementation calls the getAsString method in order to generate the
appropriate output. When the JavaServer Faces implementation calls this method, it passes in
the current FacesContext, the UIComponent whose value needs to be converted, and the bean
value to be converted. Because this converter does a String-to-String conversion, this method
can cast the bean value to a String.

If the value cannot be converted to a String, the method throws an exception, passing the error
message from the ResourceBundle, which is registered with the application. “Registering
Custom Error Messages” on page 450 explains how to register the error messages with the
application. “Performing Localization” on page 392 explains more about working with localized
messages.

If the value can be converted to a String, the method reads the String to a character array and
loops through the array, adding a space after every four characters.

Implementing an Event Listener
As explained in “Event and Listener Model” on page 306, JavaServer Faces technology supports
action events and value-change events.

Action events occur when the user activates a component that implements ActionSource.
These events are represented by the class javax.faces.event.ActionEvent.

Value-change events occur when the user changes the value of a component that implements
EditableValueHolder. These events are represented by the class
javax.faces.event.ValueChangeEvent.

One way to handle these events is to implement the appropriate listener classes. Listener classes
that handle the action events in an application must implement the interface
javax.faces.event.ActionListener. Similarly, listeners that handle the value-change events
must implement the interface javax.faces.event.ValueChangeListener.

This section explains how to implement the two listener classes.

If you need to handle events generated by custom components, you must implement an event
handler and manually queue the event on the component as well as implement an event
listener. See “Handling Events for Custom Components” on page 431 for more information.

Implementing an Event Listener

Chapter 12 • Developing with JavaServer Faces Technology 397

Note – You need not create an ActionListener implementation to handle an event that results
solely in navigating to a page and does not perform any other application-specific processing.
See “Writing a Method to Handle Navigation” on page 406 for information on how to manage
page navigation.

Implementing Value-Change Listeners
A ValueChangeListener implementation must include a
processValueChange(ValueChangeEvent) method. This method processes the specified
value-change event and is invoked by the JavaServer Faces implementation when the
value-change event occurs. The ValueChangeEvent instance stores the old and the new values
of the component that fired the event.

The NameChanged listener implementation is registered on the name UIInput component on the
bookcashier.jsp page. This listener stores into session scope the name the user entered in the
text field corresponding to the name component. When the bookreceipt.jsp page is loaded, it
displays the first name inside the message:

"Thank you, {0} for purchasing your books from us."

Here is part of the NameChanged listener implementation:

...

public class NameChanged extends Object implements

ValueChangeListener {

public void processValueChange(ValueChangeEvent event)

throws AbortProcessingException {

if (null != event.getNewValue()) {

FacesContext.getCurrentInstance().

getExternalContext().getSessionMap().

put("name", event.getNewValue());

}

}

}

When the user enters the name in the text field, a value-change event is generated, and the
processValueChange(ValueChangeEvent) method of the NameChanged listener
implementation is invoked. This method first gets the ID of the component that fired the event
from the ValueChangeEvent object. Next, it puts the value, along with an attribute name, into
the session map of the FacesContext instance.

“Registering a Value-Change Listener on a Component” on page 362 explains how to register
this listener onto a component.

Implementing an Event Listener

The Java EE 5 Tutorial • October 2008398

Implementing Action Listeners
An ActionListener implementation must include a processAction(ActionEvent) method.
The processAction(ActionEvent) method processes the specified action event. The
JavaServer Faces implementation invokes the processAction(ActionEvent) method when the
ActionEvent occurs.

The Duke’s Bookstore application does not use any ActionListener implementations. Instead,
it uses method expressions from actionListener attributes to refer to backing bean methods
that handle events. This section explains how to turn one of these methods into an
ActionListener implementation.

The chooselocale.jsp page allows the user to select a locale for the application by clicking on
one of a set of hyperlinks. When the user clicks one of the hyperlinks, an action event is
generated, and the chooseLocaleFromLink(ActionEvent) method of LocaleBean is invoked.
Instead of implementing a bean method to handle this event, you can create a listener
implementation to handle it. To do this, you do the following:

■ Move the chooseLocaleFromLink(ActionEvent) method to a class that implements
ActionListener

■ Rename the method to processAction(ActionEvent)

The listener implementation would look something like this:

...

public class LocaleChangeListener extends Object implements

ActionListener {

private HashMap<String, Locale> locales = null;

public LocaleChangeListener() {

locales = new HashMap<String, Locale>(4);

locales.put("NAmerica", new Locale("en", "US"));
locales.put("SAmerica", new Locale("es", "MX"));
locales.put("Germany", new Locale("de", "DE"));
locales.put("France", new Locale("fr", "FR"));

}

public void processAction(ActionEvent event)

throws AbortProcessingException {

String current = event.getComponent().getId();

FacesContext context = FacesContext.getCurrentInstance();

context.getViewRoot().setLocale((Locale)

locales.get(current));

}

}

Implementing an Event Listener

Chapter 12 • Developing with JavaServer Faces Technology 399

“Registering an Action Listener on a Component” on page 363 explains how to register this
listener onto a component.

Creating a Custom Validator
If the standard validators don’t perform the validation checking you need, you can easily create
a custom validator to validate user input. As explained in “Validation Model” on page 307, there
are two ways to implement validation code:
■ Implement a backing bean method that performs the validation.
■ Provide an implementation of the Validator interface to perform the validation.

“Writing a Method to Perform Validation” on page 408 explains how to implement a backing
bean method to perform validation. The rest of this section explains how to implement the
Validator interface.

If you choose to implement the Validator interface and you want to allow the page author to
configure the validator’s attributes from the page, you also must create a custom tag for
registering the validator on a component.

If you prefer to configure the attributes in the Validator implementation, you can forgo
creating a custom tag and instead let the page author register the validator on a component
using the validator tag, as described in “Using a Custom Validator” on page 378.

You can also create a backing bean property that accepts and returns the Validator
implementation you create as described in “Writing Properties Bound to Converters, Listeners,
or Validators” on page 391. The page author can use the validator tag’s binding attribute to
bind the Validator implementation to the backing bean property.

Usually, you will want to display an error message when data fails validation. You need to store
these error messages in resource bundle, as described in “Creating a Resource Bundle” on
page 392.

After creating the resource bundle, you have two ways to make the messages available to the
application. You can queue the error messages onto the FacesContext programmatically. Or,
you can have the application architect register the error messages using the application
configuration resource file, as explained in “Registering Custom Error Messages” on page 450.

The Duke’s Bookstore application uses a general-purpose custom validator (called
tut-install/javaeetutorial5/examples/web/bookstore6/src/java/com/sun/bookstore6/validators/FormatValidator.j
that validates input data against a format pattern that is specified in the custom validator tag.
This validator is used with the Credit Card Number field on the bookcashier.jsp page. Here is
the custom validator tag:

<bookstore:formatValidator

formatPatterns="9999999999999999|9999 9999 9999 9999|

9999-9999-9999-9999"/>

Creating a Custom Validator

The Java EE 5 Tutorial • October 2008400

According to this validator, the data entered in the field must be one of the following:

■ A 16 digit number with no spaces
■ A 16 digit number with a space between every four digits
■ A 16 digit number with hyphens between every four digits

The rest of this section describes how this validator is implemented and how to create a custom
tag so that the page author can register the validator on a component.

Implementing the Validator Interface
A Validator implementation must contain a constructor, a set of accessor methods for any
attributes on the tag, and a validate method, which overrides the validate method of the
Validator interface.

The FormatValidator class also defines accessor methods for setting the formatPatterns
attribute, which specifies the acceptable format patterns for input into the fields. In addition, the
class overrides the validate method of the Validator interface. This method validates the
input and also accesses the custom error messages to be displayed when the String is invalid.

The validate method performs the actual validation of the data. It takes the FacesContext
instance, the component whose data needs to be validated, and the value that needs to be
validated. A validator can validate only data of a component that implements
EditableValueHolder.

Here is the validate method from FormatValidator:

public void validate(FacesContext context, UIComponent component, Object toValidate) {

boolean valid = false;

String value = null;

if ((context == null) || (component == null)) {

throw new NullPointerException();

}

if (!(component instanceof UIInput)) {

return;

}

if (null == formatPatternsList || null == toValidate) {

return;

}

value = toValidate.toString();

//validate the value against the list of valid patterns.

Iterator patternIt = formatPatternsList.iterator();

while (patternIt.hasNext()) {

valid = isFormatValid(

((String)patternIt.next()), value);

Creating a Custom Validator

Chapter 12 • Developing with JavaServer Faces Technology 401

if (valid) {

break;

}

}

if (!valid) {

FacesMessage errMsg =

MessageFactory.getMessage(context,

FORMAT_INVALID_MESSAGE_ID,

(new Object[] {formatPatterns}));

throw new ValidatorException(errMsg);

}

}

This method gets the local value of the component and converts it to a String. It then iterates
over the formatPatternsList list, which is the list of acceptable patterns as specified in the
formatPatterns attribute of the custom validator tag.

While iterating over the list, this method checks the pattern of the component’s local value
against the patterns in the list. If the pattern of the local value does not match any pattern in the
list, this method generates an error message. It then passes the message to the constructor of
ValidatorException. Eventually the message is queued onto the FacesContext instance so
that the message is displayed on the page during the render response phase.

The error messages are retrieved from the Application instance by MessageFactory. An
application that creates its own custom messages must provide a class, such as MessageFactory,
that retrieves the messages from the Application instance. When creating your own
application, you can simply copy the MessageFactory class from the Duke’s Bookstore
application to your application.

The getMessage(FacesContext, String, Object) method of MessageFactory takes a
FacesContext, a static String that represents the key into the Properties file, and the format
pattern as an Object. The key corresponds to the static message ID in the FormatValidator
class:

public static final String FORMAT_INVALID_MESSAGE_ID =

"FormatInvalid";
}

When the error message is displayed, the format pattern will be substituted for the {0} in the
error message, which, in English, is

Input must match one of the following patterns {0}

JavaServer Faces applications can save the state of validators and components on either the
client or the server. “Specifying Where State Is Saved” on page 464 explains how to configure
your application to save state on either the client or the server.

Creating a Custom Validator

The Java EE 5 Tutorial • October 2008402

If your JavaServer Faces application saves state on the client (which is the default), you need to
make the Validator implementation implement StateHolder as well as Validator. In
addition to implementing StateHolder, the Validator implementation needs to implement
the saveState(FacesContext) and restoreState(FacesContext, Object) methods of
StateHolder. With these methods, the Validator implementation tells the JavaServer Faces
implementation which attributes of the Validator implementation to save and restore across
multiple requests.

To save a set of values, you must implement the saveState(FacesContext) method. This
method is called during the render response phase, during which the state of the response is
saved for processing on subsequent requests. When implementing the
saveState(FacesContext) method, you need to create an array of objects and add the values of
the attributes you want to save to the array. Here is the saveState(FacesContext) method
from FormatValidator:

public Object saveState(FacesContext context) {

Object values[] = new Object[2];

values[0] = formatPatterns;

values[1] = formatPatternsList;

return (values);

}

To restore the state saved with the saveState(FacesContext) method in preparation for the
next postback, the Validator implementation implements restoreState(FacesContext,
Object). The restoreState(FacesContext, Object) method takes the FacesContext
instance and an Object instance, which represents the array that is holding the state for the
Validator implementation. This method sets the Validator implementation’s properties to
the values saved in the Object array. Here is the restoreState(FacesContext, Object)
method from FormatValidator:

public void restoreState(FacesContext context, Object state) {

Object values[] = (Object[]) state;

formatPatterns = (String) values[0];

formatPatternsList = (ArrayList) values[1];

}

As part of implementing StateHolder, the custom Validator implementation must also
override the isTransient and setTransient(boolean) methods of StateHolder. By default,
transientValue is false, which means that the Validator implementation will have its state
information saved and restored. Here are the isTransient and setTransient(boolean)

methods of FormatValidator:

private boolean transientValue = false;

public boolean isTransient() {

return (this.transientValue);

Creating a Custom Validator

Chapter 12 • Developing with JavaServer Faces Technology 403

}

public void setTransient(boolean transientValue) {

this.transientValue = transientValue;

}

“Saving and Restoring State” on page 428 describes how a custom component must implement
the saveState(FacesContext) and restoreState(FacesContext, Object) methods.

Creating a Custom Tag
If you implemented a Validator interface rather than implementing a backing bean method
that performs the validation, you need to do one of the following:
■ Allow the page author to specify the Validator implementation to use with the validator

tag. In this case, the Validator implementation must define its own properties. “Using a
Custom Validator” on page 378 explains how to use the validator tag.

■ Create a custom tag that provides attributes for configuring the properties of the validator
from the page. Because the Validator implementation from the preceding section does not
define its attributes, the application developer must create a custom tag so that the page
author can define the format patterns in the tag.

To create a custom tag, you need to do two things:
■ Write a tag handler to create and register the Validator implementation on the component.
■ Write a TLD to define the tag and its attributes.

“Using a Custom Validator” on page 378 explains how to use the custom validator tag on the
page.

Writing the Tag Handler
The tag handler associated with a custom validator tag must extend the ValidatorELTag class.
This class is the base class for all custom tag handlers that create Validator instances and
register them on UI components. The FormatValidatorTag class registers the
FormatValidator instance onto the component.

The FormatValidatorTag tag handler class does the following:
■ Sets the ID of the validator.
■ Provides a set of accessor methods for each attribute defined on the tag.
■ Implements the createValidator method of the ValidatorELTag class. This method

creates an instance of the validator and sets the range of values accepted by the validator.

The formatPatterns attribute of the formatValidator tag supports literals and value
expressions. Therefore, the accessor method for this attribute in the FormatValidatorTag class
must accept and return an instance of ValueExpression:

Creating a Custom Validator

The Java EE 5 Tutorial • October 2008404

protected ValueExpression formatPatterns = null;

public void setFormatPatterns(ValueExpression fmtPatterns){

formatPatterns = fmtPatterns;

}

Finally, the createValidator method creates an instance of FormatValidator, extracts the
value from the formatPatterns attribute’s value expression and sets the formatPatterns
property of FormatValidator to this value:

the formatPatterns property of FormatValidator to this value:

protected Validator createValidator() throws JspException {

FacesContext facesContext =

FacesContext.getCurrentInstance();

FormatValidator result = null;

if(validatorID != null){

result = (FormatValidator) facesContext.getApplication()

.createValidator(validatorID);

}

String patterns = null;

if (formatPatterns != null) {

if (!formatPatterns.isLiteralText()) {

patterns = (String)

formatPatterns.getValue(facesContext.getELContext());

} else {

patterns = formatPatterns.getExpressionString();

}

Writing the Tag Library Descriptor
To define a tag, you declare it in a tag library descriptor (TLD), which is an XML document that
describes a tag library. A TLD contains information about a library and each tag contained in it.
See “Tag Library Descriptors” on page 247 for more information about TLDs.

The custom validator tag is defined in bookstore.tld, located in the
tut-install/javaeetutorial5/examples/web/bookstore6/web/WEB-INF/ directory. It
contains a tag definition for formatValidator:

<tag>

<name>formatValidator</name>

...

<tag-class>

com.sun.bookstore6.taglib.FormatValidatorTag</tag-class>

<attribute>

<name>formatPatterns</name>

<required>true</required>

<deferred-value>

Creating a Custom Validator

Chapter 12 • Developing with JavaServer Faces Technology 405

<type>String</type>

</deferred-value>

</attribute>

</tag>

The name element defines the name of the tag as it must be used in the page. The tag-class
element defines the tag handler class. The attribute elements define each of the tag’s attributes.
The formatPatterns attribute is the only attribute that the tag supports. The deferred-value
element indicates that the formatPatterns attribute accepts deferred value expressions. The
type element says that the expression resolves to a property of type String.

Writing Backing Bean Methods
Methods of a backing bean perform application-specific functions for components on the page.
These functions include performing validation on the component’s value, handling action
events, handling value-change events, and performing processing associated with navigation.

By using a backing bean to perform these functions, you eliminate the need to implement the
Validator interface to handle the validation or the Listener interface to handle events. Also,
by using a backing bean instead of a Validator implementation to perform validation, you
eliminate the need to create a custom tag for the Validator implementation. “Creating a
Custom Validator” on page 400“Creating a Custom Validator” on page 400 describes
implementing a custom validator. “Implementing an Event Listener” on page 397 describes
implementing a listener class.

In general, it’s good practice to include these methods in the same backing bean that defines the
properties for the components referencing these methods. The reason is that the methods might
need to access the component’s data to determine how to handle the event or to perform the
validation associated with the component.

This section describes the requirements for writing the backing bean methods.

Writing a Method to Handle Navigation
A backing bean method that handles navigation processing, called an action method, must be a
public method that takes no parameters and returns an Object, which is the logical outcome
that the navigation system uses to determine what page to display next. This method is
referenced using the component tag’s action attribute.

The following action method in CashierBean is invoked when a user clicks the Submit button
on the bookcashier.jsp page. If the user has ordered more than $100 (or 100 euros) worth of
books, this method sets the rendered properties of the fanClub and specialOffer components
to true. This causes them to be displayed on the page the next time the page is rendered.

Writing Backing Bean Methods

The Java EE 5 Tutorial • October 2008406

After setting the components’ rendered properties to true, this method returns the logical
outcome null. This causes the JavaServer Faces implementation to re-render the
bookcashier.jsp page without creating a new view of the page. If this method were to return
purchase (which is the logical outcome to use to advance to bookcashier.jsp, as defined by
the application configuration resource file), the bookcashier.jsp page would re-render
without retaining the customer’s input. In this case, you want to re-render the page without
clearing the data.

If the user does not purchase more than $100 (or 100 euros) worth of books or the thankYou
component has already been rendered, the method returns receipt.

The default NavigationHandler provided by the JavaServer Faces implementation matches the
logical outcome, as well as the starting page (bookcashier.jsp) against the navigation rules in
the application configuration resource file to determine which page to access next. In this case,
the JavaServer Faces implementation loads the bookreceipt.jsp page after this method
returns.

public String submit() {

...

if(cart().getTotal() > 100.00 &&

!specialOffer.isRendered())

{

specialOfferText.setRendered(true);

specialOffer.setRendered(true);

return null;

} else if (specialOffer.isRendered() &&

!thankYou.isRendered()){

thankYou.setRendered(true);

return null;

} else {

clear();

return ("receipt");
}

}

Typically, an action method will return a String outcome, as shown in the previous example.
Alternatively, you can define an Enum class that encapsulates all possible outcome strings and
then make an action method return an enum constant, which represents a particular String
outcome defined by the Enum class. In this case, the value returned by a call to the Enum class’s
toString method must match that specified by the from-outcome element in the appropriate
navigation rule configuration defined in the application configuration file.

The Duke’s Bank example uses an Enum class to encapsulate all logical outcomes:

public enum Navigation {

main, accountHist, accountList, atm, atmAck, transferFunds,

transferAck, error

}

Writing Backing Bean Methods

Chapter 12 • Developing with JavaServer Faces Technology 407

When an action method returns an outcome, it uses the dot notation to reference the outcome
from the Enum class:

public Object submit(){

...

return Navigation.accountHist;

}

“Referencing a Method That Performs Navigation” on page 374 explains how a component tag
references this method. “Binding a Component Instance to a Bean Property” on page 371
discusses how the page author can bind these components to bean properties. “Writing
Properties Bound to Component Instances” on page 390 discusses how to write the bean
properties to which the components are bound. “Configuring Navigation Rules” on page 453
provides more information on configuring navigation rules.

Writing a Method to Handle an Action Event
A backing bean method that handles an action event must be a public method that accepts an
action event and returns void. This method is referenced using the component tag’s
actionListener attribute. Only components that implement ActionSource can refer to this
method.

The following backing bean method from LocaleBean of the Duke’s Bookstore application
processes the event of a user clicking one of the hyperlinks on the chooselocale.jsp page:

public void chooseLocaleFromLink(ActionEvent event) {

String current = event.getComponent().getId();

FacesContext context = FacesContext.getCurrentInstance();

context.getViewRoot().setLocale((Locale)

locales.get(current));

}

This method gets the component that generated the event from the event object. Then it gets the
component’s ID. The ID indicates a region of the world. The method matches the ID against a
HashMap object that contains the locales available for the application. Finally, it sets the locale
using the selected value from the HashMap object.

“Referencing a Method That Handles an Action Event” on page 374 explains how a component
tag references this method.

Writing a Method to Perform Validation
Rather than implement the Validator interface to perform validation for a component, you
can include a method in a backing bean to take care of validating input for the component.

Writing Backing Bean Methods

The Java EE 5 Tutorial • October 2008408

A backing bean method that performs validation must accept a FacesContext, the component
whose data must be validated, and the data to be validated, just as the validate method of the
Validator interface does. A component refers to the backing bean method by using its
validator attribute. Only values of UIInput components or values of components that extend
UIInput can be validated.

Here is the backing bean method of CheckoutFormBean from the Coffee Break example:

public void validateEmail(FacesContext context,

UIComponent toValidate, Object value) {

String message = "";
String email = (String) value;

if (email.contains(’@’)) {

((UIInput)toValidate).setValid(false);

message = CoffeeBreakBean.loadErrorMessage(context,

CoffeeBreakBean.CB_RESOURCE_BUNDLE_NAME,

"EMailError");
context.addMessage(toValidate.getClientId(context),

new FacesMessage(message));

}

}

The validateEmail method first gets the local value of the component. It then checks whether
the @ character is contained in the value. If it isn’t, the method sets the component’s valid
property to false. The method then loads the error message and queues it onto the
FacesContext instance, associating the message with the component ID.

See “Referencing a Method That Performs Validation” on page 375 for information on how a
component tag references this method.

Writing a Method to Handle a Value-Change Event
A backing bean that handles a value-change event must be a public method that accepts a
value-change event and returns void. This method is referenced using the component’s
valueChangeListener attribute.

The Duke’s Bookstore application does not have any backing bean methods that handle
value-change events. It does have a ValueChangeListener implementation, as explained in the
“Implementing Value-Change Listeners” on page 398 section.

For illustration, this section explains how to write a backing bean method that can replace the
ValueChangeListener implementation.

As explained in “Registering a Value-Change Listener on a Component” on page 362, the name
component of the bookcashier.jsp page has a ValueChangeListener instance registered on it.

Writing Backing Bean Methods

Chapter 12 • Developing with JavaServer Faces Technology 409

This ValueChangeListener instance handles the event of entering a value in the field
corresponding to the component. When the user enters a value, a value-change event is
generated, and the processValueChange(ValueChangeEvent) method of the
ValueChangeListener class is invoked.

Instead of implementing ValueChangeListener, you can write a backing bean method to
handle this event. To do this, you move the processValueChange(ValueChangeEvent) method
from the ValueChangeListener class, called NameChanged, to your backing bean.

Here is the backing bean method that processes the event of entering a value in the name field on
the bookcashier.jsp page:

public void processValueChange(ValueChangeEvent event)

throws AbortProcessingException {

if (null != event.getNewValue()) {

FacesContext.getCurrentInstance().

getExternalContext().getSessionMap().

put("name", event.getNewValue());

}

}

The page author can make this method handle the ValueChangeEvent object emitted by a
UIInput component by referencing this method from the component tag’s
valueChangeListener attribute. See “Referencing a Method That Handles a Value-change
Event” on page 375 for more information.

Writing Backing Bean Methods

The Java EE 5 Tutorial • October 2008410

Creating Custom UI Components

JavaServer Faces technology offers a basic set of standard, reusable UI components that enable
page authors and application developers to quickly and easily construct UIs for web
applications. But often an application requires a component that has additional functionality or
requires a completely new component. JavaServer Faces technology allows a component writer
to extend the standard components to enhance their functionality or create custom
components.

In addition to extending the functionality of standard components, a component writer might
want to give a page author the ability to change the appearance of the component on the page.
Or the component writer might want to render a component to a different client. Enabled by
the flexible JavaServer Faces architecture, a component writer can separate the definition of the
component behavior from its appearance by delegating the rendering of the component to a
separate renderer. In this way, a component writer can define the behavior of a custom
component once but create multiple renderers, each of which defines a different way to render
the component to a particular kind of client device.

As well as providing a means to easily create custom components and renderers, the JavaServer
Faces design also makes it easy to reference them from the page through JSP custom tag library
technology.

This chapter uses the image map custom component from the Duke’s Bookstore application
(see “The Example JavaServer Faces Application” on page 321) to explain how a component
writer can create simple custom components, custom renderers, and associated custom tags,
and take care of all the other details associated with using the components and renderers in an
application.

If you are creating components intended for use with an IDE such as Sun Java Studio Creator,
you might need to take some extra steps beyond what this chapter details to get your
components to work with the IDE. For information on how to make your custom components
work with Sun Java Studio Creator, see the article Writing Custom Components for Java Studio
Creator Part 1: Developing a Component Library, located at http://developers.sun.com/
prodtech/javatools/jscreator/reference/techart/2/writing_custom_components.html.

13C H A P T E R 1 3

411

http://developers.sun.com/prodtech/javatools/jscreator/reference/techart/2/writing_custom_components.html
http://developers.sun.com/prodtech/javatools/jscreator/reference/techart/2/writing_custom_components.html

Determining Whether You Need a Custom Component or
Renderer

The JavaServer Faces implementation supports a rich set of components and associated
renderers, which are enough for most simple applications. This section helps you decide
whether you need a custom component or custom renderer or instead can use a standard
component and renderer.

When to Use a Custom Component
A component class defines the state and behavior of a UI component. This behavior includes
converting the value of a component to the appropriate markup, queuing events on
components, performing validation, and other functionality.

You need to create a custom component in these situations:

■ You need to add new behavior to a standard component, such as generating an additional
type of event.

■ You need to aggregate components to create a new component that has its own unique
behavior. The new component must be a custom component. One example is a date chooser
component consisting of three drop-down lists.

■ You need a component that is supported by an HTML client but is not currently
implemented by JavaServer Faces technology. The current release does not contain standard
components for complex HTML components, such as frames; however, because of the
extensibility of the component architecture, you can use JavaServer Faces technology to
create components like these.

■ You need to render to a non-HTML client that requires extra components not supported by
HTML. Eventually, the standard HTML render kit will provide support for all standard
HTML components. However, if you are rendering to a different client, such as a phone, you
might need to create custom components to represent the controls uniquely supported by
the client. For example, some component architectures for wireless clients include support
for tickers and progress bars, which are not available on an HTML client. In this case, you
might also need a custom renderer along with the component; or you might need only a
custom renderer.

Determining Whether You Need a Custom Component or Renderer

The Java EE 5 Tutorial • October 2008412

You do not need to create a custom component in these cases:

■ You simply need to manipulate data on the component or add application-specific
functionality to it. In this situation, you should create a backing bean for this purpose and
bind it to the standard component rather than create a custom component. See “Backing
Beans” on page 310 for more information on backing beans.

■ You need to convert a component’s data to a type not supported by its renderer. See “Using
the Standard Converters” on page 357 for more information about converting a
component’s data.

■ You need to perform validation on the component data. Standard validators and custom
validators can be added to a component by using the validator tags from the page. See
“Using the Standard Validators” on page 364 and “Creating a Custom Validator” on
page 400 for more information about validating a component’s data.

■ You need to register event listeners on components. You can either register event listeners
on components using the valueChangeListener and actionListener tags, or you can
point at an event-processing method on a backing bean using the component’s
actionListener or valueChangeListener attributes. See “Implementing an Event
Listener” on page 397 and “Writing Backing Bean Methods” on page 406 for more
information.

When to Use a Custom Renderer
If you are creating a custom component, you need to ensure, among other things, that your
component class performs these operations:

■ Decoding: Converting the incoming request parameters to the local value of the component
■ Encoding: Converting the current local value of the component into the corresponding

markup that represents it in the response

The JavaServer Faces specification supports two programming models for handling encoding
and decoding:

■ Direct implementation: The component class itself implements the decoding and
encoding.

■ Delegated implementation: The component class delegates the implementation of
encoding and decoding to a separate renderer.

By delegating the operations to the renderer, you have the option of associating your custom
component with different renderers so that you can represent the component in different ways
on the page. If you don’t plan to render a particular component in different ways, it’s simpler to
let the component class handle the rendering.

Determining Whether You Need a Custom Component or Renderer

Chapter 13 • Creating Custom UI Components 413

If you aren’t sure whether you will need the flexibility offered by separate renderers but you
want to use the simpler direct-implementation approach, you can actually use both models.
Your component class can include some default rendering code, but it can delegate rendering to
a renderer if there is one.

Component, Renderer, and Tag Combinations
When you create a custom component, you will usually create a custom renderer to go with it.
You will also need a custom tag to associate the component with the renderer and to reference
the component from the page.

In rare situations, however, you might use a custom renderer with a standard component rather
than a custom component. Or you might use a custom tag without a renderer or a component.
This section gives examples of these situations and summarizes what’s required for a custom
component, renderer, and tag.

You would use a custom renderer without a custom component if you wanted to add some
client-side validation on a standard component. You would implement the validation code with
a client-side scripting language, such as JavaScript, and then render the JavaScript with the
custom renderer. In this situation, you need a custom tag to go with the renderer so that its tag
handler can register the renderer on the standard component.

Custom components as well as custom renderers need custom tags associated with them.
However, you can have a custom tag without a custom renderer or custom component. For
example, suppose that you need to create a custom validator that requires extra attributes on the
validator tag. In this case, the custom tag corresponds to a custom validator and not to a custom
component or custom renderer. In any case, you still need to associate the custom tag with a
server-side object.

Table 13–1 summarizes what you must or can associate with a custom component, custom
renderer, or custom tag.

TABLE 13–1 Requirements for Custom Components, Custom Renderers, and Custom Tags

Custom Item Must Have Can Have

Custom component Custom tag Custom renderer or standard renderer

Custom renderer Custom tag Custom component or standard
component

Custom JavaServer
Faces tag

Some server-side object, like a component,
a custom renderer, or custom validator

Custom component or standard
component associated with a custom
renderer

Determining Whether You Need a Custom Component or Renderer

The Java EE 5 Tutorial • October 2008414

Understanding the Image Map Example
Duke’s Bookstore includes a custom image map component on the chooselocale.jsp page.
This image map displays a map of the world. When the user clicks one of a particular set of
regions in the map, the application sets the locale on the UIViewRoot component of the current
FacesContext to the language spoken in the selected region. The hotspots of the map are the
United States, Spanish-speaking Central and South America, France, and Germany.

Why Use JavaServer Faces Technology to Implement
an Image Map?
JavaServer Faces technology is an ideal framework to use for implementing this kind of image
map because it can perform the work that must be done on the server without requiring you to
create a server-side image map.

In general, client-side image maps are preferred over server-side image maps for several
reasons. One reason is that the client-side image map allows the browser to provide immediate
feedback when a user positions the mouse over a hotspot. Another reason is that client-side
image maps perform better because they don’t require round-trips to the server. However, in
some situations, your image map might need to access the server to retrieve data or to change
the appearance of non-form controls, tasks that a client-side image map cannot do.

Because the image map custom component uses JavaServer Faces technology, it has the best of
both styles of image maps: It can handle the parts of the application that need to be performed
on the server, while allowing the other parts of the application to be performed on the client
side.

Understanding the Rendered HTML
Here is an abbreviated version of the form part of the HTML page that the application needs to
render:

<form id="_id38" method="post"
action="/bookstore6/chooselocale.faces" ... >

...

<img id="_id38:mapImage"
src="/bookstore6/template/world.jpg"
alt="Choose Your Preferred Locale from the Map"
usemap="#worldMap" />

<map name="worldMap">
<area alt="NAmerica"

coords="53,109,1,110,2,167,,..."
shape="poly"

Understanding the Image Map Example

Chapter 13 • Creating Custom UI Components 415

onmouseout=

"document.forms[0][’_id_id38:mapImage’].src=
’/bookstore6/template/world.jpg’"

onmouseover=

"document.forms[0][’_id_id38:mapImage’].src=
’/bookstore6/template/world_namer.jpg’"

onclick=

"document.forms[0][’worldMap_current’].
value=

’NAmerica’;document.forms[0].submit()"
/>

<input type="hidden" name="worldMap_current">
</map>

...

</form>

The img tag associates an image (world.jpg) with the image map referenced in the usemap
attribute value.

The map tag specifies the image map and contains a set of area tags.

Each area tag specifies a region of the image map. The onmouseover, onmouseout, and onclick

attributes define which JavaScript code is executed when these events occur. When the user
moves the mouse over a region, the onmouseover function associated with the region displays
the map with that region highlighted. When the user moves the mouse out of a region, the
onmouseout function redisplays the original image. If the user clicks on a region, the onclick
function sets the value of the input tag to the ID of the selected area and submits the page.

The input tag represents a hidden control that stores the value of the currently selected area
between client-server exchanges so that the server-side component classes can retrieve the
value.

The server-side objects retrieve the value of worldMap_current and set the locale in the
FacesContext instance according to the region that was selected.

Understanding the JSP Page
Here is an abbreviated form of the JSP page that the image map component will use to generate
the HTML page shown in the preceding section:

<f:view>

<f:loadBundle basename="messages.BookstoreMessages"
var="bundle"/>

<h:form>

...

<h:graphicImage id="mapImage" url="/template/world.jpg"

Understanding the Image Map Example

The Java EE 5 Tutorial • October 2008416

alt="#{bundle.ChooseLocale}"
usemap="#worldMap" />

<bookstore:map id="worldMap" current="NAmericas"
immediate="true" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromMap}">
<bookstore:area id="NAmerica" value="#{NA}"

onmouseover="/template/world_namer.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

<bookstore:area id="SAmerica" value="#{SA}"
onmouseover="/template/world_samer.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

<bookstore:area id="Germany" value="#{gerA}"
onmouseover="/template/world_germany.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

<bookstore:area id="France" value="#{fraA}"
onmouseover="/template/world_france.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

</bookstore:map>

...

</h:form>

</f:view>

The alt attribute of graphicImage maps to the localized string "Choose Your Locale from
the Map".

The actionListener attribute of the map tag points at a method in LocaleBean that accepts an
action event. This method changes the locale according to the area selected from the image
map. The way this event is handled is explained more in “Handling Events for Custom
Components” on page 431.

The action attribute specifies a logical outcome String, which is matched against the
navigation rules in the application configuration resource file. For more information on
navigation, see the section “Configuring Navigation Rules” on page 453.

The immediate attribute of the map tag is set to true, which indicates that the default
ActionListener implementation should execute during the apply request values phase of the
request-processing life cycle, instead of waiting for the invoke application phase. Because the
request resulting from clicking the map does not require any validation, data conversion, or
server-side object updates, it makes sense to skip directly to the invoke application phase.

The current attribute of the map tag is set to the default area, which is NAmerica.

Notice that the area tags do not contain any of the JavaScript, coordinate, or shape data that is
displayed on the HTML page. The JavaScript is generated by the AreaRenderer class. The

Understanding the Image Map Example

Chapter 13 • Creating Custom UI Components 417

onmouseover and onmouseout attribute values indicate the image to be loaded when these
events occur. How the JavaScript is generated is explained more in “Performing Encoding” on
page 424.

The coordinate, shape, and alternate text data are obtained through the value attribute, whose
value refers to an attribute in application scope. The value of this attribute is a bean, which
stores the coords, shape, and alt data. How these beans are stored in the application scope is
explained more in the next section.

Configuring Model Data
In a JavaServer Faces application, data such as the coordinates of a hotspot of an image map is
retrieved from the value attribute through a bean. However, the shape and coordinates of a
hotspot should be defined together because the coordinates are interpreted differently
depending on what shape the hotspot is. Because a component’s value can be bound only to one
property, the value attribute cannot refer to both the shape and the coordinates.

To solve this problem, the application encapsulates all of this information in a set of ImageArea
objects. These objects are initialized into application scope by the managed bean creation
facility (see “Backing Beans” on page 310). Here is part of the managed bean declaration for the
ImageArea bean corresponding to the South America hotspot:

<managed-bean>

...

<managed-bean-name>SA</managed-bean-name>

<managed-bean-class>

components.model.ImageArea

</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

<managed-property>

<property-name>shape</property-name>

<value>poly</value>

</managed-property>

<managed-property>

<property-name>alt</property-name>

<value>SAmerica</value>

</managed-property>

<managed-property>

<property-name>coords</property-name>

<value>89,217,95,100...</value>

</managed-property>

</managed-bean>

For more information on initializing managed beans with the managed bean creation facility,
see the section “Application Configuration Resource File” on page 439.

Understanding the Image Map Example

The Java EE 5 Tutorial • October 2008418

The value attributes of the area tags refer to the beans in the application scope, as shown in this
area tag from chooselocale.jsp:

<bookstore:area id="NAmerica"
value="#{NA}"
onmouseover="/template/world_namer.jpg"
onmouseout="/template/world.jpg" />

To reference the ImageArea model object bean values from the component class, you
implement a getValue method in the component class. This method calls super.getValue.
The superclass of
tut-install/javaeetutorial5/examples/web/bookstore6/src/java/com/sun/bookstore6/components/AreaComponen
UIOutput, has a getValue method that does the work of finding the ImageArea object
associated with AreaComponent. The AreaRenderer class, which needs to render the alt, shape,
and coords values from the ImageArea object, calls the getValue method of AreaComponent to
retrieve the ImageArea object.

ImageArea iarea = (ImageArea) area.getValue();

ImageArea is only a simple bean, so you can access the shape, coordinates, and alternative text
values by calling the appropriate accessor methods of ImageArea. “Creating the Renderer Class”
on page 429 explains how to do this in the AreaRenderer class.

Summary of the Application Classes
Table 13–2 summarizes all the classes needed to implement the image map component.

TABLE 13–2 Image Map Classes

Class Function

AreaSelectedEvent The ActionEvent indicating that an AreaComponent from the MapComponent has been
selected.

AreaTag The tag handler that implements the area custom tag.

MapTag The tag handler that implements the map custom tag.

AreaComponent The class that defines AreaComponent, which corresponds to the area custom tag.

MapComponent The class that defines MapComponent, which corresponds to the map custom tag.

AreaRenderer This Renderer performs the delegated rendering for AreaComponent.

ImageArea The bean that stores the shape and coordinates of the hotspots.

LocaleBean The backing bean for the chooselocale.jsp page.

Understanding the Image Map Example

Chapter 13 • Creating Custom UI Components 419

The Duke's Bookstore source directory, called bookstore-dir, is
tut-install/javaeetutorial5/examples/web/bookstore6/src/java/com/sun/bookstore6/.
The event and listener classes are located in bookstore-dir/listeners/. The tag handlers are
located in bookstore-dir/taglib/. The component classes are located in
bookstore-dir/components/. The renderer classes are located in bookstore-dir/renderers/.
ImageArea is located in bookstore-dir/model/. LocaleBean is located in
bookstore-dir/backing/.

Steps for Creating a Custom Component
You can apply the following steps while developing your own custom component.

1. Create a custom component class that does the following:

a. Overrides the getFamily method to return the component family, which is used to look
up renderers that can render the component.

b. Includes the rendering code or delegates it to a renderer (explained in step 2).

c. Enables component attributes to accept expressions.

d. Queues an event on the component if the component generates events.

e. Saves and restores the component state.

2. Delegate rendering to a renderer if your component does not handle the rendering. To do
this:

a. Create a custom renderer class by extending javax.faces.render.Renderer.
b. Register the renderer to a render kit.
c. Identify the renderer type in the component tag handler.

3. Register the component.

4. Create an event handler if your component generates events.

5. Write a tag handler class that extends javax.faces.webapp.UIComponentELTag. In this
class, you need a getRendererType method, which returns the type of your custom renderer
if you are using one (explained in step 2); a getComponentType method, which returns the
type of the custom component; and a setProperties method, with which you set all the
new attributes of your component.

6. Create a tag library descriptor (TLD) that defines the custom tag.

The application architect does the work of registering the custom component and the renderer.
See “Registering a Custom Converter” on page 453 and “Registering a Custom Renderer with a
Render Kit” on page 457 for more information. “Using a Custom Component” on page 379
discusses how to use the custom component in a JavaServer Faces page.

Steps for Creating a Custom Component

The Java EE 5 Tutorial • October 2008420

Creating Custom Component Classes
As explained in “When to Use a Custom Component” on page 412, a component class defines
the state and behavior of a UI component. The state information includes the component’s type,
identifier, and local value. The behavior defined by the component class includes the following:

■ Decoding (converting the request parameter to the component’s local value)
■ Encoding (converting the local value into the corresponding markup)
■ Saving the state of the component
■ Updating the bean value with the local value
■ Processing validation on the local value
■ Queueing events

The UIComponentBase class defines the default behavior of a component class. All the classes
representing the standard components extend from UIComponentBase. These classes add their
own behavior definitions, as your custom component class will do.

Your custom component class must either extend UIComponentBase directly or extend a class
representing one of the standard components. These classes are located in the
javax.faces.component package and their names begin with UI.

If your custom component serves the same purpose as a standard component, you should
extend that standard component rather than directly extend UIComponentBase. For example,
suppose you want to create an editable menu component. It makes sense to have this
component extend UISelectOne rather than UIComponentBase because you can reuse the
behavior already defined in UISelectOne. The only new functionality you need to define is to
make the menu editable.

Whether you decide to have your component extend UIComponentBase or a standard
component, you might also want your component to implement one or more of these
behavioral interfaces:

■ ActionSource: Indicates that the component can fire an ActionEvent.
■ ActionSource2: Extends ActionSource and allows component properties referencing

methods that handle action events to use method expressions as defined by the unified EL.
This class was introduced in JavaServer Faces Technology 1.2.

■ EditableValueHolder: Extends ValueHolder and specifies additional features for editable
components, such as validation and emitting value-change events.

■ NamingContainer: Mandates that each component rooted at this component have a unique
ID.

■ StateHolder: Denotes that a component has state that must be saved between requests.
■ ValueHolder: Indicates that the component maintains a local value as well as the option of

accessing data in the model tier.

Creating Custom Component Classes

Chapter 13 • Creating Custom UI Components 421

If your component extends UIComponentBase, it automatically implements only StateHolder.
Because all components directly or indirectly extend UIComponentBase, they all implement
StateHolder.

If your component extends one of the other standard components, it might also implement
other behavioral interfaces in addition to StateHolder. If your component extends UICommand,
it automatically implements ActionSource2. If your component extends UIOutput or one of
the component classes that extend UIOutput, it automatically implements ValueHolder. If your
component extends UIInput, it automatically implements EditableValueHolder and
ValueHolder. See the JavaServer Faces API Javadoc to find out what the other component
classes implement.

You can also make your component explicitly implement a behavioral interface that it doesn’t
already by virtue of extending a particular standard component. For example, if you have a
component that extends UIInput and you want it to fire action events, you must make it
explicitly implement ActionSource2 because a UIInput component doesn’t automatically
implement this interface.

The image map example has two component classes: AreaComponent and MapComponent. The
MapComponent class extends UICommand and therefore implements ActionSource2, which
means it can fire action events when a user clicks on the map. The AreaComponent class extends
the standard component UIOutput.

The MapComponent class represents the component corresponding to the map tag:

<bookstore:map id="worldMap" current="NAmericas"
immediate="true"
action="bookstore"
actionListener="#{localeBean.chooseLocaleFromMap}">

The AreaComponent class represents the component corresponding to the area tag:

<bookstore:area id="NAmerica" value="#{NA}"
onmouseover="/template/world_namer.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

MapComponent has one or more AreaComponent instances as children. Its behavior consists of
the following

■ Retrieving the value of the currently selected area
■ Defining the properties corresponding to the component’s values
■ Generating an event when the user clicks on the image map
■ Queuing the event
■ Saving its state
■ Rendering the map tag and the input tag

Creating Custom Component Classes

The Java EE 5 Tutorial • October 2008422

The rendering of the map and input tags is performed by
tut-install/javaeetutorial5/examples/web/bookstore6/src/java/com/sun/bookstore6/renderers/MapRenderer.j
but MapComponent delegates this rendering to MapRenderer.

AreaComponent is bound to a bean that stores the shape and coordinates of the region of the
image map. You’ll see how all this data is accessed through the value expression in “Creating
the Renderer Class” on page 429. The behavior of AreaComponent consists of the following

■ Retrieving the shape and coordinate data from the bean
■ Setting the value of the hidden tag to the id of this component
■ Rendering the area tag, including the JavaScript for the onmouseover, onmouseout, and

onclick functions

Although these tasks are actually performed by AreaRenderer, AreaComponent must delegate
the tasks to AreaRenderer. See “Delegating Rendering to a Renderer” on page 429 for more
information.

The rest of this section describes the tasks that MapComponent performs as well as the encoding
and decoding that it delegates to MapRenderer. “Handling Events for Custom Components” on
page 431 details how MapComponent handles events.

Specifying the Component Family
If your custom component class delegates rendering, it needs to override the getFamily
method of UIComponent to return the identifier of a component family, which is used to refer to
a component or set of components that can be rendered by a renderer or set of renderers. The
component family is used along with the renderer type to look up renderers that can render the
component.

Because MapComponent delegates its rendering, it overrides the getFamily method:

public String getFamily() {

return ("Map");
}

The component family identifier, Map, must match that defined by the component-family
elements included in the component and renderer configurations in the application
configuration resource file. “Registering a Custom Renderer with a Render Kit” on page 457
explains how to define the component family in the renderer configuration. “Registering a
Custom Component” on page 459 explains how to define the component family in the
component configuration.

Creating Custom Component Classes

Chapter 13 • Creating Custom UI Components 423

Performing Encoding
During the render response phase, the JavaServer Faces implementation processes the encoding
methods of all components and their associated renderers in the view. The encoding methods
convert the current local value of the component into the corresponding markup that
represents it in the response.

The UIComponentBase class defines a set of methods for rendering markup: encodeBegin,
encodeChildren, and encodeEnd. If the component has child components, you might need to
use more than one of these methods to render the component; otherwise, all rendering should
be done in encodeEnd.

Because MapComponent is a parent component of AreaComponent, the area tags must be
rendered after the beginning map tag and before the ending map tag. To accomplish this, the
MapRenderer class renders the beginning map tag in encodeBegin and the rest of the map tag in
encodeEnd.

The JavaServer Faces implementation automatically invokes the encodeEnd method of
AreaComponent’s renderer after it invokes MapRenderer’s encodeBegin method and before it
invokes MapRenderer’s encodeEnd method. If a component needs to perform the rendering for
its children, it does this in the encodeChildren method.

Here are the encodeBegin and encodeEnd methods of MapRenderer:

public void encodeBegin(FacesContext context,

UIComponent component) throws IOException {

if ((context == null)|| (component == null)){

throw new NullPointerException();

}

MapComponent map = (MapComponent) component;

ResponseWriter writer = context.getResponseWriter();

writer.startElement("map", map);

writer.writeAttribute("name", map.getId(),"id");
}

public void encodeEnd(FacesContext context) throws IOException {

if ((context == null) || (component == null)){

throw new NullPointerException();

}

MapComponent map = (MapComponent) component;

ResponseWriter writer = context.getResponseWriter();

writer.startElement("input", map);

writer.writeAttribute("type", "hidden", null);

writer.writeAttribute("name",
getName(context,map), "clientId");(

writer.endElement("input");
writer.endElement("map");

}

Creating Custom Component Classes

The Java EE 5 Tutorial • October 2008424

Notice that encodeBegin renders only the beginning map tag. The encodeEnd method renders
the input tag and the ending map tag.

The encoding methods accept a UIComponent argument and a FacesContext argument. The
FacesContext instance contains all the information associated with the current request. The
UIComponent argument is the component that needs to be rendered.

The rest of the method renders the markup to the ResponseWriter instance, which writes out
the markup to the current response. This basically involves passing the HTML tag names and
attribute names to the ResponseWriter instance as strings, retrieving the values of the
component attributes, and passing these values to the ResponseWriter instance.

The startElement method takes a String (the name of the tag) and the component to which
the tag corresponds (in this case, map). (Passing this information to the ResponseWriter
instance helps design-time tools know which portions of the generated markup are related to
which components.)

After calling startElement, you can call writeAttribute to render the tag’s attributes. The
writeAttribute method takes the name of the attribute, its value, and the name of a property
or attribute of the containing component corresponding to the attribute. The last parameter can
be null, and it won’t be rendered.

The name attribute value of the map tag is retrieved using the getId method of UIComponent,
which returns the component’s unique identifier. The name attribute value of the input tag is
retrieved using the getName(FacesContext, UIComponent) method of MapRenderer.

If you want your component to perform its own rendering but delegate to a renderer if there is
one, include the following lines in the encoding method to check whether there is a renderer
associated with this component.

if (getRendererType() != null) {

super.encodeEnd(context);

return;

}

If there is a renderer available, this method invokes the superclass’s encodeEnd method, which
does the work of finding the renderer. The MapComponent class delegates all rendering to
MapRenderer, so it does not need to check for available renderers.

In some custom component classes that extend standard components, you might need to
implement other methods in addition to encodeEnd. For example, if you need to retrieve the
component’s value from the request parameters, you must also implement the decode method.

Creating Custom Component Classes

Chapter 13 • Creating Custom UI Components 425

Performing Decoding
During the apply request values phase, the JavaServer Faces implementation processes the
decode methods of all components in the tree. The decode method extracts a component’s local
value from incoming request parameters and uses a Converter class to convert the value to a
type that is acceptable to the component class.

A custom component class or its renderer must implement the decode method only if it must
retrieve the local value or if it needs to queue events. The MapRenderer instance retrieves the
local value of the hidden input field and sets the current attribute to this value by using its
decode method. The setCurrent method of MapComponent queues the event by calling
queueEvent, passing in the AreaSelectedEvent instance generated by MapComponent.

Here is the decode method of MapRenderer:

public void decode(FacesContext context, UIComponent component) {

if ((context == null) || (component == null)) {

throw new NullPointerException();

}

MapComponent map = (MapComponent) component;

String key = getName(context, map);

String value = (String)context.getExternalContext().

getRequestParameterMap().get(key);

if (value != null)

map.setCurrent(value);

}

}

The decode method first gets the name of the hidden input field by calling
getName(FacesContext, UIComponent). It then uses that name as the key to the request
parameter map to retrieve the current value of the input field. This value represents the
currently selected area. Finally, it sets the value of the MapComponent class’s current attribute to
the value of the input field.

Enabling Component Properties to Accept
Expressions
Nearly all the attributes of the standard JavaServer Faces tags can accept expressions, whether
they are value expressions or method expressions. It is recommended that you also enable your
component attributes to accept expressions because this is what page authors expect, and it
gives page authors much more flexibility when authoring their pages.

Creating Custom Component Classes

The Java EE 5 Tutorial • October 2008426

“Creating the Component Tag Handler” on page 432 describes how MapTag, the tag handler for
the map tag, sets the component’s values when processing the tag. It does this by providing the
following:
■ A method for each attribute that takes either a ValueExpression or MethodExpression

object depending on what kind of expression the attribute accepts.
■ A setProperties method that stores the ValueExpression or MethodExpression object

for each component property so that the component class can retrieve the expression object
later.

To retrieve the expression objects that setProperties stored, the component class must
implement a method for each property that accesses the appropriate expression object, extracts
the value from it and returns the value.

Because MapComponent extends UICommand, the UICommand class already does the work of
getting the ValueExpression and MethodExpression instances associated with each of the
attributes that it supports.

However, if you have a custom component class that extends UIComponentBase, you will need
to implement the methods that get the ValueExpression and MethodExpression instances
associated with those attributes that are enabled to accept expressions. For example, if
MapComponent extended UIComponentBase instead of UICommand, it would need to include a
method that gets the ValueExpression instance for the immediate attribute:

public boolean isImmediate() {

if (this.immediateSet) {

return (this.immediate);

}

ValueExpression ve = getValueExpression("immediate");
if (ve != null) {

Boolean value = (Boolean) ve.getValue(

getFacesContext().getELContext());

return (value.booleanValue());

} else {

return (this.immediate);

}

}

The properties corresponding to the component attributes that accept method expressions
must accept and return a MethodExpression object. For example, if MapComponent extended
UIComponentBase instead of UICommand, it would need to provide an action property that
returns and accepts a MethodExpression object:

public MethodExpression getAction() {

return (this.action);

}

public void setAction(MethodExpression action) {

Creating Custom Component Classes

Chapter 13 • Creating Custom UI Components 427

this.action = action;

}

Saving and Restoring State
Because component classes implement StateHolder, they must implement the
saveState(FacesContext) and restoreState(FacesContext, Object) methods to help the
JavaServer Faces implementation save and restore the state of components across multiple
requests.

To save a set of values, you must implement the saveState(FacesContext) method. This
method is called during the render response phase, during which the state of the response is
saved for processing on subsequent requests. Here is the method from MapComponent:

public Object saveState(FacesContext context) {

Object values[] = new Object[2];

values[0] = super.saveState(context);

values[1] = current;

return (values);

}

This method initializes an array, which will hold the saved state. It next saves all of the state
associated with MapComponent.

A component that implements StateHolder must also provide an implementation for
restoreState(FacesContext, Object), which restores the state of the component to that
saved with the saveState(FacesContext) method. The restoreState(FacesContext,
Object) method is called during the restore view phase, during which the JavaServer Faces
implementation checks whether there is any state that was saved during the last render response
phase and needs to be restored in preparation for the next postback. Here is the
restoreState(FacesContext, Object) method from MapComponent:

public void restoreState(FacesContext context, Object state) {

Object values[] = (Object[]) state;

super.restoreState(context, values[0]);

current = (String) values[1];

}

This method takes a FacesContext and an Object instance, representing the array that is
holding the state for the component. This method sets the component’s properties to the values
saved in the Object array.

When you implement these methods in your component class, be sure to specify in the
deployment descriptor where you want the state to be saved: either client or server. If state is
saved on the client, the state of the entire view is rendered to a hidden field on the page.

Creating Custom Component Classes

The Java EE 5 Tutorial • October 2008428

To specify where state is saved for a particular web application, you need to set the
javax.faces.STATE_SAVING_METHOD context parameter to either client or server in your
application’s deployment descriptor. See “Saving and Restoring State” on page 428 for more
information on specifying where state is saved in the deployment descriptor.

Delegating Rendering to a Renderer
Both MapComponent and AreaComponent delegate all of their rendering to a separate renderer.
The section “Performing Encoding” on page 424 explains how MapRenderer performs the
encoding for MapComponent. This section explains in detail the process of delegating rendering
to a renderer using AreaRenderer, which performs the rendering for AreaComponent.

To delegate rendering, you perform these tasks:

■ Create the Renderer class.
■ Register the renderer with a render kit (explained in “Registering a Custom Renderer with a

Render Kit” on page 457).
■ Identify the renderer type in the component’s tag handler.

Creating the Renderer Class
When delegating rendering to a renderer, you can delegate all encoding and decoding to the
renderer, or you can choose to do part of it in the component class. The AreaComponent class
delegates encoding to the AreaRenderer class.

To perform the rendering for AreaComponent, AreaRenderer must implement an encodeEnd

method. The encodeEnd method of AreaRenderer retrieves the shape, coordinates, and
alternative text values stored in the ImageArea bean that is bound to AreaComponent. Suppose
that the area tag currently being rendered has a value attribute value of "fraA". The following
line from encodeEnd gets the value of the attribute "fraA" from the FacesContext instance.

ImageArea ia = (ImageArea)area.getValue();

The attribute value is the ImageArea bean instance, which contains the shape, coords, and alt

values associated with the fraA AreaComponent instance. “Configuring Model Data” on
page 418 describes how the application stores these values.

After retrieving the ImageArea object, it renders the values for shape, coords, and alt by
simply calling the associated accessor methods and passing the returned values to the
ResponseWriter instance, as shown by these lines of code, which write out the shape and
coordinates:

writer.startElement("area", area);

writer.writeAttribute("alt", iarea.getAlt(), "alt");

Delegating Rendering to a Renderer

Chapter 13 • Creating Custom UI Components 429

writer.writeAttribute("coords", iarea.getCoords(), "coords");
writer.writeAttribute("shape", iarea.getShape(), "shape");

The encodeEnd method also renders the JavaScript for the onmouseout, onmouseover, and
onclick attributes. The page author need only provide the path to the images that are to be
loaded during an onmouseover or onmouseout action:

<bookstore:area id="France" value="#{fraA}"
onmouseover="/template/world_france.jpg"
onmouseout="/template/world.jpg" targetImage="mapImage" />

The AreaRenderer class takes care of generating the JavaScript for these actions, as shown in the
following code from encodeEnd. The JavaScript that AreaRenderer generates for the onclick
action sets the value of the hidden field to the value of the current area’s component ID and
submits the page.

sb = new StringBuffer("document.forms[0][’").
append(targetImageId).append("’].src=’");

sb.append(getURI(context,

(String) area.getAttributes().get("onmouseout")));
sb.append("’");
writer.writeAttribute("onmouseout", sb.toString(),

"onmouseout");
sb = new StringBuffer("document.forms[0][’").

append(targetImageId).append("’].src=’");
sb.append(getURI(context,

(String) area.getAttributes().get("onmouseover")));
sb.append("’");
writer.writeAttribute("onmouseover", sb.toString(),

"onmouseover");
sb = new StringBuffer("document.forms[0][’");
sb.append(getName(context, area));

sb.append("’].value=’");
sb.append(iarea.getAlt());

sb.append("’; document.forms[0].submit()");
writer.writeAttribute("onclick", sb.toString(), "value");
writer.endElement("area");

By submitting the page, this code causes the JavaServer Faces life cycle to return back to the
restore view phase. This phase saves any state information, including the value of the hidden
field, so that a new request component tree is constructed. This value is retrieved by the decode
method of the MapComponent class. This decode method is called by the JavaServer Faces
implementation during the apply request values phase, which follows the restore view phase.

In addition to the encodeEnd method, AreaRenderer contains an empty constructor. This is
used to create an instance of AreaRenderer so that it can be added to the render kit.

Delegating Rendering to a Renderer

The Java EE 5 Tutorial • October 2008430

Identifying the Renderer Type
During the render response phase, the JavaServer Faces implementation calls the
getRendererType method of the component’s tag handler to determine which renderer to
invoke, if there is one.

The getRendererType method of AreaTag must return the type associated with AreaRenderer.
You identify this type when you register AreaRenderer with the render kit, as described in
“Registering a Custom Renderer with a Render Kit” on page 457. Here is the getRendererType
method from the AreaTag class:

public String getRendererType() { return ("DemoArea");}

“Creating the Component Tag Handler” on page 432 explains more about the getRendererType
method.

Handling Events for Custom Components
As explained in “Implementing an Event Listener” on page 397, events are automatically
queued on standard components that fire events. A custom component, on the other hand,
must manually queue events from its decode method if it fires events.

“Performing Decoding” on page 426 explains how to queue an event on MapComponent using its
decode method. This section explains how to write the class representing the event of clicking
on the map and how to write the method that processes this event.

As explained in “Understanding the JSP Page” on page 416, the actionListener attribute of the
map tag points to the chooseLocaleFromMap method of the bean LocaleBean. This method
processes the event of clicking the image map. Here is the chooseLocaleFromMap method of
LocaleBean:

public void chooseLocaleFromMap(ActionEvent actionEvent) {

AreaSelectedEvent event = (AreaSelectedEvent) actionEvent;

String current = event.getMapComponent().getCurrent();

FacesContext context = FacesContext.getCurrentInstance();

context.getViewRoot().setLocale((Locale)

locales.get(current));

}

When the JavaServer Faces implementation calls this method, it passes in an ActionEvent

object that represents the event generated by clicking on the image map. Next, it casts it to an
AreaSelectedEvent object (see
tut-install/javaeetutorial5/examples/web/bookstore6/src/java/com/sun/bookstore6/listeners/AreaSelectedE
Then this method gets the MapComponent associated with the event. It then gets the value of the
MapComponent object’s current attribute, which indicates the currently selected area. The

Handling Events for Custom Components

Chapter 13 • Creating Custom UI Components 431

method then uses the value of the current property to get the Locale object from a HashMap
object, which is constructed elsewhere in the LocaleBean class. Finally the method sets the
locale of the FacesContext instance to the Locale obtained from the HashMap object.

In addition to the method that processes the event, you need the event class itself. This class is
very simple to write: You have it extend ActionEvent and provide a constructor that takes the
component on which the event is queued and a method that returns the component. Here is the
AreaSelectedEvent class used with the image map:

public class AreaSelectedEvent extends ActionEvent {

...

public AreaSelectedEvent(MapComponent map) {

super(map);

}

public MapComponent getMapComponent() {

return ((MapComponent) getComponent());

}

}

As explained in the section “Creating Custom Component Classes” on page 421, in order for
MapComponent to fire events in the first place, it must implement ActionSource. Because
MapComponent extends UICommand, it also implements ActionSource.

Creating the Component Tag Handler
Now that you’ve created your component and renderer classes, you’re ready to define how a tag
handler processes the tag representing the component and renderer combination. If you’ve
created your own JSP custom tags before, creating a component tag handler should be easy for
you.

In JavaServer Faces applications, the tag handler class associated with a component drives the
render response phase of the JavaServer Faces life cycle. For more information on the JavaServer
Faces life cycle, see “The Life Cycle of a JavaServer Faces Page” on page 314.

The first thing that the tag handler does is to retrieve the type of the component associated with
the tag. Next, it sets the component’s attributes to the values given in the page. It then returns
the type of the renderer (if there is one) to the JavaServer Faces implementation so that the
component’s encoding can be performed when the tag is processed. Finally, it releases resources
used during the processing of the tag.

The image map custom component includes two tag handlers: AreaTag and MapTag. To see how
the operations on a JavaServer Faces tag handler are implemented, let’s take a look at MapTag.

The MapTag class extends UIComponentELTag, which supports jsp.tagext.Tag functionality as
well as JavaServer Faces-specific functionality. UIComponentELTag is the base class for all
JavaServer Faces tags that correspond to a component. Tags that need to process their tag
bodies should instead subclass UIComponentBodyELTag.

Creating the Component Tag Handler

The Java EE 5 Tutorial • October 2008432

Retrieving the Component Type
As explained earlier, the first thing MapTag does is to retrieve the type of the component. It does
this by using the getComponentType operation:

public String getComponentType() {

return ("DemoMap");
}

The value returned from getComponentType must match the value configured for the
component with the component-type element of the application’s application configuration
resource file. “Registering a Custom Component” on page 459 explains how to configure a
component.

Setting Component Property Values
After retrieving the type of the component, the tag handler sets the component’s property values
to those supplied as tag attributes values in the page. This section assumes that your component
properties are enabled to accept expressions, as explained in “Enabling Component Properties
to Accept Expressions” on page 426.

Getting the Attribute Values
Before setting the values in the component class, the MapTag handler first gets the attribute
values from the page by means of JavaBeans component properties that correspond to the
attributes. The following code shows the property used to access the value of the immediate
attribute.

private javax.el.ValueExpression immediate = null;

public void setImmediate(javax.el.ValueExpression immediate)

{

this.immediate = immediate;

}

As this code shows, the setImmediate method takes a ValueExpression object. This means
that the immediate attribute of the map tag accepts value expressions.

Similarly, the setActionListener and setAction methods take MethodExpression objects,
which means that these attributes accept method expressions. The following code shows the
properties used to access the values of the actionListener and the action attributes

private javax.el.MethodExpression actionListener = null;

public void setActionListener(

Creating the Component Tag Handler

Chapter 13 • Creating Custom UI Components 433

javax.el.MethodExpression actionListener) {

this.actionListener = actionListener;

}

private javax.el.MethodExpression action = null;

public void setAction(javax.el.MethodExpression action) {

this.action = action;

}

Setting the Component Property Values
To pass the value of the tag attributes to MapComponent, the tag handler implements the
setProperties method. The way setProperties passes the attribute values to the component
class depends on whether the values are value expressions or method expressions.

Setting Value Expressions on Component Properties

When the attribute value is a value expression, setProperties first checks if it is not a literal
expression. If the expression is not a literal, setProperties stores the expression into a
collection, from which the component class can retrieve it and resolve it at the appropriate time.
If the expression is a literal, setProperties performs any required type conversion and then
does one of the following:
■ If the attribute is renderer-independent, meaning that it is defined by the component class,

then setProperties calls the corresponding setter method of the component class.
■ If the attribute is renderer-dependent, setProperties stores the converted value into the

component’s map of generic renderer attributes.

The following piece of the MapTag handler’s setProperties method sets the
renderer-dependent property, styleClass, and the renderer-independent property,
immediate:

if (styleClass != null) {

if (!styleClass.isLiteralText()) {

map.setValueExpression("styleClass", styleClass);

} else {

map.getAttributes().put("styleClass",
styleClass.getExpressionString());

}

}

...

if (immediate != null) {

if (!immediate.isLiteralText()) {

map.setValueExpression("immediate", immediate);

} else {

map.setImmediate(new

Creating the Component Tag Handler

The Java EE 5 Tutorial • October 2008434

Boolean(immediate.getExpressionString()).

booleanValue());

}

}

Setting Method Expressions on Component Properties
The process of setting the properties that accept method expressions is done differently
depending on the purpose of the method. The actionListener attribute uses a method
expression to reference a method that handles action events. The action attribute uses a
method expression to either specify a logical outcome or to reference a method that returns a
logical outcome, which is used for navigation purposes.

To handle the method expression referenced by actionListener, the setProperties method
must wrap the expression in a special action listener object called
MethodExpressionActionListener. This listener executes the method referenced by the
expression when it receives the action event. The setProperties method then adds this
MethodExpressionActionListener object to the list of listeners to be notified when the event
of a user clicking on the map occurs. The following piece of setProperties does all of this:

if (actionListener != null) {

map.addActionListener(

new MethodExpressionActionListener(actionListener));

}

If your component fires value change events, your tag handler’s setProperties method does a
similar thing, except it wraps the expression in a MethodExpressionValueChangeListener
object and adds the listener using the addValueChangeListener method.

In the case of the method expression referenced by the action attribute, the setProperties
method uses the setActionExpression method of ActionSource2 to set the corresponding
property on MapComponent:

if (action != null) {

map.setActionExpression(action);

}

Providing the Renderer Type
After setting the component properties, the tag handler provides a renderer type (if there is a
renderer associated with the component) to the JavaServer Faces implementation. It does this
using the getRendererType method:

public String getRendererType() {return "DemoMap";}

The renderer type that is returned is the name under which the renderer is registered with the
application. See “Delegating Rendering to a Renderer” on page 429 for more information.

Creating the Component Tag Handler

Chapter 13 • Creating Custom UI Components 435

If your component does not have a renderer associated with it, getRendererType should return
null. In this case, the renderer-type element in the application configuration file should also
be set to null.

Releasing Resources
It’s recommended practice that all tag handlers implement a release method, which releases
resources allocated during the execution of the tag handler. The release method of MapTag as
follows:

public void release() {

super.release();

current = null;

styleClass = null;

actionListener = null;

immediate = null;

action = null;

}

This method first calls the UIComponentTag.release method to release resources associated
with UIComponentTag. Next, the method sets all attribute values to null.

Defining the Custom Component Tag in a Tag Library
Descriptor

To define a tag, you declare it in a TLD. The web container uses the TLD to validate the tag. The
set of tags that are part of the HTML render kit are defined in the html_basic TLD.

The custom tags area and map are defined in bookstore.tld. The bookstore.tld file defines
tags for all the custom components and the custom validator tag described in “Creating a
Custom Tag” on page 404.

All tag definitions must be nested inside the taglib element in the TLD. Each tag is defined by a
tag element. Here is part of the tag definition of the map tag:

<tag>

<name>map</name>

<tag-class>taglib.MapTag</tag-class>

<attribute>

<name>binding</name>

<required>false</required>

<deferred-value>

<type>

Defining the Custom Component Tag in a Tag Library Descriptor

The Java EE 5 Tutorial • October 2008436

javax.faces.component.UIComponent

</type>

</deferred-value>

</attribute>

<attribute>

<name>current</name>

<required>false</required>

<deferred-value>

<type>

java.lang.String

</type>

</deferred-value>

</attribute>

...

<attribute>

<name>actionListener</name>

<required>false</required>

<deferred-method>

<method-signature>

void actionListener(javax.faces.event.ActionEvent)

</method-signature>

</deferred-method>

<type>String</type>

</attribute>

...

</tag>

At a minimum, each tag must have a name (the name of the tag) and a tag-class attribute,
which specifies the fully-qualified class name of the tag handler.

Each attribute element defines one of the tag attributes. As described in “Defining a Tag
Attribute Type” on page 156, the attribute element must define what kind of value the attribute
accepts, which for JavaServer Faces tags is either a deferred value expression or a method
expression.

To specify that an attribute accepts a deferred value expression, you define the type that the
corresponding component property accepts using a type element nested inside of a
deferred-value element, as shown for the binding and current attribute definitions in the
preceding code snippet.

To specify that an attribute accepts a method expression, you define the signature of the method
that expression references using a method-signature element nested inside a
deferred-method element, as shown by the actionListener attribute definition in the
preceding code snippet. The actual name of the method is ignored by the runtime.

For more information on defining tags in a TLD, consult the “Tag Library Descriptors” on
page 247 section of this tutorial.

Defining the Custom Component Tag in a Tag Library Descriptor

Chapter 13 • Creating Custom UI Components 437

438

Configuring JavaServer Faces Applications

The responsibilities of the application architect include the following:

■ Registering back-end objects with the application so that all parts of the application have
access to them

■ Configuring backing beans and model beans so that they are instantiated with the proper
values when a page makes reference to them

■ Defining navigation rules for each of the pages in the application so that the application has
a smooth page flow

■ Packaging the application to include all the pages, objects, and other files so that the
application can be deployed on any compliant container

This chapter explains how to perform all the responsibilities of the application architect.

Application Configuration Resource File
JavaServer Faces technology provides a portable configuration format (as an XML document)
for configuring resources. An application architect creates one or more files, called application
configuration resource files, that use this format to register and configure objects and to define
navigation rules. An application configuration resource file is usually called faces-config.xml.

The application configuration resource file must be valid against the schema located at
http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd.

14C H A P T E R 1 4

439

http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd

In addition, each file must include the following, in this order:

■ The XML version number:

<?xml version="1.0"?>

■ A faces-config tag enclosing all the other declarations:

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
version="1.2">
...

</faces-config>

You can have more than one application configuration resource file. The JavaServer Faces
implementation finds the file or files by looking for the following:

■ A resource named /META-INF/faces-config.xml in any of the JAR files in the web
application’s /WEB-INF/lib/ directory and in parent class loaders. If a resource with this
name exists, it is loaded as a configuration resource. This method is practical for a packaged
library containing some components and renderers.

■ A context initialization parameter, javax.faces.application.CONFIG_FILES, that
specifies one or more (comma-delimited) paths to multiple configuration files for your web
application. This method will most likely be used for enterprise-scale applications that
delegate to separate groups the responsibility for maintaining the file for each portion of a
big application.

■ A resource named faces-config.xml in the /WEB-INF/ directory of your application. This
is the way most simple applications will make their configuration files available.

To access resources registered with the application, an application developer uses an instance of
the Application class, which is automatically created for each application. The Application
instance acts as a centralized factory for resources that are defined in the XML file.

When an application starts up, the JavaServer Faces implementation creates a single instance of
the Application class and configures it with the information you configure in the application
configuration resource file.

Application Configuration Resource File

The Java EE 5 Tutorial • October 2008440

Configuring Beans
To instantiate backing beans and other managed beans used in a JavaServer Faces application
and store them in scope, you use the managed bean creation facility. This facility is configured
in the application configuration resource file using managed-bean XML elements to define each
bean. This file is processed at application startup time. When a page references a bean, the
JavaServer Faces implementation initializes it according to its configuration in the application
configuration resource file.

With the managed bean creation facility, you can:

■ Create beans in one centralized file that is available to the entire application, rather than
conditionally instantiate beans throughout the application.

■ Customize the bean’s properties without any additional code.
■ Customize the bean’s property values directly from within the configuration file so that it is

initialized with these values when it is created.
■ Using value elements, set the property of one managed bean to be the result of evaluating

another value expression.

This section shows you how to initialize beans using the managed bean creation facility. See
“Writing Bean Properties” on page 381 and “Writing Backing Bean Methods” on page 406 for
information on programming backing beans. “Binding Component Values and Instances to
External Data Sources” on page 367 explains how to reference a managed bean from the
component tags.

Using the managed-bean Element
You create a bean using a managed-bean element, which represents an instance of a bean class
that must exist in the application. At runtime, the JavaServer Faces implementation processes
the managed-bean element. If a page references the bean, the JavaServer Faces implementation
instantiates the bean as specified by the element configuration if no instance exists.

Here is an example managed bean configuration from the Duke’s Bookstore application:

<managed-bean>

<managed-bean-name> NA </managed-bean-name>

<managed-bean-class>

com.sun.bookstore6.model.ImageArea

</managed-bean-class>

<managed-bean-scope> application </managed-bean-scope>

<managed-property>

<property-name>shape</property-name>

<value>poly</value>

</managed-property>

Configuring Beans

Chapter 14 • Configuring JavaServer Faces Applications 441

...

</managed-bean-name>

</managed-bean>

Using NetBeans IDE, you can add a managed bean declaration by doing the following:

1. After opening your project in NetBeans IDE, expand the project node in the Projects pane.
2. Expand the Web Pages and WEB-INF nodes of the project node.
3. Double-click faces-config.xml.
4. After faces-config.xml opens in the editor pane, right-click in the editor pane.
5. Select JavaServer Faces → Add Managed Bean.
6. In the Add Managed Bean dialog:

a. Enter the display name of the bean in the Bean Name field.
b. Click Browse to locate the bean’s class.

7. In the Browse Class dialog:
a. Start typing the name of the class you are looking for in the Class Name field. While you

are typing, the dialog will show the matching classes.
b. Select the class from the Matching Classes box.
c. Click OK.

8. In the Add Managed Bean dialog:
a. Select the bean’s scope from the Scope menu.
b. Click Add.

9. In the Projects tab, right-click the bookstore1 project, and select Undeploy and Deploy.

The preceding steps will add the managed-bean element and three elements inside of it: a
managed-bean-name element, a managed-bean-class element and a managed-bean-scope
element. You will need to edit the XML of the configuration file directly to further configure this
managed bean.

The managed-bean-name element defines the key under which the bean will be stored in a scope.
For a component’s value to map to this bean, the component tag’s value attribute must match
the managed-bean-name up to the first period. For example, this value expression maps to the
shape property of the ImageArea instance, NA:

value="#{NA.shape}"

The part before the period (.) matches the managed-bean-name of ImageArea. “Adding UI
Components to a Page Using the HTML Component Tags” on page 329 has more examples of
using the value attribute to bind components to bean properties.

The managed-bean-class element defines the fully qualified name of the JavaBeans component
class used to instantiate the bean. It is the application developer’s responsibility to ensure that

Configuring Beans

The Java EE 5 Tutorial • October 2008442

the class complies with the configuration of the bean in the application configuration resource
file. This includes making sure that the types of the properties in the bean match those
configured for the bean in the configuration file.

The managed-bean-scope element defines the scope in which the bean will be stored. The four
acceptable scopes are none, request, session, or application. If you define the bean with a
none scope, the bean is instantiated anew each time it is referenced, and so it does not get saved
in any scope. One reason to use a scope of none is that a managed bean references another
managed bean. The second bean should be in none scope if it is supposed to be created only
when it is referenced. See “Initializing Managed Bean Properties” on page 447 for an example of
initializing a managed bean property.

If you are configuring a backing bean that is referenced by a component tag’s binding attribute,
you should define the bean with a request scope. If you placed the bean in session or application
scope instead, the bean would need to take precautions to ensure thread safety because
UIComponent instances depend on running inside of a single thread.

The managed-bean element can contain zero or more managed-property elements, each
corresponding to a property defined in the bean class. These elements are used to initialize the
values of the bean properties. If you don’t want a particular property initialized with a value
when the bean is instantiated, do not include a managed-property definition for it in your
application configuration resource file.

If a managed-bean element does not contain other managed-bean elements, it can contain one
map-entries element or list-entries element. The map-entries element configures a set of
beans that are instances of Map. The list-entries element configures a set of beans that are
instances of List.

To map to a property defined by a managed-property element, you must ensure that the part of
a component tag’s value expression after the period matches the managed-property element’s
property-name element. In the earlier example, the shape property is initialized with the value
poly. The next section explains in more detail how to use the managed-property element.

Initializing Properties Using the managed-property
Element
A managed-property element must contain a property-name element, which must match the
name of the corresponding property in the bean. A managed-property element must also
contain one of a set of elements (listed in Table 14–1) that defines the value of the property. This
value must be of the same type as that defined for the property in the corresponding bean.
Which element you use to define the value depends on the type of the property defined in the
bean. Table 14–1 lists all the elements used to initialize a value.

Configuring Beans

Chapter 14 • Configuring JavaServer Faces Applications 443

TABLE 14–1 Subelements of managed-property Elements That Define Property Values

Element Value That It Defines

list-entries Defines the values in a list

map-entries Defines the values of a map

null-value Explicitly sets the property to null

value Defines a single value, such as a String or int, or a JavaServer Faces EL expression

“Using the managed-bean Element” on page 441 includes an example of initializing String
properties using the value subelement. You also use the value subelement to initialize
primitive and other reference types. The rest of this section describes how to use the value
subelement and other subelements to initialize properties of Java Enum types, java.util.Map,
array, and Collection, as well as initialization parameters.

Referencing a Java Enum Type
As of version 1.2 of JavaServer Faces technology, a managed bean property can also be a Java
Enum type (see http://java.sun.com/javase/6/docs/api/java/lang/Enum.html). In this
case, the value element of the managed-property element must be a String that matches one
of the String constants of the Enum. In other words, the String must be one of the valid values
that can be returned if you were to call valueOf(Class, String) on enum, where Class is the
Enum class and String is the contents of the value subelement. For example, suppose the
managed bean property is the following:

public enum Suit { Hearts, Spades, Diamonds, Clubs}

...

public Suit getSuit() { ... return Suit.Hearts; }

Assuming that you want to configure this property in the application configuration file, the
corresponding managed-property element would look like this:

<managed-property>

<property-name>Suit</property-name>

<value>Hearts</value>

</managed-property>

When the system encounters this property, it iterates over each of the members of the enum and
calls toString() on each member until it finds one that is exactly equal to the value from the
value element.

Referencing an Initialization Parameter
Another powerful feature of the managed bean creation facility is the ability to reference
implicit objects from a managed bean property.

Configuring Beans

The Java EE 5 Tutorial • October 2008444

http://java.sun.com/javase/6/docs/api/java/lang/Enum.html

Suppose that you have a page that accepts data from a customer, including the customer’s
address. Suppose also that most of your customers live in a particular area code. You can make
the area code component render this area code by saving it in an implicit object and referencing
it when the page is rendered.

You can save the area code as an initial default value in the context initParam implicit object by
adding a context parameter to your web application and setting its value in the deployment
descriptor. For example, to set a context parameter called defaultAreaCode to 650, add a
context-param element to the deployment descriptor, give the parameter the name
defaultAreaCode and the value 650.

Next, you write a managed-bean declaration that configures a property that references the
parameter:

<managed-bean>

<managed-bean-name>customer</managed-bean-name>

<managed-bean-class>CustomerBean</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

<managed-property>

<property-name>areaCode</property-name>

<value>#{initParam.defaultAreaCode}</value>

</managed-property>

...

</managed-bean>

To access the area code at the time the page is rendered, refer to the property from the area
component tag’s value attribute:

<h:inputText id=area value="#{customer.areaCode}"

Retrieving values from other implicit objects is done in a similar way. See “Implicit Objects” on
page 162 for a list of implicit objects.

Initializing Map Properties
The map-entries element is used to initialize the values of a bean property with a type of
java.util.Map if the map-entries element is used within a managed-property element. A
map-entries element contains an optional key-class element, an optional value-class
element, and zero or more map-entry elements.

Each of the map-entry elements must contain a key element and either a null-value or value
element. Here is an example that uses the map-entries element:

<managed-bean>

...

<managed-property>

<property-name>prices</property-name>

Configuring Beans

Chapter 14 • Configuring JavaServer Faces Applications 445

<map-entries>

<map-entry>

<key>My Early Years: Growing Up on *7</key>

<value>30.75</value>

</map-entry>

<map-entry>

<key>Web Servers for Fun and Profit</key>

<value>40.75</value>

</map-entry>

</map-entries>

</managed-property>

</managed-bean>

The map that is created from this map-entries tag contains two entries. By default, all the keys
and values are converted to java.lang.String. If you want to specify a different type for the
keys in the map, embed the key-class element just inside the map-entries element:

<map-entries>

<key-class>java.math.BigDecimal</key-class>

...

</map-entries>

This declaration will convert all the keys into java.math.BigDecimal. Of course, you must
make sure that the keys can be converted to the type that you specify. The key from the example
in this section cannot be converted to a java.math.BigDecimal because it is a String.

If you also want to specify a different type for all the values in the map, include the value-class
element after the key-class element:

<map-entries>

<key-class>int</key-class>

<value-class>java.math.BigDecimal</value-class>

...

</map-entries>

Note that this tag sets only the type of all the value subelements.

The first map-entry in the preceding example includes a value subelement. The value
subelement defines a single value, which will be converted to the type specified in the bean.

The second map-entry defines a value element, which references a property on another bean.
Referencing another bean from within a bean property is useful for building a system from
fine-grained objects. For example, a request-scoped form-handling object might have a pointer
to an application-scoped database mapping object. Together the two can perform a
form-handling task. Note that including a reference to another bean will initialize the bean if it
does not already exist.

Instead of using a map-entries element, it is also possible to assign the entire map using a
value element that specifies a map-typed expression.

Configuring Beans

The Java EE 5 Tutorial • October 2008446

Initializing Array and List Properties
The list-entries element is used to initialize the values of an array or List property. Each
individual value of the array or List is initialized using a value or null-value element. Here is
an example:

<managed-bean>

...

<managed-property>

<property-name>books</property-name>

<list-entries>

<value-class>java.lang.String</value-class>

<value>Web Servers for Fun and Profit</value>

<value>#{myBooks.bookId[3]}</value>

<null-value/>

</list-entries>

</managed-property>

</managed-bean>

This example initializes an array or a List. The type of the corresponding property in the bean
determines which data structure is created. The list-entries element defines the list of values
in the array or List. The value element specifies a single value in the array or List and can
reference a property in another bean. The null-value element will cause the setBooks method
to be called with an argument of null. A null property cannot be specified for a property whose
data type is a Java primitive, such as int or boolean.

Initializing Managed Bean Properties
Sometimes you might want to create a bean that also references other managed beans so that
you can construct a graph or a tree of beans. For example, suppose that you want to create a
bean representing a customer’s information, including the mailing address and street address,
each of which is also a bean. The following managed-bean declarations create a CustomerBean
instance that has two AddressBean properties: one representing the mailing address, and the
other representing the street address. This declaration results in a tree of beans with
CustomerBean as its root and the two AddressBean objects as children.

<managed-bean>

<managed-bean-name>customer</managed-bean-name>

<managed-bean-class>

com.mycompany.mybeans.CustomerBean

</managed-bean-class>

<managed-bean-scope> request </managed-bean-scope>

<managed-property>

<property-name>mailingAddress</property-name>

<value>#{addressBean}</value>

</managed-property>

<managed-property>

Configuring Beans

Chapter 14 • Configuring JavaServer Faces Applications 447

<property-name>streetAddress</property-name>

<value>#{addressBean}</value>

</managed-property>

<managed-property>

<property-name>customerType</property-name>

<value>New</value>

</managed-property>

</managed-bean>

<managed-bean>

<managed-bean-name>addressBean</managed-bean-name>

<managed-bean-class>

com.mycompany.mybeans.AddressBean

</managed-bean-class>

<managed-bean-scope> none </managed-bean-scope>

<managed-property>

<property-name>street</property-name>

<null-value/>

<managed-property>

...

</managed-bean>

The first CustomerBean declaration (with the managed-bean-name of customer) creates a
CustomerBean in request scope. This bean has two properties: mailingAddress and
streetAddress. These properties use the value element to reference a bean named
addressBean.

The second managed bean declaration defines an AddressBean but does not create it because its
managed-bean-scope element defines a scope of none. Recall that a scope of none means that
the bean is created only when something else references it. Because both the mailingAddress
and the streetAddress properties reference addressBean using the value element, two
instances of AddressBean are created when CustomerBean is created.

When you create an object that points to other objects, do not try to point to an object with a
shorter life span because it might be impossible to recover that scope’s resources when it goes
away. A session-scoped object, for example, cannot point to a request-scoped object. And
objects with none scope have no effective life span managed by the framework, so they can point
only to other none scoped objects. Table 14–2 outlines all of the allowed connections.

TABLE 14–2 Allowable Connections between Scoped Objects

An Object of This Scope May Point to an Object of This Scope

none none

application none, application

session none, application, session

Configuring Beans

The Java EE 5 Tutorial • October 2008448

TABLE 14–2 Allowable Connections between Scoped Objects (Continued)
An Object of This Scope May Point to an Object of This Scope

request none, application, session, request

Be sure not allow cyclical references between objects. For example, neither of the AddressBean
objects in the preceding example should point back to the CustomerBean object because
CustomerBean already points to the AddressBean objects.

Initializing Maps and Lists
In addition to configuring Map and List properties, you can also configure a Map and a List
directly so that you can reference them from a tag rather than referencing a property that wraps
a Map or a List.

The Duke’s Bookstore application configures a List to initialize the list of free newsletters, from
which users can choose a set of newsletters to subscribe to on the bookcashier.jsp page:

<managed-bean>

...

<managed-bean-name>newsletters</managed-bean-name>

<managed-bean-class>

java.util.ArrayList

</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

<list-entries>

<value-class>javax.faces.model.SelectItem</value-class>

<value>#{newsletter0}</value>

<value>#{newsletter1}</value>

<value>#{newsletter2}</value>

<value>#{newsletter3}</value>

</list-entries>

</managed-bean>

<managed-bean>

<managed-bean-name>newsletter0</managed-bean-name>

<managed-bean-class>

javax.faces.model.SelectItem

</managed-bean-class>

<managed-bean-scope>none</managed-bean-scope>

<managed-property>

<property-name>label</property-name>

<value>Duke’s Quarterly</value>

</managed-property>

<managed-property>

<property-name>value</property-name>

<value>200</value>

Configuring Beans

Chapter 14 • Configuring JavaServer Faces Applications 449

</managed-property>

</managed-bean>

...

This configuration initializes a List called newsletters. This list is composed of SelectItem
instances, which are also managed beans. See “Using the selectItem Tag” on page 352 for
more information on SelectItem. Note that, unlike the example in “Initializing Map
Properties” on page 445, the newsletters list is not a property on a managed bean. (It is not
wrapped with a managed-property element.) Instead, the list is the managed bean.

Registering Custom Error Messages
If you create custom error messages (which are displayed by the message and messages tags) for
your custom converters or validators, you must make them available at application startup
time. You do this in one of two ways: by queuing the message onto the FacesContext instance
programmatically (as described in “Performing Localization” on page 392) or by registering the
messages with your application using the application configuration resource file.

Here is the part of the file that registers the messages for the Duke’s Bookstore application:

<application>

<message-bundle>

com.sun.bookstore6.resources.ApplicationMessages

</message-bundle>

<locale-config>

<default-locale>en</default-locale>

<supported-locale>es</supported-locale>

<supported-locale>de</supported-locale>

<supported-locale>fr</supported-locale>

</locale-config>

</application>

This set of elements will cause your Application instance to be populated with the messages
contained in the specified resource bundle.

The message-bundle element represents a set of localized messages. It must contain the fully
qualified path to the resource bundle containing the localized messages (in this case,
resources.ApplicationMessages).

The locale-config element lists the default locale and the other supported locales. The
locale-config element enables the system to find the correct locale based on the browser’s
language settings. Duke’s Bookstore manually sets the locale and so it overrides these settings.
Therefore, it’s not necessary to use locale-config to specify the default or supported locales in
Duke’s Bookstore.

Registering Custom Error Messages

The Java EE 5 Tutorial • October 2008450

The supported-locale and default-locale tags accept the lowercase, two-character codes as
defined by ISO 639 (see http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt).
Make sure that your resource bundle actually contains the messages for the locales that you
specify with these tags.

To access the localized message, the application developer merely references the key of the
message from the resource bundle. See “Performing Localization” on page 392 for more
information.

Registering Custom Localized Static Text
Any custom localized static text you create that is not loaded into the page using the
loadBundle tag must be registered with the application using the resource-bundle element in
the application configuration resource file for your pages to have access to the text. Likewise,
any custom error messages that are referenced by the converterMessage, requiredMessage, or
validatorMessage attributes of an input component tag must also be made available to the
application by way of the loadBundle tag or the resource-bundle element of the application
configuration file.

Here is the part of the file that registers some custom error messages for the Duke’s Bookstore
application:

<application>

...

<resource-bundle>

<base-name>

com.sun.bookstore6.resources.CustomMessages

</base-name>

<var>customMessages</var>

</resource-bundle>

...

</application>

Similarly to the loadBundle tag, the value of the base-name subelement specifies the
fully-qualified class name of the ResourceBundle class, which in this case is located in the
resources package of the application.

Also similarly to the var attribute of the loadBundle tag, the var subelement of the
resource-bundle element is an alias to the ResourceBundle class. This alias is used by tags in
the page to identify the resource bundle.

The locale-config element shown in the previous section also applies to the messages and
static text identified by the resource-bundle element. As with resource bundles identified by
the message-bundle element, make sure that the resource bundle identified by the
resource-bundle element actually contains the messages for the locales that you specify with
these locale-config elements.

Registering Custom Localized Static Text

Chapter 14 • Configuring JavaServer Faces Applications 451

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

To access the localized message, the page author uses a value expression to reference the key of
the message from the resource bundle. See “Performing Localization” on page 392 for more
information.

Registering a Custom Validator
If the application developer provides an implementation of the Validator interface to perform
validation, you must register this custom validator in the application configuration resource file
by using the validator XML element:

<validator>

...

<validator-id>FormatValidator</validator-id>

<validator-class>

com.sun.bookstore6.validators.FormatValidator

</validator-class>

<attribute>

...

<attribute-name>formatPatterns</attribute-name>

<attribute-class>java.lang.String</attribute-class>

</attribute>

</validator>

The validator-id and validator-class elements are required subelements. The
validator-id element represents the identifier under which the Validator class should be
registered. This ID is used by the tag class corresponding to the custom validator tag.

The validator-class element represents the fully qualified class name of the Validator class.

The attribute element identifies an attribute associated with the Validator implementation.
It has required attribute-name and attribute-class subelements. The attribute-name
element refers to the name of the attribute as it appears in the validator tag. The
attribute-class element identifies the Java type of the value associated with the attribute.

“Creating a Custom Validator” on page 400 explains how to implement the Validator
interface.

“Using a Custom Validator” on page 378 explains how to reference the validator from the page.

Registering a Custom Validator

The Java EE 5 Tutorial • October 2008452

Registering a Custom Converter
As is the case with a custom validator, if the application developer creates a custom converter,
you must register it with the application. Here is the converter configuration for
CreditCardConverter from the Duke’s Bookstore application:

<converter>

<description>

Converter for credit card

numbers that normalizes

the input to a standard format

</description>

<converter-id>CreditCardConverter</converter-id>

<converter-class>

com.sun.bookstore6.converters.CreditCardConverter

</converter-class>

</converter>

The converter element represents a Converter implementation and contains required
converter-id and converter-class elements.

The converter-id element identifies an ID that is used by the converter attribute of a UI
component tag to apply the converter to the component’s data. “Using a Custom Converter” on
page 377 includes an example of referencing the custom converter from a component tag.

The converter-class element identifies the Converter implementation.

“Creating a Custom Converter” on page 395 explains how to create a custom converter.

Configuring Navigation Rules
As explained in “Navigation Model” on page 308, navigation is a set of rules for choosing the
next page to be displayed after a button or hyperlink component is clicked. Navigation rules are
defined in the application configuration resource file.

Each navigation rule specifies how to navigate from one page to a set of other pages. The
JavaServer Faces implementation chooses the proper navigation rule according to which page is
currently displayed.

After the proper navigation rule is selected, the choice of which page to access next from the
current page depends on two factors:

■ The action method that was invoked when the component was clicked
■ The logical outcome that is referenced by the component’s tag or was returned from the

action method

Configuring Navigation Rules

Chapter 14 • Configuring JavaServer Faces Applications 453

The outcome can be anything the developer chooses, but Table 14–3 lists some outcomes
commonly used in web applications.

TABLE 14–3 Common Outcome Strings

Outcome What It Means

success Everything worked. Go on to the next page.

failure Something is wrong. Go on to an error page.

logon The user needs to log on first. Go on to the logon page.

no results The search did not find anything. Go to the search page again.

Usually, the action method performs some processing on the form data of the current page. For
example, the method might check whether the user name and password entered in the form
match the user name and password on file. If they match, the method returns the outcome
success. Otherwise, it returns the outcome failure. As this example demonstrates, both the
method used to process the action and the outcome returned are necessary to determine the
proper page to access.

Here is a navigation rule that could be used with the example just described:

<navigation-rule>

<from-view-id>/logon.jsp</from-view-id>

<navigation-case>

<from-action>#{LogonForm.logon}</from-action>

<from-outcome>success</from-outcome>

<to-view-id>/storefront.jsp</to-view-id>

</navigation-case>

<navigation-case>

<from-action>#{LogonForm.logon}</from-action>

<from-outcome>failure</from-outcome>

<to-view-id>/logon.jsp</to-view-id>

</navigation-case>

</navigation-rule>

This navigation rule defines the possible ways to navigate from logon.jsp. Each
navigation-case element defines one possible navigation path from logon.jsp. The first
navigation-case says that if LogonForm.logon returns an outcome of success, then
storefront.jsp will be accessed. The second navigation-case says that logon.jsp will be
re-rendered if LogonForm.logon returns failure.

The configuration of an application’s page flow consists of a set of navigation rules. Each rule is
defined by the navigation-rule element in the faces-config.xml file.

The navigation rules of the Duke’s Bookstore application are very simple. Here are two complex
navigation rules that could be used with the Duke’s Bookstore application:

Configuring Navigation Rules

The Java EE 5 Tutorial • October 2008454

<navigation-rule>

<from-view-id>/catalog.jsp</from-view-id>

<navigation-case>

<from-outcome>success</from-outcome>

<to-view-id>/bookcashier.jsp</to-view-id>

</navigation-case>

<navigation-case>

<from-outcome>out of stock</from-outcome>

<from-action>

#{catalog.buy}

</from-action>

<to-view-id>/outofstock.jsp</to-view-id>

</navigation-case>

<navigation-case>

<from-outcome>error</from-outcome>

<to-view-id>/error.jsp</to-view-id>

</navigation-case>

</navigation-rule>

The first navigation rule in this example says that the application will navigate from
catalog.jsp to

■ bookcashier.jsp if the item ordered is in stock
■ outofstock.jsp if the item is out of stock

The second navigation rule says that the application will navigate from any page to error.jsp if
the application encountered an error.

Each navigation-rule element corresponds to one component tree identifier defined by the
optional from-view-id element. This means that each rule defines all the possible ways to
navigate from one particular page in the application. If there is no from-view-id element, the
navigation rules defined in the navigation-rule element apply to all the pages in the
application. The from-view-id element also allows wildcard matching patterns. For example,
this from-view-id element says that the navigation rule applies to all the pages in the books
directory:

<from-view-id>/books/*</from-view-id>

As shown in the example navigation rule, a navigation-rule element can contain zero or more
navigation-case elements. The navigation-case element defines a set of matching criteria.
When these criteria are satisfied, the application will navigate to the page defined by the
to-view-id element contained in the same navigation-case element.

The navigation criteria are defined by optional from-outcome and from-action elements. The
from-outcome element defines a logical outcome, such as success. The from-action element
uses a method expression to refer to an action method that returns a String, which is the logical
outcome. The method performs some logic to determine the outcome and returns the outcome.

Configuring Navigation Rules

Chapter 14 • Configuring JavaServer Faces Applications 455

The navigation-case elements are checked against the outcome and the method expression in
this order:
■ Cases specifying both a from-outcome value and a from-action value. Both of these

elements can be used if the action method returns different outcomes depending on the
result of the processing it performs.

■ Cases specifying only a from-outcome value. The from-outcome element must match either
the outcome defined by the action attribute of the UICommand component or the outcome
returned by the method referred to by the UICommand component.

■ Cases specifying only a from-action value. This value must match the action expression
specified by the component tag.

When any of these cases is matched, the component tree defined by the to-view-id element
will be selected for rendering.

Using NetBeans IDE, you can configure a navigation rule by doing the following:

1. After opening your project in NetBeans IDE, expand the project node in the Projects pane.
2. Expand the Web Pages and WEB-INF nodes of the project node.
3. Double-click faces-config.xml.
4. After faces-config.xml opens in the editor pane, right-click in the editor pane.
5. Select JavaServer Faces→Add Navigation Rule.
6. In the Add Navigation Rule dialog:

a. Enter or browse for the page that represents the starting view for this navigation rule.
b. Click Add.

7. Right-click again in the editor pane.
8. Select JavaServer Faces → Add Navigation Case.
9. In the Add Navigation Case dialog:

a. From the From View menu, select the page that represents the starting view for the
navigation rule (from step 6a).

b. (optional) In the From Action field, enter the action method invoked when the
component that triggered navigation is activated.

c. (optional) In the From Outcome field, enter the logical outcome string that the activated
component references from its action attribute.

d. From the To View menu, select or browse for the page that will be opened if this
navigation case is selected by the navigation system.

e. Click Add.
“Referencing a Method That Performs Navigation” on page 374 explains how to use a
component tag’s action attribute to point to an action method. “Writing a Method to
Handle Navigation” on page 406 explains how to write an action method.

Configuring Navigation Rules

The Java EE 5 Tutorial • October 2008456

Registering a Custom Renderer with a Render Kit
When the application developer creates a custom renderer, as described in “Delegating
Rendering to a Renderer” on page 429, you must register it using the appropriate render kit.
Because the image map application implements an HTML image map, AreaRenderer (as well
as MapRenderer) should be registered using the HTML render kit.

You register the renderer using the render-kit element of the application configuration
resource file. Here is the configuration of AreaRenderer from the Duke’s Bookstore application:

<render-kit>

<renderer>

<component-family>Area</component-family>

<renderer-type>DemoArea</renderer-type>

<renderer-class>

com.sun.bookstore6.renderers.AreaRenderer

</renderer-class>

<attribute>

<attribute-name>onmouseout</attribute-name>

<attribute-class>java.lang.String</attribute-class>

</attribute>

<attribute>

<attribute-name>onmouseover</attribute-name>

<attribute-class>java.lang.String</attribute-class>

</attribute>

<attribute>

<attribute-name>styleClass</attribute-name>

<attribute-class>java.lang.String</attribute-class>

</attribute>

</renderer>

...

The render-kit element represents a RenderKit implementation. If no render-kit-id is
specified, the default HTML render kit is assumed. The renderer element represents a
Renderer implementation. By nesting the renderer element inside the render-kit element,
you are registering the renderer with the RenderKit implementation associated with the
render-kit element.

The renderer-class is the fully qualified class name of the Renderer.

The component-family and renderer-type elements are used by a component to find
renderers that can render it. The component-family identifier must match that returned by the
component class’s getFamily method. The component family represents a component or set of
components that a particular renderer can render. The renderer-type must match that
returned by the getRendererType method of the tag handler class.

Registering a Custom Renderer with a Render Kit

Chapter 14 • Configuring JavaServer Faces Applications 457

By using the component family and renderer type to look up renderers for components, the
JavaServer Faces implementation allows a component to be rendered by multiple renderers and
allows a renderer to render multiple components.

Each of the attribute tags specifies a render-dependent attribute and its type. The attribute
element doesn’t affect the runtime execution of your application. Instead, it provides
information to tools about the attributes the Renderer supports.

The object that is responsible for rendering a component (be it the component itself or a
renderer to which the component delegates the rendering) can use facets to aid in the rendering
process. These facets allow the custom component developer to control some aspects of
rendering the component. Consider this custom component tag example:

<d:dataScroller>

<f:facet name="header">
<h:panelGroup>

<h:outputText value="Account Id"/>
<h:outputText value="Customer Name"/>
<h:outputText value="Total Sales"/>

</h:panelGroup>

</f:facet>

<f:facet name="next">
<h:panelGroup>

<h:outputText value="Next"/>
<h:graphicImage url="/images/arrow-right.gif" />

</h:panelGroup>

</f:facet>

...

</d:dataScroller>

The dataScroller component tag includes a component that will render the header and a
component that will render the Next button. If the renderer associated with this component
renders the facets you can include the following facet elements in the renderer element:

<facet>

<description>This facet renders as the

header of the table. It should be a panelGroup

with the same number of columns as the data

</description>

<display-name>header</display-name>

<facet-name>header</facet-name>

</facet>

<facet>

<description>This facet renders as the content

of the "next" button in the scroller. It should be a

panelGroup that includes an outputText tag that

has the text "Next" and a right arrow icon.

</description>

Registering a Custom Renderer with a Render Kit

The Java EE 5 Tutorial • October 2008458

<display-name>Next</display-name>

<facet-name>next</facet-name>

</facet>

If a component that supports facets provides its own rendering and you want to include facet
elements in the application configuration resource file, you need to put them in the
component’s configuration rather than the renderer’s configuration.

Registering a Custom Component
In addition to registering custom renderers (as explained in the preceding section), you also
must register the custom components that are usually associated with the custom renderers.

Here is the component element from the application configuration resource file that registers
AreaComponent:

<component>

<component-type>DemoArea</component-type>

<component-class>

com.sun.bookstore6.components.AreaComponent

</component-class>

<property>

<property-name>alt</property-name>

<property-class>java.lang.String</property-class>

</property>

<property>

<property-name>coords</property-name>

<property-class>java.lang.String</property-class>

</property>

<property>

<property-name>shape</property-name>

<property-class>java.lang.String</property-class>

</property>

</component>

The component-type element indicates the name under which the component should be
registered. Other objects referring to this component use this name. For example, the
component-type element in the configuration for AreaComponent defines a value of DemoArea,
which matches the value returned by the AreaTag class’s getComponentType method.

The component-class element indicates the fully qualified class name of the component. The
property elements specify the component properties and their types.

If the custom component can include facets, you can configure the facets in the component
configuration using facet elements, which are allowed after the component-class elements.
See “Registering a Custom Renderer with a Render Kit” on page 457 for further details on
configuring facets.

Registering a Custom Component

Chapter 14 • Configuring JavaServer Faces Applications 459

Basic Requirements of a JavaServer Faces Application
In addition to configuring your application, you must satisfy other requirements of JavaServer
Faces applications, including properly packaging all the necessary files and providing a
deployment descriptor. This section describes how to perform these administrative tasks.

JavaServer Faces applications must be compliant with the Servlet specification, version 2.3 (or
later) and the JavaServer Pages specification, version 1.2 (or later). All applications compliant
with these specifications are packaged in a WAR file, which must conform to specific
requirements in order to execute across different containers. At a minimum, a WAR file for a
JavaServer Faces application must contain the following:

■ A web application deployment descriptor, called web.xml, to configure resources required
by a web application

■ A specific set of JAR files containing essential classes
■ A set of application classes, JavaServer Faces pages, and other required resources, such as

image files
■ An application configuration resource file, which configures application resources

The WAR file typically has this directory structure:

index.html

JSP pages

WEB-INF/

web.xml

faces-config.xml

tag library descriptors (optional)

classes/

class files

Properties files

lib/

JAR files

The web.xml file (or deployment descriptor), the set of JAR files, and the set of application files
must be contained in the WEB-INF directory of the WAR file.

Basic Requirements of a JavaServer Faces Application

The Java EE 5 Tutorial • October 2008460

Configuring an Application with a Deployment
Descriptor
Web applications are configured using elements contained in the web application deployment
descriptor. The deployment descriptor for a JavaServer Faces application must specify certain
configurations, which include the following:

■ The servlet used to process JavaServer Faces requests
■ The servlet mapping for the processing servlet
■ The path to the configuration resource file if it is not located in a default location

The deployment descriptor can also specify other, optional configurations, including:

■ Specifying where component state is saved
■ Encrypting state saved on the client
■ Compressing state saved on the client
■ Restricting access to pages containing JavaServer Faces tags
■ Turning on XML validation
■ Verifying custom objects

This section gives more details on these configurations. Where appropriate, it also describes
how you can make these configurations using NetBeans IDE.

Identifying the Servlet for Life Cycle Processing
One requirement of a JavaServer Faces application is that all requests to the application that
reference previously saved JavaServer Faces components must go through FacesServlet. A
FacesServlet instance manages the request processing life cycle for web applications and
initializes the resources required by JavaServer Faces technology.

Before a JavaServer Faces application can launch the first JSP page, the web container must
invoke the FacesServlet instance in order for the application life cycle process to start. The
application life cycle is described in the section “The Life Cycle of a JavaServer Faces Page” on
page 314.

To make sure that the FacesServlet instance is invoked, you provide a mapping to it. The
mapping to FacesServlet can be a prefix mapping, such as /guess/*, or an extension
mapping, such as *.faces. The mapping is used to identify a JSP page as having JavaServer
Faces content. Because of this, the URL to the first JSP page of the application must include the
mapping.

Basic Requirements of a JavaServer Faces Application

Chapter 14 • Configuring JavaServer Faces Applications 461

In the case of prefix mapping, there are two ways to accomplish this:
■ The page author can include an HTML page in the application that has the URL to the first

JSP page. This URL must include the path to FacesServlet, as shown by this tag, which uses
the mapping defined in the guessNumber application:

■ Users of the application can include the path to FacesServlet in the URL to the first page
when they enter it in their browser, as shown by this URL that accesses the guessNumber
application:

http://localhost:8080/guessNumber/guess/greeting.jsp

The second method allows users to start the application from the first JSP page, rather than start
it from an HTML page. However, the second method requires users to identify the first JSP
page. When you use the first method, users need only enter

http://localhost:8080/guessNumber

In the case of extension mapping, if a request comes to the server for a JSP page with a .faces
extension, the container will send the request to the FacesServlet instance, which will expect a
corresponding JSP page of the same name to exist containing the content. For example, if the
request URL is http://localhost/bookstore6/bookstore.faces, FacesServlet will map it
to the bookstore.jsp page.

If you are using NetBeans IDE, the time to map the FacesServlet instance is when you create
your JavaServer Faces project with NetBeans IDE:

1. In NetBeans IDE, select File→New Project.
2. In the New Project dialog, select Web from the Categories tree.
3. Select Web Application from the Projects panel.
4. Click Next.
5. Fill out the information in the Name and Location screen of the wizard.
6. Click Next.
7. Select the JavaServer Faces check box in the Framewoks screen.
8. Enter the mapping, such as *.faces, to the FacesServlet instance in the Servlet URL

Mapping field.
9. Click Finish.

After your project is open in NetBeans IDE, you can change the mapping to the FacesServlet
instance by doing the following:

1. Expand the node of your project in the Projects pane.
2. Expand the Web Pages and WEB-INF nodes that are under the project node.

Basic Requirements of a JavaServer Faces Application

The Java EE 5 Tutorial • October 2008462

3. Double-click web.xml.
4. After the web.xml file appears in the editor pane, click Servlets at the top of the editor pane.

The FacesServlet configuration appears in the editor pane.

If you prefer to edit the web.xml file directly, perform the following steps to configure a
mapping to the FacesServlet instance:

1. Include a servlet element in the deployment descriptor.
2. Inside the servlet element, include a display-name element and set it to FacesServlet.
3. Also inside the servlet element, add a servlet-name element and set it to FacesServlet.
4. Add a third element, called servlet-class, inside the servlet element and set it to

javax.faces.webapp.FacesServlet. This is the fully-qualified class name of the
FacesServlet class.

5. After the servlet element, add a servlet-mapping element.
6. Inside the servlet-mapping element, add a servlet-name element and set it to

FacesServlet. This must match the name identified by the servlet-name element
described in step 3.

7. Also inside the servlet-mapping element, add a url-pattern element and set it to
whatever mapping you prefer. This will be the path to FacesServlet. Users of the
application will include this path in the URL when they access the application. For the
guessNumber application, the path is /guess/*.

Specifying a Path to an Application Configuration Resource File
As explained in “Application Configuration Resource File” on page 439, an application can have
multiple application configuration resource files. If these files are not located in the directories
that the implementation searches by default or the files are not named faces-config.xml, you
need to specify paths to these files.

To specify these paths using NetBeans IDE, do the following:

1. Expand the node of your project in the Projects pane.
2. Expand the Web Pages and WEB-INF nodes that are under the project node.
3. Double-click web.xml.
4. After the web.xml file appears in the editor pane, click General at the top of the editor pane.
5. Expand the Context Parameters node.
6. Click Add.
7. In the Add Context Parameter dialog:

a. Enter javax.faces.CONFIG_FILES in the Param Name field.
b. Enter the path to your configuration file in the Param Value field.
c. Click OK.

Basic Requirements of a JavaServer Faces Application

Chapter 14 • Configuring JavaServer Faces Applications 463

8. Repeat steps 1 through 7 for each configuration file.

To specify paths to the files by editing the deployment descriptor directly follow these steps:

1. Add a context-param element to the deployment descriptor.
2. Add a param-value element inside the context-param element and call it

javax.faces.CONFIG_FILES.
3. Add a param-value element inside the context-param element and give it the path to your

configuration file. For example, the path to the guessNumber application’s application
configuration resource file is /WEB-INF/faces-config.xml.

4. Repeat steps 2 and 3 for each application configuration resource file that your application
contains.

Specifying Where State Is Saved
When implementing the state-holder methods (described in “Saving and Restoring State” on
page 428), you specify in your deployment descriptor where you want the state to be saved,
either client or server. You do this by setting a context parameter in your deployment
descriptor.

To specify where state is saved using NetBeans IDE, do the following:

1. Expand the node of your project in the Projects pane.
2. Expand the Web Pages and WEB-INF nodes that are under the project node.
3. Double-click web.xml.
4. After the web.xml file appears in the editor pane, click General at the top of the editor pane.
5. Expand the Context Parameters node.
6. Click Add.
7. In the Add Context Parameter dialog:

a. Enter javax.faces.STATE_SAVING_METHOD in the Param Name field.
b. Enter client or server in the Param Value field.
c. Click OK.

To specify where state is saved by editing the deployment descriptor directly follow these steps:

1. Add a context-param element to the deployment descriptor.
2. Add a param-name element inside the context-param element and give it the name

javax.faces.STATE_SAVING_METHOD.
3. Add a param-value element to the context-param element and give it the value client or

server, depending on whether you want state saved in the client or the server.

If state is saved on the client, the state of the entire view is rendered to a hidden field on the page.
The JavaServer Faces implementation saves the state on the client by default. Duke’s Bookstore
saves its state in the client.

Basic Requirements of a JavaServer Faces Application

The Java EE 5 Tutorial • October 2008464

Encrypting Client State
When you are choosing to save state on the client, you are essentially saying that you want state
to be sent over the wire and saved on the client in a hidden field. Clearly, this opens the door to
potential tampering with the state information. To prevent this from happening, you can
specify that the state must be encrypted before it is transmitted to the client.

To specify that state must be encrypted using NetBeans IDE, do the following:

1. Expand the node of your project in the Projects pane.

2. Expand the Web Pages and WEB-INF nodes that are under the project node.

3. Double-click web.xml.

4. After the web.xml file appears in the editor pane, click References at the top of the editor
pane.

5. Expand the Environment Entries node.

6. Click Add.

7. In the Add Environment Entry dialog:

a. Enter com.sun.faces.ClientStateSavingPassword in the Entry Name field.
b. Select java.lang.String from the Entry Type menu.
c. Click OK.

To specify that state must be encrypted by editing the deployment descriptor directly, do the
following:

1. Add an env-entry element to your deployment descriptor.

2. Add an env-entry-name element to the env-entry element and give it the name
com.sun.faces.ClientStateSavingPassword.

3. Add an env-entry-value element to the env-entry element, and give it your password.
The password that you provide is used to generate keys and ciphers for encryption.

4. Add an env-entry-type element and give it the type of your password, which must be
java.lang.String.

If your deployment descriptor does not contain this environment entry then no encryption of
client-side state will occur.

Restricting Access to JavaServer Faces Components
In addition to identifying the FacesServlet instance and providing a mapping to it, you should
also ensure that all applications use FacesServlet to process JavaServer Faces components.
You do this by setting a security constraint.

Basic Requirements of a JavaServer Faces Application

Chapter 14 • Configuring JavaServer Faces Applications 465

To set a security constraint using NetBeans IDE, do the following:

1. Expand the node of your project in the Projects pane.
2. Expand the Web Pages and WEB-INF nodes that are under the project node.
3. Double-click web.xml.
4. After the web.xml file appears in the editor pane, click Security at the top of the editor pane.
5. Click Add Security Constraint.
6. Enter a name for the constraint in the Display Name field.
7. Click Add to add a web resource collection.
8. In the Add Web Resource dialog:

a. Enter a name for the web resource collection in the Resource Name field.
b. In the URL pattern field, enter the path to a JSP page to which you want to restrict access,

such as /response.jsp. Use commas to separate multiple patterns.
c. Click OK.

To set a security constraint by editing the deployment descriptor directly, add a
security-constraint element, and inside the security-constraint element, add the
following:

1. Add a display-name element to identify the name of the constraint.
2. Add a web-resource-collection element.
3. Inside the web-resource-collection element, add a web-resource-name element that

identifies the purpose of the collection.
4. Add a url-pattern element inside the web-resource-collection element and enter the

path to a JSP page to which you want to restrict access, such as /response.jsp.
5. Continue to add URL patterns for all the JSP pages to which you want to restrict access.

Turning On Validation of XML Files
Your application contains one or more application configuration resource files written in XML.
You can force the JavaServer Faces implementation to validate the XML of these files by setting
the validateXML flag to true.

To set the flag using NetBeans IDE, do the following:

1. Expand the node of your project in the Projects pane.
2. Expand the Web Pages and WEB-INF nodes that are under the project node.
3. Double-click web.xml.
4. After the web.xml file appears in the editor pane, click General at the top of the editor pane.
5. Expand the Context Parameters node.
6. Click Add.

Basic Requirements of a JavaServer Faces Application

The Java EE 5 Tutorial • October 2008466

7. In the Add Context Parameter dialog:
a. Enter com.sun.faces.validateXml in the Param Name field.
b. Enter true in the Param Value field.
c. Click OK.

To set the flag in the deployment descriptor directly, do the following:

1. Add a context-param element to the deployment descriptor.
2. Add a param-name element inside the context-param element and give it the name

com.sun.faces.validateXml.
3. Add a param-value element to the context-param element and give it the value true. The

default value is false.

Verifying Custom Objects
If your application includes custom objects, such as custom components, converters, validators,
and renderers, you can verify when the application starts that they can be created. To do this,
you set the verifyObjects flag to true.

To set the flag using NetBeans IDE, do the following:

1. Expand the node of your project in the Projects pane.
2. Expand the Web Pages and WEB-INF nodes that are under the project node.
3. Double-click web.xml.
4. After the web.xml file appears in the editor pane, click General at the top of the editor pane.
5. Expand the Context Parameters node.
6. Click Add.
7. In the Add Context Parameter dialog:

a. Enter com.sun.faces.verifyObjects in the Param Name field.
b. Enter true in the Param Value field.
c. Click OK.

To set the flag in the deployment descriptor directly, do the following:

1. Add a context-param element to the deployment descriptor.
2. Add a param-name element inside the context-param element and give it the name

com.sun.faces.verifyObjects.
3. Add a param-value element to the context-param element and give it the value true. The

default value is false.

Normally, this flag should be set to false during development because it takes extra time to
check the objects.

Basic Requirements of a JavaServer Faces Application

Chapter 14 • Configuring JavaServer Faces Applications 467

Including the Required JAR Files
JavaServer Faces applications require several JAR files to run properly. These JAR files are as
follows:
■ jsf-api.jar (contains the javax.faces.* API classes)
■ jsf-impl.jar (contains the implementation classes of the JavaServer Faces

implementation)
■ jstl.jar (required to use JSTL tags and referenced by JavaServer Faces implementation

classes)
■ standard.jar (required to use JSTL tags and referenced by JavaServer Faces reference

implementation classes)
■ commons-beanutils.jar (utilities for defining and accessing JavaBeans component

properties)
■ commons-digester.jar (for processing XML documents)
■ commons-collections.jar (extensions of the Java 2 SDK Collections Framework)
■ commons-logging.jar (a general-purpose, flexible logging facility to allow developers to

instrument their code with logging statements)

The jsf-api.jar and the jsf-impl.jar files are located in as-install/lib. The jstl.jar file is
bundled in appserv-jstl.jar. The other JAR files are bundled in the appserv-rt.jar, also
located in as-install/lib/.

When packaging and deploying your JavaServer Faces application, you do not need to explicitly
package any of the JAR files.

Including the Classes, Pages, and Other Resources
When packaging web applications using the included build scripts, you’ll notice that the scripts
package resources as described here:
■ All JSP pages are placed at the top level of the WAR file.
■ The TLD files, the faces-config.xml file, and the web.xml file are packaged in the WEB-INF

directory.
■ All packages are stored in the WEB-INF/classes/ directory.
■ All JAR files are packaged in the WEB-INF/lib/ directory.

When packaging your own applications, you can use NetBeans IDE or you can use the build
scripts included with the tutorial examples, as explained throughout the preceding chapters.
You can modify the build scripts to fit your situation. However, it is recommended that you
continue to package your WAR files as described in this section because this technique complies
with commonly-accepted practice for packaging web applications.

Basic Requirements of a JavaServer Faces Application

The Java EE 5 Tutorial • October 2008468

Internationalizing and Localizing Web
Applications

The process of preparing an application to support more than one language and data format is
called internationalization. Localization is the process of adapting an internationalized
application to support a specific region or locale. Examples of locale-dependent information
include messages and user interface labels, character sets and encoding, and date and currency
formats. Although all client user interfaces should be internationalized and localized, it is
particularly important for web applications because of the global nature of the web.

Java Platform Localization Classes
In the Java 2 platform, java.util.Locale represents a specific geographical, political, or cultural
region. The string representation of a locale consists of the international standard
two-character abbreviation for language and country and an optional variant, all separated by
underscore (_) characters. Examples of locale strings include fr (French), de_CH (Swiss
German), and en_US_POSIX (English on a POSIX-compliant platform).

Locale-sensitive data is stored in a java.util.ResourceBundle. A resource bundle contains
key-value pairs, where the keys uniquely identify a locale-specific object in the bundle. A
resource bundle can be backed by a text file (properties resource bundle) or a class (list resource
bundle) containing the pairs. You construct resource bundle instance by appending a locale
string representation to a base name.

For more details on internationalization and localization in the Java 2 platform, see
http://java.sun.com/docs/books/tutorial/i18n/index.html.

In the web technology chapters, the Duke’s Bookstore applications contain resource bundles
with the base name messages.BookstoreMessages for the locales en_US, fr_FR, de_DE, and
es_MX.

15C H A P T E R 1 5

469

http://java.sun.com/javase/6/docs/api/java/util/Locale.html
http://java.sun.com/javase/6/docs/api/java/util/ResourceBundle.html
http://java.sun.com/docs/books/tutorial/i18n/index.html

Providing Localized Messages and Labels
Messages and labels should be tailored according to the conventions of a user’s language and
region. There are two approaches to providing localized messages and labels in a web
application:
■ Provide a version of the JSP page in each of the target locales and have a controller servlet

dispatch the request to the appropriate page depending on the requested locale. This
approach is useful if large amounts of data on a page or an entire web application need to be
internationalized.

■ Isolate any locale-sensitive data on a page into resource bundles, and access the data so that
the corresponding translated message is fetched automatically and inserted into the page.
Thus, instead of creating strings directly in your code, you create a resource bundle that
contains translations and read the translations from that bundle using the corresponding
key.

The Duke’s Bookstore applications follow the second approach. Here are a few lines from the
default resource bundle messages.BookstoreMessages.java:

{"TitleCashier", "Cashier"},
{"TitleBookDescription", "Book Description"},
{"Visitor", "You are visitor number "},
{"What", "What We’re Reading"},
{"Talk", " talks about how Web components can transform the way you develop

applications for the Web. This is a must read for any self respecting Web developer!"},
{"Start", "Start Shopping"},

Establishing the Locale
To get the correct strings for a given user, a web application either retrieves the locale (set by a
browser language preference) from the request using the getLocale method, or allows the user
to explicitly select the locale.

The JSTL versions of Duke’s Bookstore automatically retrieve the locale from the request and
store it in a localization context (see “Internationalization Tag Library” on page 215). It is also
possible for a component to explicitly set the locale by using the fmt:setLocale tag.

The JavaServer Faces version of Duke’s Bookstore allows the user to explicitly select the locale.
The user selection triggers a method that stores the locale in the FacesContext object. The
locale is then used in resource bundle selection and is available for localizing dynamic data and
messages (see “Localizing Dynamic Data” on page 392):

<h:commandLink id="NAmerica" action="storeFront"
actionListener="#{localeBean.chooseLocaleFromLink}">
<h:outputText value="#{bundle.english}" />

Providing Localized Messages and Labels

The Java EE 5 Tutorial • October 2008470

</h:commandLink>

public void chooseLocaleFromLink(ActionEvent event) {

String current = event.getComponent().getId();

FacesContext context = FacesContext.getCurrentInstance();

context.getViewRoot().setLocale((Locale)

locales.get(current));

}

Setting the Resource Bundle
After the locale is set, the controller of a web application typically retrieves the resource bundle
for that locale and saves it as a session attribute (see “Associating Objects with a Session” on
page 126) for use by other components:

messages = ResourceBundle.getBundle("com.sun.bookstore.messages.BookstoreMessages",
locale);

session.setAttribute("messages", messages);

The resource bundle base name for the JSTL versions of Duke’s Bookstore is set at deployment
time through a context parameter. When a session is initiated, the resource bundle for the user’s
locale is stored in the localization context. It is also possible to override the resource bundle at
runtime for a given scope using the fmt:setBundle tag and for a tag body using the fmt:bundle
tag.

The JavaServer Faces version of Duke’s Bookstore uses two methods for setting the resource
bundle. One method is letting the JSP pages set the resource bundle using the f:loadBundle
tag. This tag loads the correct resource bundle according to the locale stored in FacesContext.

<f:loadBundle basename="messages.BookstoreMessages"
var="bundle"/>

For information on this tag, see “Loading a Resource Bundle” on page 354.

Another way a JavaServer Faces application sets the resource bundle is by configuring it in the
application configuration file. There are two XML elements that you can use to set the resource
bundle: message-bundle and resource-bundle.

If the error messages are queued onto a component as a result of a converter or validator being
registered on the component, then these messages are automatically displayed on the page
using the message or messages tag. These messages must be registered with the application
using the message-bundle tag:

<message-bundle>

resources.ApplicationMessages

</message-bundle>

Providing Localized Messages and Labels

Chapter 15 • Internationalizing and Localizing Web Applications 471

For more information on using this element, see “Registering Custom Error Messages” on
page 450.

Resource bundles containing messages that are explicitly referenced from a JavaServer Faces tag
attribute using a value expression must be registered using the resource-bundle element of the
configuration file:

<resource-bundle>

<base-name>com.sun.bookstore6.resources.CustomMessages</base-name>

<var>customMessages</var>

</resource-bundle>

For more information on using this element, see “Registering Custom Localized Static Text” on
page 451

Retrieving Localized Messages
A web component written in the Java programming language retrieves the resource bundle
from the session:

ResourceBundle messages = (ResourceBundle)session.getAttribute("messages");

Then it looks up the string associated with the key Talk as follows:

messages.getString("Talk");

The JSP versions of the Duke’s Bookstore application uses the fmt:message tag to provide
localized strings for messages, HTML link text, button labels, and error messages:

<fmt:message key="Talk"/>

For information on the JSTL messaging tags, see “Messaging Tags” on page 216.

The JavaServer Faces version of Duke’s Bookstore retrieves messages using either the message
or messages tag, or by referencing the message from a tag attribute using a value expression.

You can only use a message or messages tag to display messages that are queued onto a
component as a result of a converter or validator being registered on the component. The
following example shows a message tag that displays the error message queued on the userNo
input component if the validator registered on the component fails to validate the value the user
enters into the component.

<h:inputText id="userNo" value="#{UserNumberBean.userNumber}">
<f:validateLongRange minimum="0" maximum="10" />

...

<h:message

Providing Localized Messages and Labels

The Java EE 5 Tutorial • October 2008472

style="color: red;

text-decoration: overline" id="errors1" for="userNo"/>

For more information on using the message or messages tags, see “Displaying Error Messages
with the message and messages Tags” on page 352.

Messages that are not queued on a component and are therefore not loaded automatically are
referenced using a value expression. You can reference a localized message from almost any
JavaServer Faces tag attribute.

The value expression that references a message has the same notation whether you loaded the
resource bundle with the loadBundle tag or registered it with the resource-bundle element in
the configuration file.

The value expression notation is var.message, in which var matches the var attribute of the
loadBundle tag or the var element defined in the resource-bundle element of the
configuration file, and message matches the key of the message contained in the resource
bundle, referred to by the var attribute.

Here is an example from bookstore.jsp:

<h:outputText value="#{bundle.Talk}"/>

Notice that bundle matches the var attribute from the loadBundle tag and that Talk matches
the key in the resource bundle.

For information on using localized messages in JavaServer Faces, see “Rendering Components
for Selecting Multiple Values” on page 348.

Date and Number Formatting
Java programs use the DateFormat.getDateInstance(int, locale) to parse and format dates
in a locale-sensitive manner. Java programs use the NumberFormat.getXXXInstance(locale)
method, where XXX can be Currency, Number, or Percent, to parse and format numerical
values in a locale-sensitive manner. The servlet version of Duke’s Bookstore uses the currency
version of this method to format book prices.

JSTL applications use the fmt:formatDate and fmt:parseDate tags to handle localized dates
and use the fmt:formatNumber and fmt:parseNumber tags to handle localized numbers,
including currency values. For information on the JSTL formatting tags, see “Formatting Tags”
on page 217. The JSTL version of Duke’s bookstore uses the fmt:formatNumber tag to format
book prices and the fmt:formatDate tag to format the ship date for an order:

<fmt:formatDate value="${shipDate}" type="date"
dateStyle="full"/>.

Date and Number Formatting

Chapter 15 • Internationalizing and Localizing Web Applications 473

The JavaServer Faces version of Duke’s Bookstore uses date/time and number converters to
format dates and numbers in a locale-sensitive manner. For example, the same shipping date is
converted in the JavaServer Faces version as follows:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"/>

</h:outputText>

For information on JavaServer Faces converters, see “Using the Standard Converters” on
page 357.

Character Sets and Encodings
The following sections describe character sets and character encodings.

Character Sets
A character set is a set of textual and graphic symbols, each of which is mapped to a set of
nonnegative integers.

The first character set used in computing was US-ASCII. It is limited in that it can represent
only American English. US-ASCII contains uppercase and lowercase Latin alphabets,
numerals, punctuation, a set of control codes, and a few miscellaneous symbols.

Unicode defines a standardized, universal character set that can be extended to accommodate
additions. When the Java program source file encoding doesn’t support Unicode, you can
represent Unicode characters as escape sequences by using the notation \uXXXX, where XXXX
is the character’s 16-bit representation in hexadecimal. For example, the Spanish version of the
Duke’s Bookstore message file uses Unicode for non-ASCII characters:

{"TitleCashier", "Cajero"},
{"TitleBookDescription", "Descripci" + "\u00f3" + "n del

Libro"},
{"Visitor", "El visitante" + "\u00fa" + "mero "},
{"What", "Qu" + "\u00e9" + " libros leemos"},
{"Talk", " describe cómo los componentes de software de web

pueden transformar la manera en que desarrollamos las

aplicaciones para la web. Este libro es obligatorio para

cualquier programador de respeto!"},
{"Start", "Empezar a Comprar"},

Character Sets and Encodings

The Java EE 5 Tutorial • October 2008474

Character Encoding
A character encoding maps a character set to units of a specific width and defines byte
serialization and ordering rules. Many character sets have more than one encoding. For
example, Java programs can represent Japanese character sets using the EUC-JP or Shift-JIS
encodings, among others. Each encoding has rules for representing and serializing a character
set.

The ISO 8859 series defines 13 character encodings that can represent texts in dozens of
languages. Each ISO 8859 character encoding can have up to 256 characters. ISO-8859-1
(Latin-1) comprises the ASCII character set, characters with diacritics (accents, diaereses,
cedillas, circumflexes, and so on), and additional symbols.

UTF-8 (Unicode Transformation Format, 8-bit form) is a variable-width character encoding
that encodes 16-bit Unicode characters as one to four bytes. A byte in UTF-8 is equivalent to
7-bit ASCII if its high-order bit is zero; otherwise, the character comprises a variable number of
bytes.

UTF-8 is compatible with the majority of existing web content and provides access to the
Unicode character set. Current versions of browsers and email clients support UTF-8. In
addition, many new web standards specify UTF-8 as their character encoding. For example,
UTF-8 is one of the two required encodings for XML documents (the other is UTF-16).

See Appendix Figure 37–6 for more information on character encodings in the Java 2 platform.

Web components usually use PrintWriter to produce responses; PrintWriter automatically
encodes using ISO-8859-1. Servlets can also output binary data using OutputStream classes,
which perform no encoding. An application that uses a character set that cannot use the default
encoding must explicitly set a different encoding.

For web components, three encodings must be considered:
■ Request
■ Page (JSP pages)
■ Response

Request Encoding
The request encoding is the character encoding in which parameters in an incoming request are
interpreted. Currently, many browsers do not send a request encoding qualifier with the
Content-Type header. In such cases, a web container will use the default encoding, ISO-8859-1,
to parse request data.

If the client hasn’t set character encoding and the request data is encoded with a different
encoding from the default, the data won’t be interpreted correctly. To remedy this situation,
you can use the ServletRequest.setCharacterEncoding(String enc) method to override the
character encoding supplied by the container. To control the request encoding from JSP pages,

Character Sets and Encodings

Chapter 15 • Internationalizing and Localizing Web Applications 475

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequest.html#setCharacterEncoding(java.lang.String)

you can use the JSTL fmt:requestEncoding tag. You must call the method or tag before
parsing any request parameters or reading any input from the request. Calling the method or
tag once data has been read will not affect the encoding.

Page Encoding
For JSP pages, the page encoding is the character encoding in which the file is encoded.

For JSP pages in standard syntax, the page encoding is determined from the following sources:

■ The page encoding value of a JSP property group (see “Setting Properties for Groups of JSP
Pages” on page 179) whose URL pattern matches the page.

■ The pageEncoding attribute of the page directive of the page. It is a translation-time error to
name different encodings in the pageEncoding attribute of the page directive of a JSP page
and in a JSP property group.

■ The CHARSET value of the contentType attribute of the page directive.

If none of these is provided, ISO-8859-1 is used as the default page encoding.

For JSP pages in XML syntax (JSP documents), the page encoding is determined as described in
section 4.3.3 and appendix F.1 of the XML specification.

The pageEncoding and contentType attributes determine the page character encoding of only
the file that physically contains the page directive. A web container raises a translation-time
error if an unsupported page encoding is specified.

Response Encoding
The response encoding is the character encoding of the textual response generated by a web
component. The response encoding must be set appropriately so that the characters are
rendered correctly for a given locale. A web container sets an initial response encoding for a JSP
page from the following sources:

■ The CHARSET value of the contentType attribute of the page directive
■ The encoding specified by the pageEncoding attribute of the page directive
■ The page encoding value of a JSP property group whose URL pattern matches the page

If none of these is provided, ISO-8859-1 is used as the default response encoding.

The setCharacterEncoding, setContentType, and setLocale methods can be called repeatedly to
change the character encoding. Calls made after the servlet response’s getWriter method has
been called or after the response is committed have no effect on the character encoding. Data is
sent to the response stream on buffer flushes (for buffered pages) or on encountering the first
content on unbuffered pages.

Character Sets and Encodings

The Java EE 5 Tutorial • October 2008476

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletResponse.html#setCharacterEncoding(java.lang.String)
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletResponse.html#setContentType(java.lang.String)
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletResponse.html#setLocale(java.util.Locale)

Calls to setContentType set the character encoding only if the given content type string
provides a value for the charset attribute. Calls to setLocale set the character encoding only if
neither setCharacterEncoding nor setContentType has set the character encoding before. To
control the response encoding from JSP pages, you can use the JSTL fmt.setLocale tag.

To obtain the character encoding for a locale, the setLocale method checks the locale encoding
mapping for the web application. For example, to map Japanese to the Japanese-specific
encoding Shift_JIS, follow these steps:

1. Select the WAR.
2. Click the Advanced Settings button.
3. In the Locale Character Encoding table, Click the Add button.
4. Enter ja in the Extension column.
5. Enter Shift_JIS in the Character Encoding column.

If a mapping is not set for the web application, setLocale uses a Application Server mapping.

The first application in Chapter 5, “JavaServer Pages Technology,” allows a user to choose an
English string representation of a locale from all the locales available to the Java 2 platform and
then outputs a date localized for that locale. To ensure that the characters in the date can be
rendered correctly for a wide variety of character sets, the JSP page that generates the date sets
the response encoding to UTF-8 by using the following directive:

<%@ page contentType="text/html; charset=UTF-8" %>

Further Information about Internationalizing Web
Applications

For a detailed discussion on internationalizing web applications, see the Java BluePrints for the
Enterprise at http://java.sun.com/blueprints/enterprise.

Further Information about Internationalizing Web Applications

Chapter 15 • Internationalizing and Localizing Web Applications 477

http://java.sun.com/blueprints/enterprise

478

Web Services
Part Three explores web services.

P A R T I I I

479

480

Building Web Services with JAX-WS

JAX-WS stands for Java API for XML Web Services. JAX-WS is a technology for building web
services and clients that communicate using XML. JAX-WS allows developers to write
message-oriented as well as RPC-oriented web services.

In JAX-WS, a web service operation invocation is represented by an XML-based protocol such
as SOAP. The SOAP specification defines the envelope structure, encoding rules, and
conventions for representing web service invocations and responses. These calls and responses
are transmitted as SOAP messages (XML files) over HTTP.

Although SOAP messages are complex, the JAX-WS API hides this complexity from the
application developer. On the server side, the developer specifies the web service operations by
defining methods in an interface written in the Java programming language. The developer also
codes one or more classes that implement those methods. Client programs are also easy to code.
A client creates a proxy (a local object representing the service) and then simply invokes
methods on the proxy. With JAX-WS, the developer does not generate or parse SOAP messages.
It is the JAX-WS runtime system that converts the API calls and responses to and from SOAP
messages.

With JAX-WS, clients and web services have a big advantage: the platform independence of the
Java programming language. In addition, JAX-WS is not restrictive: a JAX-WS client can access
a web service that is not running on the Java platform, and vice versa. This flexibility is possible
because JAX-WS uses technologies defined by the World Wide Web Consortium (W3C):
HTTP, SOAP, and the Web Service Description Language (WSDL). WSDL specifies an XML
format for describing a service as a set of endpoints operating on messages.

16C H A P T E R 1 6

481

Setting the Port
Several files in the JAX-WS examples depend on the port that you specified when you installed
the Application Server. The tutorial examples assume that the server runs on the default port,
8080. If you have changed the port, you must update the port number in the following file
before building and running the JAX-WS examples:

tut-install/javaeetutorial5/examples/jaxws/simpleclient/src/java/simpleclient/HelloClient.java

Creating a Simple Web Service and Client with JAX-WS
This section shows how to build and deploy a simple web service and client. The source code for
the service is in tut-install/javaeetutorial5/examples/jaxws/helloservice/ and the client
is in tut-install/javaeetutorial5/examples/jaxws/simpleclient/.

Figure 16–1 illustrates how JAX-WS technology manages communication between a web
service and client.

The starting point for developing a JAX-WS web service is a Java class annotated with the
javax.jws.WebService annotation. The @WebService annotation defines the class as a web
service endpoint.

A service endpoint interface or service endpoint implementation (SEI) is a Java interface or class,
respectively, that declares the methods that a client can invoke on the service. An interface is not
required when building a JAX-WS endpoint. The web service implementation class implicitly
defines an SEI.

Client

JAX-WS runtime

Service

JAX-WS runtimeSOAP message

FIGURE 16–1 Communication between a JAX-WS Web Service and a Client

Setting the Port

The Java EE 5 Tutorial • October 2008482

You may specify an explicit interface by adding the endpointInterface element to the
@WebService annotation in the implementation class. You must then provide an interface that
defines the public methods made available in the endpoint implementation class.

You use the endpoint implementation class and the wsgen tool to generate the web service
artifacts that connect a web service client to the JAX-WS runtime. For reference documentation
on wsgen, see the Sun Java System Application Server 9.1 Reference Manual.

Together, the wsgen tool and the Application Server provide the Application Server’s
implementation of JAX-WS.

These are the basic steps for creating the web service and client:

1. Code the implementation class.
2. Compile the implementation class.
3. Use wsgen to generate the artifacts required to deploy the service.
4. Package the files into a WAR file.
5. Deploy the WAR file. The web service artifacts (which are used to communicate with

clients) are generated by the Application Server during deployment.
6. Code the client class.
7. Use wsimport to generate and compile the web service artifacts needed to connect to the

service.
8. Compile the client class.
9. Run the client.

The sections that follow cover these steps in greater detail.

Requirements of a JAX-WS Endpoint
JAX-WS endpoints must follow these requirements:

■ The implementing class must be annotated with either the javax.jws.WebService or
javax.jws.WebServiceProvider annotation.

■ The implementing class may explicitly reference an SEI through the endpointInterface
element of the @WebService annotation, but is not required to do so. If no
endpointInterface is specified in @WebService, an SEI is implicitly defined for the
implementing class.

■ The business methods of the implementing class must be public, and must not be declared
static or final.

■ Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

Creating a Simple Web Service and Client with JAX-WS

Chapter 16 • Building Web Services with JAX-WS 483

http://docs.sun.com/doc/819-3675

■ Business methods that are exposed to web service clients must have JAXB-compatible
parameters and return types. See “Default Data Type Bindings” on page 495.

■ The implementing class must not be declared final and must not be abstract.
■ The implementing class must have a default public constructor.
■ The implementing class must not define the finalize method.
■ The implementing class may use the javax.annotation.PostConstruct or

javax.annotation.PreDestroy annotations on its methods for life cycle event callbacks.
The @PostConstruct method is called by the container before the implementing class
begins responding to web service clients.
The @PreDestroy method is called by the container before the endpoint is removed from
operation.

Coding the Service Endpoint Implementation Class
In this example, the implementation class, Hello, is annotated as a web service endpoint using
the @WebService annotation. Hello declares a single method named sayHello, annotated with
the @WebMethod annotation. @WebMethod exposes the annotated method to web service clients.
sayHello returns a greeting to the client, using the name passed to sayHello to compose the
greeting. The implementation class also must define a default, public, no-argument
constructor.

package helloservice.endpoint;

import javax.jws.WebService;

@WebService

public class Hello {

private String message = new String("Hello, ");

public void Hello() {}

@WebMethod

public String sayHello(String name) {

return message + name + ".";
}

}

Building, Packaging, and Deploying the Service
You can build, package, and deploy the helloservice application using either NetBeans IDE or
ant.

Creating a Simple Web Service and Client with JAX-WS

The Java EE 5 Tutorial • October 2008484

Building, Packaging, and Deploying the Service Using NetBeans IDE
Follow these instructions to build, package, and deploy the helloservice example to your
Application Server instance using the NetBeans IDE IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxws/.
3. Select the helloservice folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the helloservice project and select Undeploy and Deploy.

This builds and packages to application into helloservice.war, located in
tut-install/javaeetutorial5/examples/jaxws/helloservice/dist/, and deploys this WAR
file to your Application Server instance.

Building, Packaging, and Deploying the Service Using Ant
To build and package helloservice using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxws/helloservice/ directory and type the
following:

ant

This command calls the default target, which builds and packages the application into an
WAR file, helloservice.war, located in the dist directory.

To deploy the helloservice example, follow these steps:

1. In a terminal window, go to
tut-install/javaeetutorial5/examples/jaxws/helloservice/.

2. Make sure the Application Server is started.
3. Run ant deploy.

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/hello?WSDL in a web browser. Now you are ready to
create a client that accesses this service.

Undeploying the Service

At this point in the tutorial, do not undeploy the service. When you are finished with this
example, you can undeploy the service by typing this command:

ant undeploy

Creating a Simple Web Service and Client with JAX-WS

Chapter 16 • Building Web Services with JAX-WS 485

The all Task

As a convenience, the all task will build, package, and deploy the application. To do this, enter
the following command:

ant all

Testing the Service without a Client
The Application Server Admin Console allows you to test the methods of a web service
endpoint. To test the sayHello method of HelloService, do the following:

1. Open the Admin Console by typing the following URL in a web browser:

http://localhost:4848/

2. Enter the admin user name and password to log in to the Admin Console.

3. Click Web Services in the left pane of the Admin Console.

4. Click Hello.

5. Click Test.

6. Under Methods, enter a name as the parameter to the sayHello method.

7. Click the sayHello button.

This will take you to the sayHello Method invocation page.

8. Under Method returned, you’ll see the response from the endpoint.

A Simple JAX-WS Client
HelloClient is a stand-alone Java program that accesses the sayHello method of
HelloService. It makes this call through a port, a local object that acts as a proxy for the remote
service. The port is created at development time by the wsimport tool, which generates JAX-WS
portable artifacts based on a WSDL file.

Creating a Simple Web Service and Client with JAX-WS

The Java EE 5 Tutorial • October 2008486

Coding the Client
When invoking the remote methods on the port, the client performs these steps:

1. Uses the javax.xml.ws.WebServiceRef annotation to declare a reference to a web service.
@WebServiceRef uses the wsdlLocation element to specify the URI of the deployed service’s
WSDL file.

@WebServiceRef(wsdlLocation="http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

2. Retrieves a proxy to the service, also known as a port, by invoking getHelloPort on the
service.

Hello port = service.getHelloPort();

The port implements the SEI defined by the service.
3. Invokes the port’s sayHello method, passing to the service a name.

String response = port.sayHello(name);

Here is the full source of HelloClient, which is located in the
tut-install/javaeetutorial5/examples/jaxws/simpleclient/src/java/ directory.

package simpleclient;

import javax.xml.ws.WebServiceRef;

import helloservice.endpoint.HelloService;

import helloservice.endpoint.Hello;

public class HelloClient {

@WebServiceRef(wsdlLocation="http://localhost:8080/
helloservice/hello?wsdl")

static HelloService service;

public static void main(String[] args) {

try {

HelloClient client = new HelloClient();

client.doTest(args);

} catch(Exception e) {

e.printStackTrace();

}

}

public void doTest(String[] args) {

try {

System.out.println("Retrieving the port from

the following service: " + service);

Hello port = service.getHelloPort();

Creating a Simple Web Service and Client with JAX-WS

Chapter 16 • Building Web Services with JAX-WS 487

System.out.println("Invoking the sayHello operation

on the port.");

String name;

if (args.length > 0) {

name = args[0];

} else {

name = "No Name";
}

String response = port.sayHello(name);

System.out.println(response);

} catch(Exception e) {

e.printStackTrace();

}

}

}

Building and Running the Client
You can build and run the simpleclient application using either NetBeans IDE or ant. To
build the client, you must first have deployed helloservice, as described in “Building,
Packaging, and Deploying the Service” on page 484.

Building and Running the Client in NetBeans IDE

Do the following to build and run simpleclient:

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxws/.
3. Select the simpleclient folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the simpleclient project and select Run.

You will see the output of the application client in the Output pane.

Building and Running the Client Using Ant

In a terminal navigate to tut-install/examples/jaxws/simpleclient/ and type the following
command:

ant

This command calls the default target, which builds and packages the application into a JAR
file, simpleclient.jar, located in the dist directory.

Creating a Simple Web Service and Client with JAX-WS

The Java EE 5 Tutorial • October 2008488

The run the client, type the following command:

ant run

Types Supported by JAX-WS
JAX-WS delegates the mapping of Java programming language types to and from XML
definitions to JAXB. Application developers don’t need to know the details of these mappings,
but they should be aware that not every class in the Java language can be used as a method
parameter or return type in JAX-WS. For information on which types are supported by JAXB,
see Chapter 17, “Binding between XML Schema and Java Classes.”

Web Services Interoperability and JAX-WS
JAX-WS 2.0 supports the Web Services Interoperability (WS-I) Basic Profile Version 1.1. The
WS-I Basic Profile is a document that clarifies the SOAP 1.1 and WSDL 1.1 specifications to
promote SOAP interoperability. For links related to WS-I, see “Further Information about
JAX-WS” on page 489.

To support WS-I Basic Profile Version 1.1, the JAX-WS runtime supports doc/literal and
rpc/literal encodings for services, static ports, dynamic proxies, and DII.

Further Information about JAX-WS
For more information about JAX-WS and related technologies, see:

■ Java API for XML Web Services 2.0 specification
https://jax-ws.dev.java.net/spec-download.html

■ JAX-WS home
https://jax-ws.dev.java.net/

■ Simple Object Access Protocol (SOAP) 1.2 W3C Note
http://www.w3.org/TR/SOAP/

■ Web Services Description Language (WSDL) 1.1 W3C Note
http://www.w3.org/TR/wsdl

■ WS-I Basic Profile 1.1
http://www.ws-i.org

Further Information about JAX-WS

Chapter 16 • Building Web Services with JAX-WS 489

https://jax-ws.dev.java.net/spec-download.html
https://jax-ws.dev.java.net/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

490

Binding between XML Schema and Java Classes

The JavaTM Architecture for XML Binding (JAXB) provides a fast and convenient way to bind
between XML schemas and Java representations, making it easy for Java developers to
incorporate XML data and processing functions in Java applications. As part of this process,
JAXB provides methods for unmarshalling XML instance documents into Java content trees,
and then marshalling Java content trees back into XML instance documents. JAXB also
provides a way to generate XML schema from Java objects.

JAXB 2.0 includes several important improvements to JAXB 1.0:

■ Support for all W3C XML Schema features. (JAXB 1.0 did not specify bindings for some of
the W3C XML Schema features.)

■ Support for binding Java-to-XML, with the addition of the javax.xml.bind.annotation
package to control this binding. (JAXB 1.0 specified the mapping of XML Schema-to-Java,
but not Java-to-XML Schema.)

■ A significant reduction in the number of generated schema-derived classes.
■ Additional validation capabilities through the JAXP 1.3 validation APIs.
■ Smaller runtime libraries.

This chapter describes the JAXB architecture, functions, and core concepts, and provides
examples with step-by-step procedures for using JAXB.

JAXB Architecture
This section describes the components and interactions in the JAXB processing model.

17C H A P T E R 1 7

491

Architectural Overview
Figure 17–1 shows the components that make up a JAXB implementation.

A JAXB implementation consists of the following architectural components:

■ Schema compiler: Binds a source schema to a set of schema-derived program elements. The
binding is described by an XML-based binding language.

■ Schema generator: Maps a set of existing program elements to a derived schema. The
mapping is described by program annotations.

■ Binding runtime framework: Provides unmarshalling (reading) and marshalling (writing)
operations for accessing, manipulating, and validating XML content using either
schema-derived or existing program elements.

The JAXB Binding Process
Figure 17–2 shows what occurs during the JAXB binding process.

Schema
Generator

Portable
JAXB-annotated

classes
Schema

XML/Java
Customization

Binding
Declarations

Schema
Compiler

Application Code

Package
javax.xml.bind

Object
Factory

Annotation-driven
Binding

Framework
Implementation

Application

Schema to Java

Java to Schema

FIGURE 17–1 JAXB Architectural Overview

JAXB Architecture

The Java EE 5 Tutorial • October 2008492

The general steps in the JAXB data binding process are:

1. Generate classes: An XML schema is used as input to the JAXB binding compiler to
generate JAXB classes based on that schema.

2. Compile classes: All of the generated classes, source files, and application code must be
compiled.

3. Unmarshal: XML documents written according to the constraints in the source schema are
unmarshalled by the JAXB binding framework. Note that JAXB also supports unmarshalling
XML data from sources other than files/documents, such as DOM nodes, string buffers,
SAX Sources, and so forth.

4. Generate content tree: The unmarshalling process generates a content tree of data objects
instantiated from the generated JAXB classes; this content tree represents the structure and
content of the source XML documents.

5. Validate (optional): The unmarshalling process optionally involves validation of the source
XML documents before generating the content tree. Note that if you modify the content tree
in Step 6, below, you can also use the JAXB Validate operation to validate the changes before
marshalling the content back to an XML document.

6. Process content: The client application can modify the XML data represented by the Java
content tree by means of interfaces generated by the binding compiler.

7. Marshal: The processed content tree is marshalled out to one or more XML output
documents. The content may be validated before marshalling.

bindSchema
JAXB

mapped
classes

Document Objects

unmarshal
(validate)

marshal
(validate)

instances offollows

FIGURE 17–2 Steps in the JAXB Binding Process

JAXB Architecture

Chapter 17 • Binding between XML Schema and Java Classes 493

More about Unmarshalling
Unmarshalling provides a client application the ability to convert XML data into JAXB-derived
Java objects.

More about Marshalling
Marshalling provides a client application the ability to convert a JAXB-derived Java object tree
back into XML data.

By default, the Marshaller uses UTF-8 encoding when generating XML data.

Client applications are not required to validate the Java content tree before marshalling. There
is also no requirement that the Java content tree be valid with respect to its original schema to
marshal it back into XML data.

More about Validation
Validation is the process of verifying that an XML document meets all the constraints expressed
in the schema. JAXB 1.0 provided validation at unmarshal time and also enabled on-demand
validation on a JAXB content tree. JAXB 2.0 only allows validation at unmarshal and marshal
time. A web service processing model is to be lax in reading in data and strict on writing it out.
To meet that model, validation was added to marshal time so one could confirm that they did
not invalidate the XML document when modifying the document in JAXB form.

Representing XML Content
This section describes how JAXB represents XML content as Java objects.

Java Representation of XML Schema
JAXB supports the grouping of generated classes in Java packages. A package consists of the
following:

■ A Java class name that is derived from the XML element name, or specified by a binding
customization.

■ An ObjectFactory class, which is a factory that is used to return instances of a bound Java
class.

Representing XML Content

The Java EE 5 Tutorial • October 2008494

Binding XML Schemas
This section describes the default XML-to-Java bindings used by JAXB. All of these bindings
can be overridden on global or case-by-case levels by means of a custom binding declaration.
See the JAXB Specification (http://java.sun.com/xml/downloads/jaxb.html) for complete
information about the default JAXB bindings.

Simple Type Definitions
A schema component using a simple type definition typically binds to a Java property. Since
there are different kinds of such schema components, the following Java property attributes
(common to the schema components) include:

■ Base type
■ Collection type, if any
■ Predicate

The rest of the Java property attributes are specified in the schema component using the simple
type definition.

Default Data Type Bindings
The following sections explain the default schema-to-Java, JAXBElement, and Java-to-schema
data type bindings.

Schema-to-Java Mapping
The Java language provides a richer set of data type than XML schema. Table 17–1 lists the
mapping of XML data types to Java data types in JAXB.

TABLE 17–1 JAXB Mapping of XML Schema Built-in Data Types

XML Schema Type Java Data Type

xsd:string java.lang.String

xsd:integer java.math.BigInteger

xsd:int int

xsd.long long

xsd:short short

xsd:decimal java.math.BigDecimal

Binding XML Schemas

Chapter 17 • Binding between XML Schema and Java Classes 495

http://java.sun.com/xml/downloads/jaxb.html

TABLE 17–1 JAXB Mapping of XML Schema Built-in Data Types (Continued)
XML Schema Type Java Data Type

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName

xsd:dateTime javax.xml.datatype.XMLGregorianCalendar

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

xsd:time javax.xml.datatype.XMLGregorianCalendar

xsd:date javax.xml.datatype.XMLGregorianCalendar

xsd:g javax.xml.datatype.XMLGregorianCalendar

xsd:anySimpleType java.lang.Object

xsd:anySimpleType java.lang.String

xsd:duration javax.xml.datatype.Duration

xsd:NOTATION javax.xml.namespace.QName

JAXBElementObject
When XML element information can not be inferred by the derived Java representation of the
XML content, a JAXBElement object is provided. This object has methods for getting and setting
the object name and object value.

Java-to-Schema Mapping
Table 17–2 shows the default mapping of Java classes to XML data types.

TABLE 17–2 JAXB Mapping of XML Data Types to Java Classes

Java Class XML Data Type

java.lang.String xs:string

Binding XML Schemas

The Java EE 5 Tutorial • October 2008496

TABLE 17–2 JAXB Mapping of XML Data Types to Java Classes (Continued)
Java Class XML Data Type

java.math.BigInteger xs:integer

java.math.BigDecimal xs:decimal

java.util.Calendar xs:dateTime

java.util.Date xs:dateTime

javax.xml.namespace.QName xs:QName

java.net.URI xs:string

javax.xml.datatype.XMLGregorianCalendar xs:anySimpleType

javax.xml.datatype.Duration xs:duration

java.lang.Object xs:anyType

java.awt.Image xs:base64Binary

javax.activation.DataHandler xs:base64Binary

javax.xml.transform.Source xs:base64Binary

java.util.UUID xs:string

Customizing Generated Classes and Java Program Elements
The following sections explain how to customize generated JAXB classes and Java program
elements.

Schema-to-Java
Custom JAXB binding declarations allow you to customize your generated JAXB classes beyond
the XML-specific constraints in an XML schema to include Java-specific refinements, such as
class and package name mappings.

JAXB provides two ways to customize an XML schema:

■ As inline annotations in a source XML schema
■ As declarations in an external binding customization file that is passed to the JAXB binding

compiler

Code examples that show how to customize JAXB bindings are provided later in this chapter.

Customizing Generated Classes and Java Program Elements

Chapter 17 • Binding between XML Schema and Java Classes 497

Java-to-Schema
The JAXB annotations defined in the javax.xml.bind.annotations package can be used to
customize Java program elements to XML schema mapping. Table 17–3 summarizes the JAXB
annotations that can be used with a Java package.

TABLE 17–3 JAXB Annotations Associated with a Java Package

Annotation Description and Default Setting

@XmlSchema Maps a package to an XML target namespace. Default Settings:

@XmlSchema (

xmlns = {},

namespace = "",
elementFormDefault = XmlNsForm.UNSET,

attributeFormDefault = XmlNsForm.UNSET

)

@XmlAccessorType Controls default serialization of fields and properties. Default Settings:

@XmlAccessorType (

value = AccessType.PUBLIC_MEMBER

)

@XmlAccessorOrder Controls the default ordering of properties and fields mapped to XML elements.
Default Settings:

@XmlAccessorOrder (

value = AccessorOrder.UNDEFINED

)

@XmlSchemaType Allows a customized mapping to an XML Schema built-in type. Default Settings:

@XmlSchemaType (

namespace = "http://www.w3.org/2001/XMLSchema",
type = DEFAULT.class

)

@XmlSchemaTypes A container annotation for defining multiple @XmlSchemaType annotations. Default
Settings:

None

Table 17–4 summarizes JAXB annotations that can be used with a Java class.

Customizing Generated Classes and Java Program Elements

The Java EE 5 Tutorial • October 2008498

TABLE 17–4 JAXB Annotations Associated with a Java Class

Annotation Description and Default Setting

@XmlType Maps a Java class to a schema type. Default Settings:

@XmlType (

name = "##default",
propOrder = {""},
namespace = "##default",
factoryClass = DEFAULT.class,

factoryMethod = ""
)

@XmlRootElement Associates a global element with the schema type to which the class is mapped. Default
Settings:

@XmlRootElement (

name = "##default",
namespace = "##default"

)

Table 17–5 summarizes JAXB annotations that can be used with a Java enum type.

TABLE 17–5 JAXB Annotations Associated with a Java enumType

Annotation Description and Default Setting

@XmlEnum Maps a Java type to an XML simple type. Default Settings:

@XmlEnum (value = String.class)

@XmlEnumValue Maps a Java type to an XML simple type. Default Settings:

None

@XmlType Maps a Java class to a schema type. Default Settings:

@XmlType (

name = "##default",
propOrder = {""},
namespace = "##default",
factoryClass = DEFAULT.class,

factoryMethod = ""
)

Customizing Generated Classes and Java Program Elements

Chapter 17 • Binding between XML Schema and Java Classes 499

TABLE 17–5 JAXB Annotations Associated with a Java enumType (Continued)
Annotation Description and Default Setting

@XmlRootElement Associates a global element with the schema type to which the class is mapped. Default
Settings:

@XmlRootElement (

name = "##default",
namespace = "##default"

)

Table 17–6 summarizes JAXB annotations that can be used with Java properties and fields.

TABLE 17–6 JAXB Annotations Associated with Java Properties and Fields

Annotation Description and Default Setting

@XmlElement Maps a JavaBeans property/field to an XML element derived from a property/field
name. Default Settings:

@XmlElement (

name = "##default",
nillable = false,

namespace = "##default",
type = DEFAULT.class,

defaultValue = "\u0000"
)

@XmlElements A container annotation for defining multiple @XmlElement annotations. Default
Settings:

None

@XmlElementRef Maps a JavaBeans property/field to an XML element derived from a
property/field’s type. Default Settings:

@XmlElementRef (

name = "##default",
namespace = "##default",
type = DEFAULT.class

)

@XmlElementRefs A container annotation for defining multiple @XmlElementRef annotations.
Default Settings:

None

Customizing Generated Classes and Java Program Elements

The Java EE 5 Tutorial • October 2008500

TABLE 17–6 JAXB Annotations Associated with Java Properties and Fields (Continued)
Annotation Description and Default Setting

@XmlElementWrapper Generates a wrapper element around an XML representation. Typically a wrapper
XML element around collections. Default Settings:

@XmlElementWrapper (

name = "##default",
namespace = "##default",
nillable = false

)

@XmlAnyElement Maps a JavaBeans property to an XML infoset representation and/or JAXB
element. Default Settings:

@XmlAnyElement (

lax = false,

value = W3CDomHandler.class

)

@XmlAttribute Maps a JavaBeans property to an XML attribute. Default Settings:

@XmlAttribute (

name = ##default,

required = false,

namespace = "##default"
)

@XmlAnyAttribute Maps a JavaBeans property to a map of wildcard attributes. Default Settings:

None

@XmlTransient Prevents the mapping of a JavaBeans property to an XML representation. Default
Settings:

None

@XmlValue Defines mapping of a class to an XML Schema complex type with a
simpleContent or an XML Schema simple type. Default Settings:

None

@XmlID Maps a JavaBeans property to an XML ID. Default Settings:

None

@XmlIDREF Maps a JavaBeans property to an XML IDREF. Default Settings:

None

@XmlList Maps a property to a list simple type. Default Settings:

None

Customizing Generated Classes and Java Program Elements

Chapter 17 • Binding between XML Schema and Java Classes 501

TABLE 17–6 JAXB Annotations Associated with Java Properties and Fields (Continued)
Annotation Description and Default Setting

@XmlMixed Marks a JavaBeans multi-valued property to support mixed content. Default
Settings:

None

@XmlMimeType Associates the MIME type that controls the XML representation of the property.
Default Settings:

None

@XmlAttachmentRef Marks a field/property that its XML form is a URI reference to mime content.
Default Settings:

None

@XmlInlineBinaryData Disables consideration of XOP encoding for data types that are bound to
base64-encoded binary data in XML. Default Settings:

None

Table 17–7 summarizes the JAXB annotation that can be used with object factories.

TABLE 17–7 JAXB Annotations Associated with Object Factories

Annotation Description and Default Setting

@XmlElementDecl Maps a factory method to an XML element. Default Settings:

@XmlElementDecl (

scope = GLOBAL.class,

namespace = "##default",
substitutionHeadNamespace = "##default",
substitutionHeadName = ""

)

Table 17–8 summarizes JAXB annotations that can be used with adapters.

TABLE 17–8 JAXB Annotations Associated with Adapters

Annotation Description and Default Setting

@XmlJavaTypeAdapter Use the adapter that implements the @XmlAdapter annotation for custom
marshalling. Default Settings:

@XmlJavaTypeAdapter (type = DEFAULT.class)

Customizing Generated Classes and Java Program Elements

The Java EE 5 Tutorial • October 2008502

TABLE 17–8 JAXB Annotations Associated with Adapters (Continued)
Annotation Description and Default Setting

@XmlJavaTypeAdapters A container annotation for defining multiple @XmlJavaTypeAdapter
annotations at the package level. Default Settings:

None

JAXB Examples
The sections that follow provide instructions for using the example Java applications that are
included in the tut-install/javaeetutorial5/examples/jaxb/ directory. These examples
demonstrate and build upon key JAXB features and concepts. Follow these procedures in the
order presented.

After reading this section, you should feel comfortable enough with JAXB that you can:

■ Generate JAXB Java classes from an XML schema
■ Use schema-derived JAXB classes to unmarshal and marshal XML content in a Java

application
■ Create a Java content tree from scratch using schema-derived JAXB classes
■ Validate XML content during unmarshalling and at runtime
■ Customize JAXB schema-to-Java bindings

This chapter describes three sets of examples:

■ The Basic examples (Modify Marshal, Unmarshal Validate) demonstrate basic JAXB
concepts like unmarshalling, marshalling, and validating XML content using default
settings and bindings.

■ The Customize examples (Customize Inline, Datatype Converter, External Customize)
demonstrate various ways of customizing the default binding of XML schemas to Java
objects.

■ The Java-to-Schema examples show how to use annotations to map Java classes to XML
schema.

Note – The Basic and Customize examples are based on a Purchase Order scenario. Each uses
an XML document, po.xml, written against an XML schema, po.xsd. These documents are
derived from the W3C XML Schema Part 0: Primer
(http://www.w3.org/TR/xmlschema-0/), edited by David C. Fallside.

JAXB Examples

Chapter 17 • Binding between XML Schema and Java Classes 503

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

The Basic and Customize example directories contain several base files:

■ po.xsd is the XML schema you will use as input to the JAXB binding compiler, and from
which schema-derived JAXB Java classes will be generated. For the Customize Inline and
Datatype Converter examples, this file contains inline binding customizations.

■ po.xml is the Purchase Order XML file containing sample XML content, and is the file you
will unmarshal into a Java content tree in each example. This file is almost exactly the same
in each example, with minor content differences to highlight different JAXB concepts.

■ Main.java is the main Java class for each example.
■ build.xml is an Ant project file provided for your convenience. Use the Ant tool to

generate, compile, and run the schema-derived JAXB classes automatically. The build.xml
file varies across the examples.

■ MyDatatypeConverter.java in the inline-customize example is a Java class used to
provide custom data type conversions.

■ binding.xjb in the External Customize example is an external binding declarations file that
is passed to the JAXB binding compiler to customize the default JAXB bindings.

Table 17–9, Table 17–10, and Table 17–11 briefly describe the Basic, Customize, and
Java-to-Schema JAXB examples.

TABLE 17–9 Basic JAXB Examples

Example Name Description

“Modify Marshal Example” on
page 513

Demonstrates how to modify a Java content tree.

“Unmarshal Validate Example”
on page 514

Demonstrates how to enable validation during unmarshalling.

TABLE 17–10 Customize JAXB Examples

Example Name Description

“Customize Inline Example” on
page 528

Demonstrates how to customize the default JAXB bindings by using inline
annotations in an XML schema.

“Datatype Converter Example”
on page 533

Similar to the Customize Inline example, this example illustrates alternate,
more terse bindings of XML simpleType definitions to Java data types.

“External Customize Example”
on page 538

Illustrates how to use an external binding declarations file to pass binding
customizations for a read-only schema to the JAXB binding compiler.

JAXB Examples

The Java EE 5 Tutorial • October 2008504

TABLE 17–11 Java-to-Schema JAXB Examples

Example Name Description

“Create Marshal Example” on
page 539

Illustrates how to marshal and unmarshal JAXB-annotated classes to
XML schema. The example also shows how to enable JAXP 1.3 validation
at unmarshal time using a schema file that was generated from the JAXB
mapped classes.

“XmlAccessorOrder Example” on
page 540

Illustrates how to use the @XmlAccessorOrder and @XmlType.propOrder

mapping annotations in Java classes to control the order in which XML
content is marshalled/unmarshalled by a Java type.

“XmlAdapter Field Example” on
page 542

Illustrates how to use the interface XmlAdapter and the annotation
@XmlJavaTypeAdapter to provide a a custom mapping of XML content
into and out of a HashMap (field) that uses an int as the key and a String
as the value.

“XmlAttribute Field Example” on
page 545

Illustrates how to use the annotation @XmlAttribute to define a property
or field to be handled as an XML attribute.

“XmlRootElement Example” on
page 546

Illustrates how to use the annotation @XmlRootElement to define an XML
element name for the XML schema type of the corresponding class.

“XmlSchemaType Class Example”
on page 547

Illustrates how to use the annotation @XmlSchemaType to customize the
mapping of a property or field to an XML built-in type.

“XmlType Example” on page 548 Illustrates how to use the annotation @XmlType to map a class or enum type
to an XML schema type.

JAXB Compiler Options
The JAXB XJC schema binding compiler transforms, or binds, a source XML schema to a set of
JAXB content classes in the Java programming language. The compiler, xjc, is provided in two
flavors in the Application Server: xjc.sh (Solaris/Linux) and xjc.bat (Windows). Both xjc.sh

and xjc.bat take the same command-line options. You can display quick usage instructions by
invoking the scripts without any options, or with the -help switch. The syntax is as follows:

xjc [-options ...] schema

The xjc command line options are as follows:

-nv Do not perform strict validation of the input schema or schemas. By
default, xjc performs strict validation of the source schema before
processing. Note that this does not mean the binding compiler will not
perform any validation; it simply means that it will perform less-strict
validation.

JAXB Examples

Chapter 17 • Binding between XML Schema and Java Classes 505

-extension By default, the XJC binding compiler strictly enforces the rules outlined
in the Compatibility chapter of the JAXB Specification. In the default
(strict) mode, you are also limited to using only the binding
customizations defined in the specification. By using the -extension
switch, you will be allowed to use the JAXB Vendor Extensions.

-b file Specify one or more external binding files to process. (Each binding file
must have its own -b switch.) The syntax of the external binding files is
extremely flexible. You may have a single binding file that contains
customizations for multiple schemas or you can break the
customizations into multiple bindings files. In addition, the ordering of
the schema files and binding files on the command line does not matter.

-d dir By default, xjc will generate Java content classes in the current directory.
Use this option to specify an alternate output directory. The directory
must already exist; xjc will not create it for you.

-p package Specify an alternate output directory. By default, the XJC binding
compiler will generate the Java content classes in the current directory.
The output directory must already exist; the XJC binding compiler will
not create it for you.

-proxy proxy Specify the HTTP/HTTPS proxy. The format is
[user[:password]@]proxyHost[:proxyPort]. The old -host and -port

options are still supported by the Reference Implementation for
backwards compatibility, but they have been deprecated.

-classpath arg Specify where to find client application class files used by the
<jxb:javaType> and <xjc:superClass> customizations.

-catalog file Specify catalog files to resolve external entity references. Supports
TR9401, XCatalog, and OASIS XML Catalog format. For more
information, see the XML Entity and URI Resolvers document or
examine the catalog-resolver sample application.

-readOnly Force the XJC binding compiler to mark the generated Java sources
read-only. By default, the XJC binding compiler does not write-protect
the Java source files it generates.

-npa Suppress the generation of package level annotations into
**/package-info.java. Using this switch causes the generated code to
internalize those annotations into the other generated classes.

-xmlschema Treat input schemas as W3C XML Schema (default). If you do not
specify this switch, your input schemas will be treated as W3C XML
Schema.

-quiet Suppress compiler output, such as progress information and warnings.

JAXB Examples

The Java EE 5 Tutorial • October 2008506

-help Display a brief summary of the compiler switches.

-version Display the compiler version information.

-Xlocator Enable source location support for generated code.

-Xsync-methods Generate accessor methods with the synchronized keyword.

-mark-generated Mark the generated code with the -@javax.annotation.Generated
annotation.

JAXB Schema Generator Option
The JAXB Schema Generator, schemagen, creates a schema file for each namespace referenced
in your Java classes. The schema generator can be launched using the appropriate schemagen
shell script in the bin directory for your platform. The schema generator processes Java source
files only. If your Java sources reference other classes, those sources must be accessible from
your system CLASSPATH environment variable, otherwise errors will occur when the schema
is generated. There is no way to control the name of the generated schema files.

You can display quick usage instructions by invoking the scripts without any options, or with
the -help option. The syntax is as follows:

schemagen [-d path] [java-source-files]

The -d path option specifies the location of the processor- and javac-generated class files.

About the Schema-to-Java Bindings
When you run the JAXB binding compiler against the po.xsd XML schema used in the basic
examples (Unmarshal Read, Modify Marshal, Unmarshal Validate), the JAXB binding compiler
generates a Java package named primer.po containing 11 classes, making a total of 12 classes in
each of the basic examples, as described in Table 17–12.

TABLE 17–12 Schema-Derived JAXB Classes in the Basic Examples

Class Description

primer/po/Comment.java Public interface extending javax.xml.bind.Element;
binds to the global schema element named comment.
Note that JAXB generates element interfaces for all global
element declarations.

primer/po/Items.java Public interface that binds to the schema complexType
named Items.

JAXB Examples

Chapter 17 • Binding between XML Schema and Java Classes 507

TABLE 17–12 Schema-Derived JAXB Classes in the Basic Examples (Continued)
Class Description

primer/po/ObjectFactory.java Public class extending
com.sun.xml.bind.DefaultJAXBContextImpl; used to
create instances of specified interfaces. For example, the
ObjectFactory createComment() method instantiates a
Comment object.

primer/po/PurchaseOrder.java Public interface extending javax.xml.bind.Element,
and PurchaseOrderType; binds to the global schema
element named PurchaseOrder.

primer/po/PurchaseOrderType.java Public interface that binds to the schema complexType
named PurchaseOrderType.

primer/po/USAddress.java Public interface that binds to the schema complexType
named USAddress.

primer/po/impl/CommentImpl.java Implementation of Comment.java

primer/po/impl/ItemsImpl.java Implementation of Items.java

primer/po/impl/PurchaseOrderImpl.java Implementation of PurchaseOrder.java

primer/po/impl/PurchaseOrderTypeImpl.java Implementation of PurchaseOrderType.java

primer/po/impl/USAddressImpl.java Implementation of USAddress.java

Note – You should never directly use the generated implementation classes (*Impl.java in the
packagename/impl/ directory). These classes cannot be referenced directly because the class
names in this directory are not standardized by the JAXB specification. The ObjectFactory
method is the only portable means to create an instance of a schema-derived interface. There is
also an ObjectFactory.newInstance(Class JAXBinterface) method that enables you to
create instances of interfaces.

These classes and their specific bindings to the source XML schema for the basic examples are
described in Table 17–13. .

TABLE 17–13 Schema-to-Java Bindings for the Basic Examples

XML Schema JAXB Binding

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/> PurchaseOrder.java

<xsd:element name="comment" type="xsd:string"/> Comment.java

JAXB Examples

The Java EE 5 Tutorial • October 2008508

TABLE 17–13 Schema-to-Java Bindings for the Basic Examples (Continued)
XML Schema JAXB Binding

<xsd:complexType name="PurchaseOrderType">
<xsd:sequence>

<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>
</xsd:sequence>

<xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

PurchaseOrderType.java

<xsd:complexType name="USAddress">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>
</xsd:sequence>

<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

USAddress.java

<xsd:complexType name="Items">
<xsd:sequence>

<xsd:element name="item" minOccurs="1" maxOccurs="unbounded">

Items.java

<xsd:complexType>

<xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity">
<xsd:simpleType>

<xsd:restriction base="xsd:positiveInteger">
<xsd:maxExclusive value="100"/>
</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
</xsd:sequence>

<xsd:attribute name="partNum" type="SKU" use="required"/>
</xsd:complexType>

Items.ItemType

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->

JAXB Examples

Chapter 17 • Binding between XML Schema and Java Classes 509

TABLE 17–13 Schema-to-Java Bindings for the Basic Examples (Continued)
XML Schema JAXB Binding

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Schema-Derived JAXB Classes
The sections that follow briefly explain the functions of the following individual classes
generated by the JAXB binding compiler for the Basic examples:
■ “Comment Class” on page 510
■ “Items Class” on page 510
■ “ObjectFactory Class” on page 511
■ “PurchaseOrder Class” on page 511
■ “PurchaseOrderType Class” on page 512
■ “USAddress Class” on page 512

CommentClass
In Comment.java:
■ The Comment class is part of the primer.po package.
■ Comment is a public interface that extends javax.xml.bind.Element.
■ Content in instantiations of this class binds to the XML schema element named comment.
■ The getValue() and setValue() methods are used to get and set strings representing XML

comment elements in the Java content tree.

ItemsClass
In Items.java:
■ The Items class is part of the primer.po package.
■ The class provides public interfaces for Items and ItemType.
■ Content in instantiations of this class binds to the XML ComplexTypes Items and its child

element ItemType.
■ Item provides the getItem() method.
■ ItemType provides methods for:

■ getPartNum();

JAXB Examples

The Java EE 5 Tutorial • October 2008510

■ setPartNum(String value);

■ getComment();

■ setComment(java.lang.String value);

■ getUSPrice();

■ setUSPrice(java.math.BigDecimal value);

■ getProductName();

■ setProductName(String value);

■ getShipDate();

■ setShipDate(java.util.Calendar value);

■ getQuantity();

■ setQuantity(java.math.BigInteger value);

ObjectFactoryClass
In ObjectFactory.java:

■ The ObjectFactory class is part of the primer.po package.
■ ObjectFactory provides factory methods for instantiating Java interfaces representing

XML content in the Java content tree.
■ Method names are generated by concatenating:

■ The string constant create.
■ If the Java content interface is nested within another interface, then the concatenation of

all outer Java class names.
■ The name of the Java content interface.

For example, in this case, for the Java interface primer.po.Items.ItemType,
ObjectFactory creates the method createItemsItemType().

PurchaseOrderClass
In PurchaseOrder.java:

■ The PurchaseOrder class is part of the primer.po package.
■ PurchaseOrder is a public interface that extends javax.xml.bind.Element and

primer.po.PurchaseOrderType.
■ Content in instantiations of this class binds to the XML schema element named

purchaseOrder.

JAXB Examples

Chapter 17 • Binding between XML Schema and Java Classes 511

PurchaseOrderTypeClass
In PurchaseOrderType.java:

■ The PurchaseOrderType class is part of the primer.po package.
■ Content in instantiations of this class binds to the XML schema child element named

PurchaseOrderType.
■ PurchaseOrderType is a public interface that provides the following methods:

■ getItems();

■ setItems(primer.po.Items value);

■ getOrderDate();

■ setOrderDate(java.util.Calendar value);

■ getComment();

■ setComment(java.lang.String value);

■ getBillTo();

■ setBillTo(primer.po.USAddress value);

■ getShipTo();

■ setShipTo(primer.po.USAddress value);

USAddressClass
In USAddress.java:

■ The USAddress class is part of the primer.po package.
■ Content in instantiations of this class binds to the XML schema element named USAddress.
■ USAddress is a public interface that provides the following methods:

■ getState();

■ setState(String value);

■ getZip();

■ setZip(java.math.BigDecimal value);

■ getCountry();

■ setCountry(String value);

■ getCity();

■ setCity(String value);

■ getStreet();

■ setStreet(String value);

■ getName();

■ setName(String value);

JAXB Examples

The Java EE 5 Tutorial • October 2008512

Basic JAXB Examples
This section describes the Basic examples (Modify Marshal, Unmarshal Validate) that
demonstrate how to:
■ Unmarshal an XML document into a Java content tree and access the data contained within

it
■ Modify a Java content tree
■ Use the ObjectFactory class to create a Java content tree from scratch and then marshal it

to XML data
■ Perform validation during unmarshalling
■ Validate a Java content tree at runtime

Modify Marshal Example
The Modify Marshal example demonstrates how to modify a Java content tree.

1. The
tut-install/javaeetutorial5/examples/jaxb/modify-marshal/src/modifymarshal/Main.java
class declares imports for three standard Java classes plus four JAXB binding framework
classes and primer.po package:

import java.io.FileInputStream;

import java.io.IOException;

import java.math.BigDecimal;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;

import javax.xml.bind.Marshaller;

import javax.xml.bind.Unmarshaller;

import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created, and po.xml is unmarshalled.

Unmarshaller u = jc.createUnmarshaller();

PurchaseOrder po = (PurchaseOrder)u.unmarshal(new FileInputStream("po.xml"));

4. set methods are used to modify information in the address branch of the content tree.

USAddress address = po.getBillTo();

address.setName("John Bob");

address.setStreet("242 Main Street");

address.setCity("Beverly Hills");

Basic JAXB Examples

Chapter 17 • Binding between XML Schema and Java Classes 513

address.setState("CA");

address.setZip(new BigDecimal("90210"));

5. A Marshaller instance is created, and the updated XML content is marshalled to
system.out. The setProperty API is used to specify output encoding; in this case
formatted (human readable) XML format.

Marshaller m = jc.createMarshaller();

m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);

m.marshal(po, System.out);

Building and Running the Modify Marshal Example Using NetBeans IDE
Follow these instructions to build and run the Modify Marshal example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.
3. Select the modify-marshal folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the modify-marshal project and select Run.

Building and Running the Modify Marshal Example Using Ant
To compile and run the Modify Marshal example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxb/modify-marshal/ directory and type the
following:

ant runapp

Unmarshal Validate Example
The Unmarshal Validate example demonstrates how to enable validation during
unmarshalling. Note that JAXB provides functions for validation during unmarshalling but not
during marshalling. Validation is explained in more detail in “More about Validation” on
page 494.

1. The
tut-install/javaeetutorial5/examples/jaxb/unmarshal-validate/src/unmarshalvalidate/Main.java
class declares imports for three standard Java classes plus seven JAXB binding framework
classes and the primer.po package:

Basic JAXB Examples

The Java EE 5 Tutorial • October 2008514

import java.io.FileInputStream;

import java.io.IOException;

import java.math.BigDecimal;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;

import javax.xml.bind.Marshaller;

import javax.xml.bind.UnmarshalException;

import javax.xml.bind.Unmarshaller;

import javax.xml.bind.ValidationEvent;

import javax.xml.bind.util.ValidationEventCollector;

import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created.

Unmarshaller u = jc.createUnmarshaller();

4. The default JAXB Unmarshaller ValidationEventHandler is enabled to send to validation
warnings and errors to system.out. The default configuration causes the unmarshal
operation to fail upon encountering the first validation error.

u.setValidating(true);

5. An attempt is made to unmarshal po.xml into a Java content tree. For the purposes of this
example, the po.xml contains a deliberate error.

PurchaseOrder po = (PurchaseOrder)u.unmarshal(new FileInputStream("po.xml"));

6. The default validation event handler processes a validation error, generates output to
system.out, and then an exception is thrown.

} catch(UnmarshalException ue) {

System.out.println("Caught UnmarshalException");

} catch(JAXBException je) {

je.printStackTrace();

} catch(IOException ioe) {

ioe.printStackTrace();

}

Building and Running the Unmarshal Validate Example Using
NetBeans IDE
Follow these instructions to build and run the Unmarshal Validate example on your
Application Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.

Basic JAXB Examples

Chapter 17 • Binding between XML Schema and Java Classes 515

3. Select the unmarshal-validate folder.

4. Select the Open as Main Project check box.

5. Click Open Project.

6. Right-click the unmarshal-validate project and select Run.

Building and Running the Unmarshal Validate Example Using Ant
To compile and run the Unmarshal Validate example using Ant, in a terminal window, go to
the tut-install/javaeetutorial5/examples/jaxb/unmarshal-validate/ directory and type
the following:

ant runapp

Customizing JAXB Bindings
The next part of this chapter describes several examples that build on the concepts
demonstrated in the Basic examples.

The goal of this section is to illustrate how to customize JAXB bindings by means of custom
binding declarations made in either of two ways:

■ As annotations made inline in an XML schema
■ As statements in an external file passed to the JAXB binding compiler

Unlike the examples in “Basic JAXB Examples” on page 513, which focus on the Java code in the
respective Main.java class files, the examples here focus on customizations made to the XML
schema before generating the schema-derived Java binding classes.

Note – Although JAXB binding customizations must currently be made by hand, it is envisioned
that a tool/wizard might eventually be written by Sun or a third party to make this process more
automatic. One of the goals of the JAXB technology is to standardize the format of binding
declarations, thereby making it possible to create customization tools and to provide a standard
interchange format between JAXB implementations.

This section just begins to scratch the surface of customizations you can make to JAXB bindings
and validation methods. For more information, refer to the JAXB Specification
(http://jcp.org/en/jsr/detail?id=222).

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008516

http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222

Why Customize?
In most cases, the default bindings generated by the JAXB binding compiler will be sufficient to
meet your needs. There are cases, however, in which you might want to modify the default
bindings. Some of these include:

■ Creating API documentation for the schema-derived JAXB packages, classes, methods and
constants; by adding custom Javadoc tool annotations to your schemas, you can explain
concepts, guidelines, and rules specific to your implementation.

■ Providing semantically meaningful customized names for cases that the default XML
name-to-Java identifier mapping cannot handle automatically; for example:
■ To resolve name collisions (as described in Appendix D.2.1 of the JAXB Specification).

Note that the JAXB binding compiler detects and reports all name conflicts.
■ To provide names for typesafe enumeration constants that are not legal Java identifiers;

for example, enumeration over integer values.
■ To provide better names for the Java representation of unnamed model groups when

they are bound to a Java property or class.
■ To provide more meaningful package names than can be derived by default from the

target namespace URI.
■ Overriding default bindings; for example:

■ Specify that a model group should be bound to a class rather than a list.
■ Specify that a fixed attribute can be bound to a Java constant.
■ Override the specified default binding of XML Schema built-in data types to Java data

types. In some cases, you might want to introduce an alternative Java class that can
represent additional characteristics of the built-in XML Schema data type.

Customization Overview
This section explains some core JAXB customization concepts:

■ Inline and external customizations
■ Scope, inheritance, and precedence
■ Customization syntax
■ Customization namespace prefix

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 517

Inline and External Customizations
Customizations to the default JAXB bindings are made in the form of binding declarations
passed to the JAXB binding compiler. These binding declarations can be made in either of two
ways:
■ As inline annotations in a source XML schema
■ As declarations in an external binding customizations file

For some people, using inline customizations is easier because you can see your customizations
in the context of the schema to which they apply. Conversely, using an external binding
customization file enables you to customize JAXB bindings without having to modify the source
schema, and enables you to easily apply customizations to several schema files at once.

Note – You can combine the two types of customizations. For example, you could include a
reference to an external binding customizations file in an inline annotation. However, you
cannot declare both an inline and external customization on the same schema element.

Each of these types of customization is described in more detail below.

Inline Customizations

Customizations to JAXB bindings made by means of inline binding declarations in an XML
schema file take the form of <xsd:appinfo> elements embedded in schema <xsd:annotation>
elements (xsd: is the XML schema namespace prefix, as defined in W3C XML Schema Part 1:
Structures). The general form for inline customizations is shown below.

<xs:annotation>

<xs:appinfo>

.

.

binding declarations .

.

</xs:appinfo>

</xs:annotation>

Customizations are applied at the location at which they are declared in the schema. For
example, a declaration at the level of a particular element would apply to that element only.
Note that the XMLSchema namespace prefix must be used with the <annotation> and
<appinfo> declaration tags. In the example above, xs: is used as the namespace prefix, so the
declarations are tagged <xs:annotation> and <xs:appinfo>.

External Binding Customization Files

Customizations to JAXB bindings made by means of an external file containing binding
declarations take the general form shown below.

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008518

<jxb:bindings schemaLocation = "xs:anyURI">
<jxb:bindings node = "xs:string">*

<binding declaration>

<jxb:bindings>

</jxb:bindings>

■ schemaLocation is a URI reference to the remote schema.
■ node is an XPath 1.0 expression that identifies the schema node within schemaLocation to

which the given binding declaration is associated.

For example, the first schemaLocation/node declaration in a JAXB binding declarations file
specifies the schema name and the root schema node:

<jxb:bindings schemaLocation="po.xsd" node="/xs:schema">

A subsequent schemaLocation/node declaration, say for a simpleType element named
ZipCodeType in the above schema, would take the form:

<jxb:bindings node="//xs:simpleType[@name=’ZipCodeType’]">

Binding Customization File Format

Binding customization files should be straight ASCII text. The name or extension does not
matter, although a typical extension, used in this chapter, is .xjb.

Passing Customization Files to the JAXB Binding Compiler

Customization files containing binding declarations are passed to the JAXB Binding compiler,
xjc, using the following syntax:

xjc -b file schema

where file is the name of binding customization file, and schema is the name of the schema or
schemas you want to pass to the binding compiler.

You can have a single binding file that contains customizations for multiple schemas, or you can
break the customizations into multiple bindings files; for example:

xjc schema1.xsd schema2.xsd schema3.xsd -b bindings123.xjb

xjc schema1.xsd schema2.xsd schema3.xsd -b bindings1.xjb -b bindings2.xjb -b bindings3.xjb

Note that the ordering of schema files and binding files on the command line does not matter,
although each binding customization file must be preceded by its own -b switch on the
command line.

For more information about xjc compiler options in general, see “JAXB Compiler Options” on
page 505.

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 519

Restrictions for External Binding Customizations
There are several rules that apply to binding declarations made in an external binding
customization file that do not apply to similar declarations made inline in a source schema:

■ The binding customization file must begin with the jxb:bindings version attribute, plus
attributes for the JAXB and XMLSchema namespaces:

<jxb:bindings version="1.0" xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

■ The remote schema to which the binding declaration applies must be identified explicitly in
XPath notation by means of a jxb:bindings declaration specifying schemaLocation and
node attributes:
■ schemaLocation specifies a URI reference to the remote schema.
■ node specifies an XPath 1.0 expression that identifies the schema node within

schemaLocation to which the given binding declaration is associated; in the case of the
initial jxb:bindings declaration in the binding customization file, this node is typically
"/xs:schema".

Similarly, individual nodes within the schema to which customizations are to be applied
must be specified using XPath notation; for example:

<jxb:bindings node="//xs:complexType[@name=’USAddress’]">

In such cases, the customization is applied to the node by the binding compiler as if the
declaration was embedded inline in the node’s <xs:appinfo> element.

To summarize these rules, the external binding element <jxb:bindings> is only recognized for
processing by a JAXB binding compiler in three cases:

■ When its parent is an <xs:appinfo> element.
■ When it is an ancestor of another <jxb:bindings> element.
■ When it is the root element of a document. An XML document that has a <jxb:bindings>

element as its root is referred to as an external binding declaration file.

Scope, Inheritance, and Precedence
Default JAXB bindings can be customized or overridden at four different levels, or scopes.

Figure 17–3 illustrates the inheritance and precedence of customization declarations.
Specifically, declarations towards the top of the pyramid inherit and supersede declarations
below them. For example, Component declarations inherit from and supersede Definition
declarations; Definition declarations inherit and supersede Schema declarations; and Schema
declarations inherit and supersede Global declarations.

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008520

Customization Syntax
The syntax for the four types of JAXB binding declarations, as well as the syntax for the
XML-to-Java data type binding declarations and the customization namespace prefix, are
described below.

■ “Global Binding Declarations” on page 521
■ “Schema Binding Declarations” on page 523
■ “Class Binding Declarations” on page 523
■ “Property Binding Declarations” on page 524
■ “javaType Binding Declarations” on page 525
■ “Typesafe Enumeration Binding Declarations” on page 526
■ “javadoc Binding Declarations” on page 527

Global Binding Declarations

Global scope customizations are declared with <globalBindings>. The syntax for global scope
customizations is as follows:

Component
Scope

Definition Scope

Schema Scope

Global Scope

FIGURE 17–3 Customization Scope Inheritance and Precedence

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 521

<globalBindings>

[collectionType = "collectionType"]

[fixedAttributeAsConstantProperty = "true" | "false" | "1" | "0"]

[generateIsSetMethod = "true" | "false" | "1" | "0"]

[enableFailFastCheck = "true" | "false" | "1" | "0"]

[choiceContentProperty = "true" | "false" | "1" | "0"]

[underscoreBinding = "asWordSeparator" | "asCharInWord"]

[typesafeEnumBase = "typesafeEnumBase"]

[typesafeEnumMemberName = "generateName" | "generateError"]

[enableJavaNamingConventions = "true" | "false" | "1" | "0"]

[bindingStyle = "elementBinding" | "modelGroupBinding"]

[<javaType> ... </javaType>]*

</globalBindings>

■ collectionType can be either indexed or any fully qualified class name that implements
java.util.List.

■ fixedAttributeAsConstantProperty can be either true, false, 1, or 0. The default value
is false.

■ generateIsSetMethod can be either true, false, 1, or 0. The default value is false.
■ enableFailFastCheck can be either true, false, 1, or 0. If enableFailFastCheck is true

or 1 and the JAXB implementation supports this optional checking, type constraint
checking is performed when setting a property. The default value is false. Please note that
the JAXB implementation does not support failfast validation.

■ choiceContentProperty can be either true, false, 1, or 0. The default value is false.
choiceContentProperty is not relevant when the bindingStyle is elementBinding.
Therefore, if bindingStyle is specified as elementBinding, then the
choiceContentProperty must result in an invalid customization.

■ underscoreBinding can be either asWordSeparator or asCharInWord. The default value is
asWordSeparator.

■ typesafeEnumBase can be a list of QNames, each of which must resolve to a simple type
definition. The default value is xs:NCName. See “Typesafe Enumeration Binding
Declarations” on page 526 for information about localized mapping of simpleType
definitions to Java typesafe enum classes.

■ typesafeEnumMemberName can be either generateError or generateName. The default
value is generateError.

■ enableJavaNamingConventions can be either true, false, 1, or 0. The default value is true.
■ bindingStyle can be either elementBinding, or modelGroupBinding. The default value is

elementBinding.
■ <javaType> can be zero or more javaType binding declarations. For more information, see

“javaType Binding Declarations” on page 525.

<globalBindings> declarations are only valid in the annotation element of the top-level
schema element. There can only be a single instance of a <globalBindings> declaration in any

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008522

given schema or binding declarations file. If one source schema includes or imports a second
source schema, the <globalBindings> declaration must be declared in the first source schema.

Schema Binding Declarations

Schema scope customizations are declared with <schemaBindings>. The syntax for schema
scope customizations is:

<schemaBindings>

[<package> package </package>]

[<nameXmlTransform> ... </nameXmlTransform>]*

</schemaBindings>

<package [name = "packageName"]

[<javadoc> ... </javadoc>]

</package>

<nameXmlTransform>

[<typeName [suffix="suffix"]

[prefix="prefix"] />]

[<elementName [suffix="suffix"]

[prefix="prefix"] />]

[<modelGroupName [suffix="suffix"]

[prefix="prefix"] />]

[<anonymousTypeName [suffix="suffix"]

[prefix="prefix"] />]

</nameXmlTransform>

As shown above, <schemaBinding> declarations include two subcomponents:

■ <package>...</package> specifies the name of the package and, if desired, the location of
the API documentation for the schema-derived classes.

■ <nameXmlTransform>...</nameXmlTransform> specifies customizations to be applied.

Class Binding Declarations

The <class> binding declaration enables you to customize the binding of a schema element to a
Java content interface or a Java Element interface. <class> declarations can be used to
customize:

■ A name for a schema-derived Java interface
■ An implementation class for a schema-derived Java content interface

The syntax for <class> customizations is:

<class [name = "className"]
[implClass= "implClass"] >

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 523

[<javadoc> ... </javadoc>]

</class>

■ name is the name of the derived Java interface. It must be a legal Java interface name and
must not contain a package prefix. The package prefix is inherited from the current value of
package.

■ implClass is the name of the implementation class for className and must include the
complete package name.

■ The <javadoc> element specifies the Javadoc tool annotations for the schema-derived Java
interface. The string entered here must use CDATA or < to escape embedded HTML tags.

Property Binding Declarations

The <property> binding declaration enables you to customize the binding of an XML schema
element to its Java representation as a property. The scope of customization can either be at the
definition level or component level depending upon where the <property> binding declaration
is specified.

The syntax for <property> customizations is:

<property

[name = "propertyName"]
[collectionType = "propertyCollectionType"]

[fixedAttributeAsConstantProperty = "true" | "false" | "1" | "0"]

[generateIsSetMethod = "true" | "false" | "1" | "0"]

[enableFailFastCheck ="true" | "false" | "1" | "0"]

[<baseType> ... </baseType>]

[<javadoc> ... </javadoc>]

</property>

<baseType>

<javaType> ... </javaType>

</baseType>

■ name defines the customization value propertyName; it must be a legal Java identifier.
■ collectionType defines the customization value propertyCollectionType, which is the

collection type for the property. propertyCollectionType. If specified, can be either
indexed or any fully-qualified class name that implements java.util.List.

■ fixedAttributeAsConstantProperty defines the customization value
fixedAttributeAsConstantProperty. The value can be either true, false, 1, or 0.

■ generateIsSetMethod defines the customization value of generateIsSetMethod. The value
can be either true, false, 1, or 0.

■ enableFailFastCheck defines the customization value enableFailFastCheck. The value
can be either true, false, 1, or 0. Please note that the JAXB implementation does not
support failfast validation.

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008524

■ <javadoc> customizes the Javadoc tool annotations for the property’s getter method.

javaType Binding Declarations

The <javaType> declaration provides a way to customize the translation of XML data types to
and from Java data types. XML provides more data types than Java, and so the <javaType>
declaration lets you specify custom data type bindings when the default JAXB binding cannot
sufficiently represent your schema.

The target Java data type can be a Java built-in data type or an application-specific Java data
type. If an application-specific data type is used as the target, your implementation must also
provide parse and print methods for unmarshalling and marshalling data. To this end, the
JAXB specification supports a parseMethod and printMethod:

■ The parseMethod is called during unmarshalling to convert a string from the input
document into a value of the target Java data type.

■ The printMethod is called during marshalling to convert a value of the target type into a
lexical representation.

If you prefer to define your own data type conversions, JAXB defines a static class,
DatatypeConverter, to assist in the parsing and printing of valid lexical representations of the
XML Schema built-in data types.

The syntax for the <javaType> customization is:

<javaType name= "javaType"
[xmlType= "xmlType"]

[hasNsContext = "true" | "false"]

[parseMethod= "parseMethod"]

[printMethod= "printMethod"]>

■ name is the Java data type to which xmlType is to be bound.
■ xmlType is the name of the XML Schema data type to which javaType is to be bound; this

attribute is required when the parent of the <javaType> declaration is <globalBindings>.
■ hasNsContext allows a namespace context to be specified as a second parameter to a print or

a parse method; can be either true, false, 1, or 0. By default, this attribute is false, and in
most cases you will not need to change it.

■ parseMethod is the name of the parse method to be called during unmarshalling.
■ printMethod is the name of the print method to be called during marshalling.

The <javaType> declaration can be used in:

■ A <globalBindings> declaration
■ An annotation element for simple type definitions, GlobalBindings, and <basetype>

declarations

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 525

■ A <property> declaration

See “MyDatatypeConverter Class” on page 532 for an example of how <javaType> declarations
and the DatatypeConverterInterface interface are implemented in a custom data type
converter class.

Typesafe Enumeration Binding Declarations
The typesafe enumeration declarations provide a localized way to map XML simpleType

elements to Java typesafe enum classes. There are two types of typesafe enumeration
declarations you can make:
■ <typesafeEnumClass> lets you map an entire simpleType class to typesafe enum classes.
■ <typesafeEnumMember> lets you map just selected members of a simpleType class to

typesafe enum classes.

In both cases, there are two primary limitations on this type of customization:
■ Only simpleType definitions with enumeration facets can be customized using this binding

declaration.
■ This customization only applies to a single simpleType definition at a time. To map sets of

similar simpleType definitions on a global level, use the typesafeEnumBase attribute in a
<globalBindings> declaration, as described in “Global Binding Declarations” on page 521.

The syntax for the <typesafeEnumClass> customization is:

<typesafeEnumClass

[name = "enumClassName"]

[<typesafeEnumMember> ... </typesafeEnumMember>]*

[<javadoc> enumClassJavadoc </javadoc>]

</typesafeEnumClass>

■ name must be a legal Java Identifier, and must not have a package prefix.
■ You can have zero or more <typesafeEnumMember> declarations embedded in a

<typesafeEnumClass> declaration.
■ <javadoc> customizes the Javadoc tool annotations for the enumeration class.

The syntax for the <typesafeEnumMember> customization is:

<typesafeEnumMember name = "enumMemberName">
[value = "enumMemberValue"]

[<javadoc> enumMemberJavadoc </javadoc>]

</typesafeEnumMember>

■ name must always be specified and must be a legal Java identifier.
■ value must be the enumeration value specified in the source schema.
■ <javadoc> customizes the Javadoc tool annotations for the enumeration constant.

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008526

For inline annotations, the <typesafeEnumClass> declaration must be specified in the
annotation element of the <simpleType> element. The <typesafeEnumMember> must be
specified in the annotation element of the enumeration member. This allows the enumeration
member to be customized independently from the enumeration class.

For information about typesafe enum design patterns, see the sample chapter of Joshua Bloch’s
Effective Java Programming on the Java Developer Connection
(http://developer.java.sun.com/
developer/Books/shiftintojava/page1.html#replaceenums).

javadoc Binding Declarations

The <javadoc> declaration lets you add custom Javadoc tool annotations to schema-derived
JAXB packages, classes, interfaces, methods, and fields. Note that <javadoc> declarations
cannot be applied globally; they are only valid as sub-elements of other binding customizations.

The syntax for the <javadoc> customization is:

<javadoc>

Contents in Javadoc<\b> format.

</javadoc>

or

<javadoc>

<<![CDATA[

Contents in Javadoc<\b> format

]]>

</javadoc>

Note that documentation strings in <javadoc> declarations applied at the package level must
contain <body> open and close tags; for example:

<jxb:package name="primer.myPo">
<jxb:javadoc>

<![CDATA[<body>Package level documentation for generated package primer.myPo.</body>]]>

</jxb:javadoc>

</jxb:package>

Customization Namespace Prefix
All standard JAXB binding declarations must be preceded by a namespace prefix that maps to
the JAXB namespace URI (http://java.sun.com/xml/ns/jaxb). For example, in this sample,
jxb: is used. To this end, any schema you want to customize with standard JAXB binding
declarations must include the JAXB namespace declaration and JAXB version number at the
top of the schema file. For example, in po.xsd for the Customize Inline example, the namespace
declaration is as follows:

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 527

http://developer.java.sun.com/developer/Books/shiftintojava/page1.html#replaceenums
http://developer.java.sun.com/developer/Books/shiftintojava/page1.html#replaceenums
http://developer.java.sun.com/developer/Books/shiftintojava/page1.html#replaceenums
http://developer.java.sun.com/developer/Books/shiftintojava/page1.html#replaceenums
http://java.sun.com/xml/ns/jaxb

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
jxb:version="1.0">

A binding declaration with the jxb namespace prefix would then take the form:

<xsd:annotation>

<xsd:appinfo>

<jxb:globalBindings binding declarations />

<jxb:schemaBindings>

.

.

binding declarations .

.

</jxb:schemaBindings>

</xsd:appinfo>

</xsd:annotation>

Note that in this example, the globalBindings and schemaBindings declarations are used to
specify, respectively, global scope and schema scope customizations. These customization
scopes are described in more detail in “Scope, Inheritance, and Precedence” on page 520.

Customize Inline Example
The Customize Inline example illustrates some basic customizations made by means of inline
annotations to an XML schema named po.xsd. In addition, this example implements a custom
data type converter class, MyDatatypeConverter.java, which illustrates print and parse
methods in the <javaType> customization for handling custom data type conversions.

To summarize this example:

1. po.xsd is an XML schema containing inline binding customizations.
2. MyDatatypeConverter.java is a Java class file that implements print and parse methods

specified by <javaType> customizations in po.xsd.
3. Main.java is the primary class file in the Customize Inline example, which uses the

schema-derived classes generated by the JAXB compiler.

Building and Running the Customize Inline Example Using NetBeans
IDE
Follow these instructions to build and run the Customize Inline example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008528

3. Select the inline-customize folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the inline-customize project and select Run.

Building and Running the Customize Inline Example Using Ant
To compile and run the Customize Inline example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxb/inline-customize/ directory and type the
following:

ant runapp

Key customizations in this sample, and the custom MyDatatypeConverter.java class, are
described in more detail below.

Customized Schema
The customized schema used in the Customize Inline example is in the file
tut-install/javaeetutorial5/examples/jaxb/inline-customize/po.xsd. The
customizations are in the <xsd:annotation> tags.

Global Binding Declarations
The code below shows the globalBindings declarations in po.xsd:

<jxb:globalBindings

fixedAttributeAsConstantProperty="true"
collectionType="java.util.Vector"
typesafeEnumBase="xsd:NCName"
choiceContentProperty="false"
typesafeEnumMemberName="generateError"
bindingStyle="elementBinding"
enableFailFastCheck="false"
generateIsSetMethod="false"
underscoreBinding="asCharInWord"/>

In this example, all values are set to the defaults except for collectionType.

■ Setting fixedAttributeAsConstantProperty to true indicates that all fixed attributes
should be bound to Java constants. By default, fixed attributes are just mapped to either
simple or collection property, whichever is more appropriate.

■ Setting collectionType to java.util.Vector specifies that all lists in the generated
implementation classes should be represented internally as vectors. Note that the class name
you specify for collectionType must implement java.util.List and be callable by
newInstance.

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 529

■ If typesafeEnumBase is set to xsd:string, it would be a global way to specify that all simple
type definitions deriving directly or indirectly from xsd:string and having enumeration
facets should be bound by default to a typesafe enum. If typesafeEnumBase is set to an
empty string, "", no simple type definitions would ever be bound to a typesafe enum class
by default. The value of typesafeEnumBase can be any atomic simple type definition except
xsd:boolean and both binary types.

■ The JAXB implementation does not support the enableFailFastCheck attribute.

Note – Using typesafe enum classes enables you to map schema enumeration values to Java
constants, which in turn makes it possible to do compares on Java constants rather than
string values.

Schema Binding Declarations
The following code shows the schema binding declarations in po.xsd:

<jxb:schemaBindings>

<jxb:package name="primer.myPo">
<jxb:javadoc>

<![CDATA[<body> Package level documentation for generated package primer.myPo.</body>]]>

</jxb:javadoc>

</jxb:package>

<jxb:nameXmlTransform>

<jxb:elementName suffix="Element"/>
</jxb:nameXmlTransform>

</jxb:schemaBindings>

■ <jxb:package name="primer.myPo"/> specifies the primer.myPo as the package in which
the schema-derived classes should be generated.

■ <jxb:nameXmlTransform> specifies that all generated Java element interfaces should have
Element appended to the generated names by default. For example, when the JAXB
compiler is run against this schema, the element interfaces CommentElement and
PurchaseOrderElement will be generated. By contrast, without this customization, the
default binding would instead generate Comment and PurchaseOrder.
This customization is useful if a schema uses the same name in different symbol spaces; for
example, in global element and type definitions. In such cases, this customization enables
you to resolve the collision with one declaration rather than having to individually resolve
each collision with a separate binding declaration.

■ <jxb:javadoc> specifies customized Javadoc tool annotations for the primer.myPo
package. Note that, unlike the <javadoc> declarations at the class level, below, the opening
and closing <body> tags must be included when the <javadoc> declaration is made at the
package level.

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008530

Class Binding Declarations
The following code shows the class binding declarations in po.xsd:

<xsd:complexType name="PurchaseOrderType">
<xsd:annotation>

<xsd:appinfo>

<jxb:class name="POType">
<jxb:javadoc>

A Purchase Order consists of addresses and items.

</jxb:javadoc>

</jxb:class>

</xsd:appinfo>

</xsd:annotation>

.

.

.

</xsd:complexType>

The Javadoc tool annotations for the schema-derived POType class will contain the description
"A Purchase Order consists of addresses and items." The < is used to
escape the opening bracket on the HTML tags.

Note – When a <class> customization is specified in the appinfo element of a complexType
definition, as it is here, the complexType definition is bound to a Java content interface.

Later in po.xsd, another <javadoc> customization is declared at this class level, but this time
the HTML string is escaped with CDATA:

<xsd:annotation>

<xsd:appinfo>

<jxb:class>

<jxb:javadoc>

<![CDATA[First line of documentation for a USAddress.]]>

</jxb:javadoc>

</jxb:class>

</xsd:appinfo>

</xsd:annotation>

Note – If you want to include HTML markup tags in a <jaxb:javadoc> customization, you must
enclose the data within a CDATA section or escape all left angle brackets using <. See XML 1.0
2nd Edition (http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect) for more
information.

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 531

http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect
http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect

Property Binding Declarations
Of particular interest here is the generateIsSetMethod customization, which causes two
additional property methods, isSetQuantity and unsetQuantity, to be generated. These
methods enable a client application to distinguish between schema default values and values
occurring explicitly within an instance document.

For example, in po.xsd:

<xsd:complexType name="Items">
<xsd:sequence>

<xsd:element name="item" minOccurs="1" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity" default="10">
<xsd:annotation>

<xsd:appinfo>

<jxb:property generateIsSetMethod="true"/>
</xsd:appinfo>

</xsd:annotation>

...

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

The @generateIsSetMethod applies to the quantity element, which is bound to a property
within the Items.ItemType interface. unsetQuantity and isSetQuantity methods are
generated in the Items.ItemType interface.

MyDatatypeConverterClass
The class
tut-install/javaeetutorial5/examples/jaxb/inline-customize/src/inlinecustomize/primer/MyDatatypeConverter,
shown below, provides a way to customize the translation of XML data types to and from Java
data types by means of a <javaType> customization.

package primer;

import java.math.BigInteger;

import javax.xml.bind.DatatypeConverter;

public class MyDatatypeConverter {

public static short parseIntegerToShort(String value) {

BigInteger result = DatatypeConverter.parseInteger(value);

return (short)(result.intValue());

}

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008532

public static String printShortToInteger(short value) {

BigInteger result = BigInteger.valueOf(value);

return DatatypeConverter.printInteger(result);

}

public static int parseIntegerToInt(String value) {

BigInteger result = DatatypeConverter.parseInteger(value);

return result.intValue();

}

public static String printIntToInteger(int value) {

BigInteger result = BigInteger.valueOf(value);

return DatatypeConverter.printInteger(result);

}

};

The following code shows how the MyDatatypeConverter class is referenced in a <javaType>
declaration in po.xsd:

<xsd:simpleType name="ZipCodeType">
<xsd:annotation>

<xsd:appinfo>

<jxb:javaType name="int"

parseMethod="primer.MyDatatypeConverter.parseIntegerToInt"

printMethod="primer.MyDatatypeConverter.printIntTo Integer" />

</xsd:appinfo>

</xsd:annotation>

<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>

</xsd:restriction>

</xsd:simpleType>

In this example, the jxb:javaType binding declaration overrides the default JAXB binding of
this type to java.math.BigInteger. For the purposes of the Customize Inline example, the
restrictions on ZipCodeType (specifically, that legal United States ZIP codes are limited to five
digits) make it so all valid values can easily fit within the Java primitive data type int. Note also
that, because <jxb:javaType name="int"/> is declared within ZipCodeType, the customization
applies to all JAXB properties that reference this simpleType definition, including the getZip
and setZip methods.

Datatype Converter Example
The Datatype Converter example is very similar to the Customize Inline example. As with the
Customize Inline example, the customizations in the Datatype Converter example are made by
using inline binding declarations in the XML schema for the application, po.xsd.

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 533

The global, schema, and package, and most of the class customizations for the Customize Inline
and Datatype Converter examples are identical. Where the Datatype Converter example differs
from the Customize Inline example is in the parseMethod and printMethod used for converting
XML data to the Java int data type.

Specifically, rather than using methods in the custom MyDataTypeConverter class to perform
these data type conversions, the Datatype Converter example uses the built-in methods
provided by javax.xml.bind.DatatypeConverter:

<xsd:simpleType name="ZipCodeType">
<xsd:annotation>

<xsd:appinfo>

<jxb:javaType name="int"
parseMethod="javax.xml.bind.DatatypeConverter.parseInt"
printMethod="javax.xml.bind.DatatypeConverter.printInt"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>

</xsd:restriction>

</xsd:simpleType>

Building and Running the Datatype Converter Example Using
NetBeans IDE
Follow these instructions to build and run the Datatype Converter example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.
3. Select the datatypeconverter folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the datatypeconverter project and select Run.

Building and Running the Datatype Converter Example Using Ant
To compile and run the Datatype Converter example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxb/datatypeconverter/ directory and type the
following:

ant runapp

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008534

Binding Declaration Files
The following sections provide information about binding declaration files:

■ “JAXB Version, Namespace, and Schema Attributes” on page 535
■ “Global and Schema Binding Declarations” on page 536
■ “Class Declarations” on page 537

JAXB Version, Namespace, and Schema Attributes
All JAXB binding declarations files must begin with:

■ JAXB version number
■ Namespace declarations
■ Schema name and node

The version, namespace, and schema declarations in bindings.xjb are as follows:

<jxb:bindings version="1.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<jxb:bindings schemaLocation="po.xsd" node="/xs:schema">
...

binding-declarations ...

</jxb:bindings>

<!-- schemaLocation="po.xsd" node="/xs:schema" -->

</jxb:bindings>

JAXB Version Number

An XML file with a root element of <jaxb:bindings> is considered an external binding file. The
root element must specify the JAXB version attribute with which its binding declarations must
comply; specifically the root <jxb:bindings> element must contain either a <jxb:version>
declaration or a version attribute. By contrast, when making binding declarations inline, the
JAXB version number is made as attribute of the <xsd:schema> declaration:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
jxb:version="1.0">

Namespace Declarations

As shown in “JAXB Version, Namespace, and Schema Attributes” on page 535, the namespace
declarations in the external binding declarations file include both the JAXB namespace and the
XMLSchema namespace. Note that the prefixes used in this example could in fact be anything
you want; the important thing is to consistently use whatever prefixes you define here in
subsequent declarations in the file.

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 535

Schema Name and Schema Node

The fourth line of the code in “JAXB Version, Namespace, and Schema Attributes” on page 535
specifies the name of the schema to which this binding declarations file will apply, and the
schema node at which the customizations will first take effect. Subsequent binding declarations
in this file will reference specific nodes within the schema, but this first declaration should
encompass the schema as a whole; for example, in bindings.xjb:

<jxb:bindings schemaLocation="po.xsd" node="/xs:schema">

Global and Schema Binding Declarations
The global schema binding declarations in bindings.xjb are the same as those in po.xsd for
the Datatype Converter example. The only difference is that because the declarations in po.xsd

are made inline, you need to embed them in <xs:appinfo> elements, which are in turn
embedded in <xs:annotation> elements. Embedding declarations in this way is unnecessary in
the external bindings file.

<jxb:globalBindings

fixedAttributeAsConstantProperty="true"
collectionType="java.util.Vector"
typesafeEnumBase="xs:NCName"
choiceContentProperty="false"
typesafeEnumMemberName="generateError"
bindingStyle="elementBinding"
enableFailFastCheck="false"
generateIsSetMethod="false"
underscoreBinding="asCharInWord"/>

<jxb:schemaBindings>

<jxb:package name="primer.myPo">
<jxb:javadoc>

<![CDATA[<body>Package level documentation for generated package primer.myPo.</body>]]>

</jxb:javadoc>

</jxb:package>

<jxb:nameXmlTransform>

<jxb:elementName suffix="Element"/>
</jxb:nameXmlTransform>

</jxb:schemaBindings>

By comparison, the syntax used in po.xsd for the Datatype Converter example is:

<xsd:annotation>

<xsd:appinfo>

<jxb:globalBindings

...

binding-declarations
...

Customizing JAXB Bindings

The Java EE 5 Tutorial • October 2008536

<jxb:schemaBindings>

...

binding-declarations
...

</jxb:schemaBindings>

</xsd:appinfo>

</xsd:annotation>

Class Declarations
The class-level binding declarations in bindings.xjb differ from the analogous declarations in
po.xsd for the Datatype Converter example in two ways:

■ As with all other binding declarations in bindings.xjb, you do not need to embed your
customizations in schema <xsd:appinfo> elements.

■ You must specify the schema node to which the customization will be applied. The general
syntax for this type of declaration is:

<jxb:bindings node="//node-type[@name=’node-name’]">

For example, the following code shows binding declarations for the complexType named
USAddress.

<jxb:bindings node="//xs:complexType[@name=’USAddress’]">
<jxb:class>

<jxb:javadoc>

<![CDATA[First line of documentation for a USAddress.]]>

</jxb:javadoc>

</jxb:class>

<jxb:bindings node=".//xs:element[@name=’name’]">
<jxb:property name="toName"/>

</jxb:bindings>

<jxb:bindings node=".//xs:element[@name=’zip’]">
<jxb:property name="zipCode"/>

</jxb:bindings>

</jxb:bindings>

<!-- node="//xs:complexType[@name=’USAddress’]" -->

Note in this example that USAddress is the parent of the child elements name and zip, and
therefore a </jxb:bindings> tag encloses the bindings declarations for the child elements as
well as the class-level javadoc declaration.

Customizing JAXB Bindings

Chapter 17 • Binding between XML Schema and Java Classes 537

External Customize Example
The External Customize example is identical to the Datatype Converter example, except that
the binding declarations in the External Customize example are made by means of an external
binding declarations file rather than inline in the source XML schema.

The binding customization file used in the External Customize example is
tut-install/javaeetutorial5/examples/jaxb/external-customize/binding.xjb.

This section compares the customization declarations in bindings.xjb with the analogous
declarations used in the XML schema, po.xsd, in the Datatype Converter example. The two sets
of declarations achieve precisely the same results.

Building and Running the External Customize Example Using NetBeans
IDE
Follow these instructions to build and run the External Customize example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.

3. Select the external-customize folder.

4. Select the Open as Main Project check box.

5. Click Open Project.

6. Right-click the external-customize project and select Run.

Building and Running the External Customize Example Using Ant
To compile and run the External Customize example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxb/external-customize/ directory and type the
following:

ant runapp

Java-to-Schema Examples
The Java-to-Schema examples show how to use annotations to map Java classes to XML
schema.

Java-to-Schema Examples

The Java EE 5 Tutorial • October 2008538

If you are using JDK 6, perform the following steps before you run any of the Java-to-Schema
examples:

1. Change to one of the Java-to-Schema example directories (for example,
tut-install/javaeetutorial5/examples/jaxb/j2s-create-marshal.

2. Run the following Ant command:

ant update-endorsed

This command creates an endorsed directory in the JDK and copies the
webservices-api.jar file from the Application Server's lib/endorsed/ directory into it.

Create Marshal Example
The Create Marshal example illustrates Java-to-schema databinding. It demonstrates
marshalling and unmarshalling of JAXB annotated classes and also shows how to enable JAXP
1.3 validation at unmarshal time using a schema file that was generated from the JAXB mapped
classes.

The schema file, bc.xsd, was generated with the following commands:

schemagen src/cardfile/*.java

cp schema1.xsd bc.xsd

Note that schema1.xsd, was copied to bc.xsd; schemagen does not allow you to specify a
schema name of your choice.

Building and Running the Create Marshal Example Using NetBeans IDE
Follow these instructions to build and run the Create Marshal example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.
3. Select the j2s-create-marshal folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the j2s-create-marshal project and select Run.

Building and Running the Create Marshal Example Using Ant
To compile and run the Create Marshal example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxb/j2s-create-marshal/ directory and type the
following:

Java-to-Schema Examples

Chapter 17 • Binding between XML Schema and Java Classes 539

ant runapp

XmlAccessorOrder Example
The j2s-xmlAccessorOrder example shows how to use the @XmlAccessorOrder and
@XmlType.propOrder annotations to dictate the order in which XML content is
marshalled/unmarshalled by a Java type.

With Java-to-schema mapping, a JavaBean’s properties and fields are mapped to an XML
Schema type. The class elements are mapped to either an XML Schema complex type or an
XML Schema simple type. The default element order for a generated schema type is currently
unspecified because Java reflection does not impose a return order. The lack of reliable element
ordering negatively impacts application portability. You can use two annotations,
@XmlAccessorOrder and @XmlType.propOrder, to define schema element ordering for
applications that need to be portable across JAXB Providers.

Using the @XmlAccessorOrderAnnotation to Define Schema Element
Ordering
The @XmlAccessorOrder annotation imposes one of two element ordering algorithms,
AccessorOrder.UNDEFINED or AccessorOrder.ALPHABETICAL. AccessorOrder.UNDEFINED is
the default setting. The order is dependent on the system’s reflection implementation.
AccessorOrder.ALPHABETICAL orders the elements in lexicographic order as determined by
java.lang.String.CompareTo(String anotherString).

You can define the @XmlAccessorOrder annotation for annotation type ElementType.PACKAGE
on a class object. When the @XmlAccessorOrder annotation is defined on a package, the scope
of the formatting rule is active for every class in the package. When defined on a class, the rule is
active on the contents of that class.

There can be multiple @XmlAccessorOrder annotations within a package. The order of
precedence is the innermost (class) annotation takes precedence over the outer annotation. For
example, if @XmlAccessorOrder(AccessorOrder.ALPHABETICAL) is defined on a package and
@XmlAccessorOrder(AccessorOrder.UNDEFINED) is defined on a class in that package, the
contents of the generated schema type for the class would be in an unspecified order and the
contents of the generated schema type for every other class in the package would be alphabetical
order.

Using the @XmlTypeAnnotation to Define Schema Element Ordering
The @XmlType annotation can be defined for a class. The annotation element propOrder() in
the @XmlType annotation allows you to specify the content order in the generated schema type.
When you use the @XmlType.propOrder annotation on a class to specify content order, all
public properties and public fields in the class must be specified in the parameter list. Any
public property or field that you want to keep out of the parameter list must be annotated with
@XmlAttribute or @XmlTransient annotation.

Java-to-Schema Examples

The Java EE 5 Tutorial • October 2008540

The default content order for @XmlType.propOrder is {} or {""}, not active. In such cases, the
active @XmlAccessorOrder annotation takes precedence. When class content order is specified
by the @XmlType.propOrder annotation, it takes precedence over any active
@XmlAccessorOrder annotation on the class or package. If the @XmlAccessorOrder and
@XmlType.propOrder(A, B, ...) annotations are specified on a class, the propOrder always
takes precedence regardless of the order of the annotation statements. For example, in the code
below, the @XmlAccessorOrder annotation precedes the @XmlType.propOrder annotation.

@XmlAccessorOrder(AccessorOrder.ALPHABETICAL)

@XmlType(propOrder={"name", "city"})
public class USAddress {

.

.

public String getCity() {return city;}

public void setCity(String city) {this.city = city;}

public String getName() {return name;}

public void setName(String name) {this.name = name;}

.

.

}

In the code below, the @XmlType.propOrder annotation precedes the @XmlAccessorOrder
annotation.

@XmlType(propOrder={"name", "city"})
@XmlAccessorOrder(AccessorOrder.ALPHABETICAL)

public class USAddress {

.

.

public String getCity() {return city;}

public void setCity(String city) {this.city = city;}

public String getName() {return name;}

public void setName(String name) {this.name = name;}

.

.

}

In both scenarios, propOrder takes precedence and the identical schema content shown below
will be generated.

<xs:complexType name="usAddress">
<xs:sequence>

<xs:element name="name" type="xs:string" minOccurs="0"/>
<xs:element name="city" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

Java-to-Schema Examples

Chapter 17 • Binding between XML Schema and Java Classes 541

Schema Content Ordering in the Example
The purchase order code example demonstrates the effects of schema content ordering using
the @XmlAccessorOrder annotation at the package and class level, and the
@XmlType.propOrder annotation on a class.

Class package-info.java defines @XmlAccessorOrder to be ALPHABETICAL for the package.
The public fields shipTo and billTo in class PurchaseOrderType will be affected in the
generated schema content order by this rule. Class USAddress defines the @XmlType.propOrder
annotation on the class. User of this annotation demonstrates user-defined property order
superseding ALPHABETICAL order in the generated schema.

The generated schema file can be found in the
tut-install/javaeetutorial5/examples/jaxb/j2s-xmlAccessorOrder/build/schemas/
directory.

Building and Running the XmlAccessorOrder Example Using NetBeans
IDE
Follow these instructions to build and run the XmlAccessorOrder example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.
3. Select the j2s-xmlAccessorOrder folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the j2s-xmlAccessorOrder project and select Run.

Building and Running the XmlAccessorOrder Example Using Ant
To compile and run the XmlAccessorOrder example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxb/j2s-xmlAccessorOrder/ directory and type the
following:

ant runapp

XmlAdapter Field Example
The XmlAdapter Field example demonstrates how to use the XmlAdapter interface and the
@XmlJavaTypeAdapter annotation to provide a custom mapping of XML content into and out
of a HashMap (field) that uses an int as the key and a String as the value.

Java-to-Schema Examples

The Java EE 5 Tutorial • October 2008542

Interface XmlAdapter and annotation @XmlJavaTypeAdapter are used for special processing of
data types during unmarshalling/marshalling. There are a variety of XML data types for which
the representation does not map easily into Java (for example, xs:DateTime and xs:Duration),
and Java types which do not map conveniently into XML representations, for example
implementations of java.util.Collection (such as List) and java.util.Map (such as
HashMap) or for non-JavaBean classes.

The XmlAdapter interface and the @XmlJavaTypeAdapter annotation are provided for cases
such as these. This combination provides a portable mechanism for reading/writing XML
content into and out of Java applications.

The XmlAdapter interface defines the methods for data reading/writing.

/*

* ValueType - Java class that provides an XML representation

* of the data. It is the object that is used for

* marshalling and unmarshalling.

*

* BoundType - Java class that is used to process XML content.

*/

public abstract class XmlAdapter<ValueType,BoundType> {

// Do-nothing constructor for the derived classes.

protected XmlAdapter() {}

// Convert a value type to a bound type.

public abstract BoundType unmarshal(ValueType v);

// Convert a bound type to a value type.

public abstract ValueType marshal(BoundType v);

}

You can use the @XmlJavaTypeAdapter annotation to associate a particular XmlAdapter
implementation with a Target type, PACKAGE, FIELD, METHOD, TYPE, or PARAMETER.

The XmlAdapter Field example shows how to use an XmlAdapter for mapping XML content
into and out of a (custom) HashMap. The HashMap object, basket, in class KitchenWorldBasket,
uses a key of type int and a value of type String. These data types should be reflected in the
XML content that is read and written, so the XML content should look like this.

<basket>

<entry key="9027">glasstop stove in black</entry>

<entry key="288">wooden spoon</entry>

</basket>

The default schema generated for Java type HashMap does not reflect the desired format.

<xs:element name="basket">
<xs:complexType>

<xs:sequence>

Java-to-Schema Examples

Chapter 17 • Binding between XML Schema and Java Classes 543

<xs:element name="entry" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element name="key" minOccurs="0" type="xs:anyType"/>
<xs:element name="value" minOccurs="0" type="xs:anyType"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

In the default HashMap schema, key and value are both elements and are of data type anyType.
The XML content will look like this:

<basket>

<entry>

<key>9027</>

<value>glasstop stove in black</>

</entry>

<entry>

<key>288</>

<value>wooden spoon</>

</entry>

</basket>

To resolve this issue, the example uses two Java classes, PurchaseList and PartEntry, that
reflect the needed schema format for unmarshalling/marshalling the content. The XML schema
generated for these classes is as follows:

<xs:complexType name="PurchaseListType">
<xs:sequence>

<xs:element name="entry" type="partEntry"
nillable="true" maxOccurs="unbounded"
minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="partEntry">
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="key" type="xs:int"

use="required"/>
</xs:extension>

</xs:simpleContent>

</xs:complexType>

Class AdapterPurchaseListToHashMap implements the XmlAdapter interface. In class
KitchenWorldBasket, the @XmlJavaTypeAdapter annotation is used to pair

Java-to-Schema Examples

The Java EE 5 Tutorial • October 2008544

AdapterPurchaseListToHashMap with field HashMap basket. This pairing will cause the
marshal/unmarshal method of AdapterPurchaseListToHashMap to be called for any
corresponding marshal/unmarshal action on KitchenWorldBasket.

Building and Running the XmlAdapter Field Example Using NetBeans
IDE
Follow these instructions to build and run the XmlAdapter Field example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.
3. Select the j2s-xmlAdapter-field folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the j2s-xmlAdapter-field project and select Run.

Building and Running the XmlAdapter Field Example Using Ant
To compile and run the XmlAdapter Field example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxb/j2s-xmlAdapter-field/ directory and type the
following:

ant runapp

XmlAttribute Field Example
The XmlAttribute Field example shows how to use the @XmlAttribute annotation to define a
property or field to be treated as an XML attribute.

The @XmlAttribute annotation maps a field or JavaBean property to an XML attribute. The
following rules are imposed:

■ A static final field is mapped to a XML fixed attribute.
■ When the field or property is a collection type, the items of the collection type must map to a

schema simple type.
■ When the field or property is other than a collection type, the type must map to a schema

simple type.

When following the JavaBean programming paradigm, a property is defined by a get and set

prefix on a field name.

Java-to-Schema Examples

Chapter 17 • Binding between XML Schema and Java Classes 545

int zip;

public int getZip(){return zip;}

public void setZip(int z){zip=z;}

Within a bean class, you have the choice of setting the @XmlAttribute annotation on one of
three components: the field, the setter method, or the getter method. If you set the
@XmlAttribute annotation on the field, the setter method will need to be renamed or there will
be a naming conflict at compile time. If you set the @XmlAttribute annotation on one of the
methods, it must be set on either the setter or getter method, but not on both.

The XmlAttribute Field example shows how to use the @XmlAttribute annotation on a static
final field, on a field rather than on one of the corresponding bean methods, on a bean property
(method), and on a field that is other than a collection type. In class USAddress, fields, country,
and zip are tagged as attributes. The setZip method was disabled to avoid the compile error.
Property state was tagged as an attribute on the setter method. You could have used the getter
method instead. In class PurchaseOrderType, field cCardVendor is a non-collection type. It
meets the requirement of being a simple type; it is an enum type.

Building and Running the XmlAttribute Field Example Using NetBeans
IDE
Follow these instructions to build and run the XmlAttribute Field example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.
3. Select the j2s-xmlAttribute-field folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the j2s-xmlAttribute-field project and select Run.

Building and Running the XmlAttribute Field Example Using Ant
To compile and run the XmlAttribute Field example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxb/j2s-xmlAttribute-field/ directory and type
the following:

ant runapp

XmlRootElement Example
The XmlRootElement example demonstrates the use of the @XmlRootElement annotation to
define an XML element name for the XML schema type of the corresponding class.

Java-to-Schema Examples

The Java EE 5 Tutorial • October 2008546

The @XmlRootElement annotation maps a class or an enum type to an XML element. At least one
element definition is needed for each top-level Java type used for unmarshalling/marshalling. If
there is no element definition, there is no starting location for XML content processing.

The @XmlRootElement annotation uses the class name as the default element name. You can
change the default name by using the annotation attribute name. If you do, the specified name
will then be used as the element name and the type name. It is common schema practice for the
element and type names to be different. You can use the @XmlType annotation to set the element
type name.

The namespace attribute of the @XmlRootElement annotation is used to define a namespace for
the element.

Building and Running the XmlRootElement Example Using NetBeans
IDE
Follow these instructions to build and run the XmlRootElement example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.
3. Select the j2s-xmlRootElement folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the j2s-xmlRootElement project and select Run.

Building and Running the XmlRootElement Example Using Ant
To compile and run the XmlRootElement example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxb/j2s-xmlRootElement/ directory and type the
following:

ant runapp

XmlSchemaType Class Example
The XmlSchemaType Class example demonstrates the use of the annotation @XmlSchemaType

to customize the mapping of a property or field to an XML built-in type.

The @XmlSchemaType annotation can be used to map a Java type to one of the XML built-in
types. This annotation is most useful in mapping a Java type to one of the nine date/time
primitive data types.

Java-to-Schema Examples

Chapter 17 • Binding between XML Schema and Java Classes 547

When the @XmlSchemaType annotation is defined at the package level, the identification
requires both the XML built-in type name and the corresponding Java type class. An
@XmlSchemaType definition on a field or property takes precedence over a package definition.

The XmlSchemaType Class example shows how to use the @XmlSchemaType annotation at the
package level, on a field, and on a property. File TrackingOrder has two fields, orderDate and
deliveryDate, which are defined to be of type XMLGregorianCalendar. The generated schema
will define these elements to be of XML built-in type gMonthDay. This relationship was defined
on the package in the file package-info.java. Field shipDate in file TrackingOrder is also
defined to be of type XMLGregorianCalendar, but the @XmlSchemaType annotation statements
override the package definition and specify the field to be of type date. Property method
getTrackingDuration defines the schema element to be defined as primitive type duration
and not Java type String.

Building and Running the XmlSchemaType Class Example Using
NetBeans IDE
Follow these instructions to build and run the XmlSchemaType Class example on your
Application Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.
3. Select the j2s-xmlSchemaType-class folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the j2s-xmlSchemaType-class project and select Run.

Building and Running the XmlSchemaType Class Example Using Ant
To compile and run the XmlSchemaType Class example using Ant, in a terminal window, go to
the tut-install/javaeetutorial5/examples/jaxb/j2s-xmlSchemaType-class/ directory and
type the following:

ant runapp

XmlType Example
The XmlType example demonstrates the use of the @XmlType annotation. The @XmlType
annotation maps a class or an enum type to a XML Schema type.

A class must have either a public zero-argument constructor or a static zero-argument factory
method in order to be mapped by this annotation. One of these methods is used during
unmarshalling to create an instance of the class. The factory method may reside within in a
factory class or the existing class.

Java-to-Schema Examples

The Java EE 5 Tutorial • October 2008548

There is an order of precedence as to which method is used for unmarshalling:
■ If a factory class is identified in the annotation, a corresponding factory method in that class

must also be identified and that method will be used.
■ If a factory method is identified in the annotation but no factory class is identified, the

factory method must reside in the current class. The factory method is used even if there is a
public zero arg constructor method present.

■ If no factory method is identified in the annotation, the class must contain a public zero arg
constructor method.

In this example, a factory class provides zero arg factory methods for several classes. The
@XmlType annotation on class OrderContext references the factory class. The unmarshaller will
use the identified factory method in this class.

public class OrderFormsFactory {

public OrderContext newOrderInstance() {

return new OrderContext()

}

public PurchaseOrderType newPurchaseOrderType() {

return new newPurchaseOrderType();

}

}

@XmlType(name="oContext", factoryClass="OrderFormsFactory",
factoryMethod="newOrderInstance")

public class OrderContext {

public OrderContext(){ }

}

In this example, a factory method is defined in a class, which also contains a standard class
construct. Because the factoryMethod value is defined and no factoryClass is defined, the
factory method newOrderInstance is used during unmarshalling.

@XmlType(name="oContext", factoryMethod="newOrderInstance")
public class OrderContext {

public OrderContext(){ }

public OrderContext newOrderInstance() {

return new OrderContext();

}

}

Building and Running the XmlType Example Using NetBeans IDE
Follow these instructions to build and run the XmlType example on your Application Server
instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxb/.

Java-to-Schema Examples

Chapter 17 • Binding between XML Schema and Java Classes 549

3. Select the j2s-xmlType folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the j2s-xmlType project and select Run.

Building and Running the XmlType Example Using Ant
To compile and run the XmlType example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/jaxb/j2s-xmlType/ directory and type the following:

ant runapp

Further Information about JAXB
For more information about JAXB, XML, and XML Schema, see:

■ Java Community Process page:
http://jcp.org/en/jsr/detail?id=222

■ W3C Recommendation “Extensible Markup Language (XML) 1.0”:
http://www.w3.org/TR/REC-xml

■ XML Information Set:
http://www.w3.org/TR/xml-infoset/

■ W3C XML Schema Part 0: Primer, edited by David C. Fallside:
http://www.w3.org/TR/xmlschema-0/

■ XML Path Language, edited by James Clark and Steve DeRose:
http://www.w3.org/TR/1999/REC-xpath-19991116

Further Information about JAXB

The Java EE 5 Tutorial • October 2008550

http://jcp.org/en/jsr/detail?id=222
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/1999/REC-xpath-19991116

Streaming API for XML

This chapter focuses on the Streaming API for XML (StAX), a streaming Java-based,
event-driven, pull-parsing API for reading and writing XML documents. StAX enables you to
create bidrectional XML parsers that are fast, relatively easy to program, and have a light
memory footprint.

StAX is the latest API in the JAXP family, and provides an alternative to SAX, DOM, TrAX, and
DOM for developers looking to do high-performance stream filtering, processing, and
modification, particularly with low memory and limited extensibility requirements.

To summarize, StAX provides a standard, bidirectional pull parser interface for streaming XML
processing, offering a simpler programming model than SAX and more efficient memory
management than DOM. StAX enables developers to parse and modify XML streams as events,
and to extend XML information models to allow application-specific additions. More detailed
comparisons of StAX with several alternative APIs are provided below, in “Comparing StAX to
Other JAXP APIs” on page 553.

Why StAX?
The StAX project was spearheaded by BEA with support from Sun Microsystems, and the JSR
173 specification passed the Java Community Process final approval ballot in March, 2004
(http://jcp.org/en/jsr/detail?id=173). The primary goal of the StAX API is to give
“parsing control to the programmer by exposing a simple iterator based API. This allows the
programmer to ask for the next event (pull the event) and allows state to be stored in procedural
fashion.” StAX was created to address limitations in the two most prevalent parsing APIs, SAX
and DOM.

Streaming versus DOM
Generally speaking, there are two programming models for working with XML infosets:
streaming and the document object model (DOM).

18C H A P T E R 1 8

551

http://jcp.org/en/jsr/detail?id=173

The DOM model involves creating in-memory objects representing an entire document tree
and the complete infoset state for an XML document. Once in memory, DOM trees can be
navigated freely and parsed arbitrarily, and as such provide maximum flexibility for developers.
However, the cost of this flexibility is a potentially large memory footprint and significant
processor requirements, because the entire representation of the document must be held in
memory as objects for the duration of the document processing. This may not be an issue when
working with small documents, but memory and processor requirements can escalate quickly
with document size.

Streaming refers to a programming model in which XML infosets are transmitted and parsed
serially at application runtime, often in real time, and often from dynamic sources whose
contents are not precisely known beforehand. Moreover, stream-based parsers can start
generating output immediately, and infoset elements can be discarded and garbage collected
immediately after they are used. While providing a smaller memory footprint, reduced
processor requirements, and higher performance in certain situations, the primary trade-off
with stream processing is that you can only see the infoset state at one location at a time in the
document. You are essentially limited to the “cardboard tube” view of a document, the
implication being that you need to know what processing you want to do before reading the
XML document.

Streaming models for XML processing are particularly useful when your application has strict
memory limitations, as with a cell phone running J2ME, or when your application needs to
simultaneously process several requests, as with an application server. In fact, it can be argued
that the majority of XML business logic can benefit from stream processing, and does not
require the in-memory maintenance of entire DOM trees.

Pull Parsing versus Push Parsing
Streaming pull parsing refers to a programming model in which a client application calls
methods on an XML parsing library when it needs to interact with an XML infoset; that is, the
client only gets (pulls) XML data when it explicitly asks for it.

Streaming push parsing refers to a programming model in which an XML parser sends (pushes)
XML data to the client as the parser encounters elements in an XML infoset; that is, the parser
sends the data whether or not the client is ready to use it at that time.

Pull parsing provides several advantages over push parsing when working with XML streams:

■ With pull parsing, the client controls the application thread, and can call methods on the
parser when needed. By contrast, with push processing, the parser controls the application
thread, and the client can only accept invocations from the parser.

■ Pull parsing libraries can be much smaller and the client code to interact with those libraries
much simpler than with push libraries, even for more complex documents.

■ Pull clients can read multiple documents at one time with a single thread.

Why StAX?

The Java EE 5 Tutorial • October 2008552

■ A StAX pull parser can filter XML documents such that elements unnecessary to the client
can be ignored, and it can support XML views of non-XML data.

StAX Use Cases
The StAX specification defines a number of use cases for the API:

■ Data binding
■ Unmarshalling an XML document
■ Marshalling an XML document
■ Parallel document processing
■ Wireless communication

■ SOAP message processing
■ Parsing simple predictable structures
■ Parsing graph representations with forward references
■ Parsing WSDL

■ Virtual data sources
■ Viewing as XML data stored in databases
■ Viewing data in Java objects created by XML data binding
■ Navigating a DOM tree as a stream of events

■ Parsing specific XML vocabularies
■ Pipelined XML processing

A complete discussion of all these use cases is beyond the scope of this chapter. Please refer to
the StAX specification for further information.

Comparing StAX to Other JAXP APIs
As an API in the JAXP family, StAX can be compared, among other APIs, to SAX, TrAX, and
JDOM. Of the latter two, StAX is not as powerful or flexible as TrAX or JDOM, but neither does
it require as much memory or processor load to be useful, and StAX can, in many cases,
outperform the DOM-based APIs. The same arguments outlined above, weighing the
cost/benefits of the DOM model versus the streaming model, apply here.

Why StAX?

Chapter 18 • Streaming API for XML 553

With this in mind, the closest comparisons can be made between StAX and SAX, and it is here
that StAX offers features that are beneficial in many cases; some of these include:

■ StAX-enabled clients are generally easier to code than SAX clients. While it can be argued
that SAX parsers are marginally easier to write, StAX parser code can be smaller and the
code necessary for the client to interact with the parser simpler.

■ StAX is a bidirectional API, meaning that it can both read and write XML documents. SAX
is read only, so another API is needed if you want to write XML documents.

■ SAX is a push API, whereas StAX is pull. The trade-offs between push and pull APIs
outlined above apply here.

Table 18–1 summarizes the comparative features of StAX, SAX, DOM, and TrAX (table
adapted from “Does StAX Belong in Your XML Toolbox?” at
http://www.developer.com/xml/article.php/3397691 by Jeff Ryan).

TABLE 18–1 XML Parser API Feature Summary

Feature StAX SAX DOM TrAX

API Type Pull, streaming Push, streaming In memory tree XSLT Rule

Ease of Use High Medium High Medium

XPath Capability Not supported Not supported Supported Supported

CPU and Memory
Efficiency

Good Good Varies Varies

Forward Only Supported Supported Not supported Not supported

Read XML Supported Supported Supported Supported

Write XML Supported Not supported Supported Supported

Create, Read, Update,
Delete

Not supported Not supported Supported Not supported

StAX API
The StAX API exposes methods for iterative, event-based processing of XML documents. XML
documents are treated as a filtered series of events, and infoset states can be stored in a
procedural fashion. Moreover, unlike SAX, the StAX API is bidirectional, enabling both reading
and writing of XML documents.

The StAX API is really two distinct API sets: a cursor API and an iterator API. These two API
sets explained in greater detail later in this chapter, but their main features are briefly described
below.

StAX API

The Java EE 5 Tutorial • October 2008554

http://www.developer.com/xml/article.php/3397691

Cursor API
As the name implies, the StAX cursor API represents a cursor with which you can walk an XML
document from beginning to end. This cursor can point to one thing at a time, and always
moves forward, never backward, usually one infoset element at a time.

The two main cursor interfaces are XMLStreamReader and XMLStreamWriter.
XMLStreamReader includes accessor methods for all possible information retrievable from the
XML Information model, including document encoding, element names, attributes,
namespaces, text nodes, start tags, comments, processing instructions, document boundaries,
and so forth; for example:

public interface XMLStreamReader {

public int next() throws XMLStreamException;

public boolean hasNext() throws XMLStreamException;

public String getText();

public String getLocalName();

public String getNamespaceURI();

// ... other methods not shown

}

You can call methods on XMLStreamReader, such as getText and getName, to get data at the
current cursor location. XMLStreamWriter provides methods that correspond to StartElement

and EndElement event types; for example:

public interface XMLStreamWriter {

public void writeStartElement(String localName)

throws XMLStreamException;

public void writeEndElement()

throws XMLStreamException;

public void writeCharacters(String text)

throws XMLStreamException;

// ... other methods not shown

}

The cursor API mirrors SAX in many ways. For example, methods are available for directly
accessing string and character information, and integer indexes can be used to access attribute
and namespace information. As with SAX, the cursor API methods return XML information as
strings, which minimizes object allocation requirements.

Iterator API
The StAX iterator API represents an XML document stream as a set of discrete event objects.
These events are pulled by the application and provided by the parser in the order in which they
are read in the source XML document.

StAX API

Chapter 18 • Streaming API for XML 555

The base iterator interface is called XMLEvent, and there are subinterfaces for each event type
listed in Table 18–2. The primary parser interface for reading iterator events is
XMLEventReader, and the primary interface for writing iterator events is XMLEventWriter. The
XMLEventReader interface contains five methods, the most important of which is nextEvent,
which returns the next event in an XML stream. XMLEventReader implements
java.util.Iterator, which means that returns from XMLEventReader can be cached or passed
into routines that can work with the standard Java Iterator; for example:

public interface XMLEventReader extends Iterator {

public XMLEvent nextEvent() throws XMLStreamException;

public boolean hasNext();

public XMLEvent peek() throws XMLStreamException;

...

}

Similarly, on the output side of the iterator API, you have:

public interface XMLEventWriter {

public void flush() throws XMLStreamException;

public void close() throws XMLStreamException;

public void add(XMLEvent e) throws XMLStreamException;

public void add(Attribute attribute) throws XMLStreamException;

...

}

Iterator Event Types
Table 18–2 lists the XMLEvent types defined in the event iterator API.

TABLE 18–2 XMLEventTypes

Event Type Description

StartDocument Reports the beginning of a set of XML events, including encoding, XML version,
and standalone properties.

StartElement Reports the start of an element, including any attributes and namespace
declarations; also provides access to the prefix, namespace URI, and local name of
the start tag.

EndElement Reports the end tag of an element. Namespaces that have gone out of scope can be
recalled here if they have been explicitly set on their corresponding
StartElement.

Characters Corresponds to XML CData sections and CharacterData entities. Note that
ignorable white space and significant white space are also reported as Character
events.

StAX API

The Java EE 5 Tutorial • October 2008556

TABLE 18–2 XMLEventTypes (Continued)
Event Type Description

EntityReference Character entities can be reported as discrete events, which an application
developer can then choose to resolve or pass through unresolved. By default,
entities are resolved. Alternatively, if you do not want to report the entity as an
event, replacement text can be substituted and reported as Characters.

ProcessingInstruction Reports the target and data for an underlying processing instruction.

Comment Returns the text of a comment.

EndDocument Reports the end of a set of XML events.

DTD Reports as java.lang.String information about the DTD, if any, associated
with the stream, and provides a method for returning custom objects found in the
DTD.

Attribute Attributes are generally reported as part of a StartElement event. However, there
are times when it is desirable to return an attribute as a standalone Attribute
event; for example, when a namespace is returned as the result of an XQuery or
XPath expression.

Namespace As with attributes, namespaces are usually reported as part of a StartElement,
but there are times when it is desirable to report a namespace as a discrete
Namespace event.

Note that the DTD, EntityDeclaration, EntityReference, NotationDeclaration, and
ProcessingInstruction events are only created if the document being processed contains a
DTD.

Example of Event Mapping
As an example of how the event iterator API maps an XML stream, consider the following XML
document:

<?xml version="1.0"?>
<BookCatalogue xmlns="http://www.publishing.org">

<Book>

<Title>Yogasana Vijnana: the Science of Yoga</Title>

<ISBN>81-40-34319-4</ISBN>

<Cost currency="INR">11.50</Cost>
</Book>

</BookCatalogue>

This document would be parsed into eighteen primary and secondary events, as shown in
Table 18–3. Note that secondary events, shown in curly braces ({}), are typically accessed from
a primary event rather than directly.

StAX API

Chapter 18 • Streaming API for XML 557

TABLE 18–3 Example of Iterator API Event Mapping

Element/Attribute Event

1 version="1.0" StartDocument

2 isCData = false

data = "\n"
IsWhiteSpace = true

Characters

3 qname = BookCatalogue:http://www.publishing.org

attributes = null

namespaces = {BookCatalogue" -> http://www.publishing.org"}

StartElement

4 qname = Book

attributes = null

namespaces = null

StartElement

5 qname = Title

attributes = null

namespaces = null

StartElement

6 isCData = false

data = "Yogasana Vijnana: the Science of Yoga\n\t"
IsWhiteSpace = false

Characters

7 qname = Title

namespaces = null

EndElement

8 qname = ISBN

attributes = null

namespaces = null

StartElement

9 isCData = false

data = "81-40-34319-4\n\t"
IsWhiteSpace = false

Characters

10 qname = ISBN

namespaces = null

EndElement

11 qname = Cost

attributes = {"currency" -> INR}

namespaces = null

StartElement

12 isCData = false

data = "11.50\n\t"
IsWhiteSpace = false

Characters

13 qname = Cost

namespaces = null

EndElement

StAX API

The Java EE 5 Tutorial • October 2008558

TABLE 18–3 Example of Iterator API Event Mapping (Continued)
Element/Attribute Event

14 isCData = false

data = "\n"
IsWhiteSpace = true

Characters

15 qname = Book

namespaces = null

EndElement

16 isCData = false

data = "\n"
IsWhiteSpace = true

Characters

17 qname = BookCatalogue:http://www.publishing.org

namespaces = {BookCatalogue" -> http://www.publishing.org"}
EndElement

18 EndDocument

There are several important things to note in this example:

■ The events are created in the order in which the corresponding XML elements are
encountered in the document, including nesting of elements, opening and closing of
elements, attribute order, document start and document end, and so forth.

■ As with proper XML syntax, all container elements have corresponding start and end
events; for example, every StartElement has a corresponding EndElement, even for empty
elements.

■ Attribute events are treated as secondary events, and are accessed from their
corresponding StartElement event.

■ Similar to Attribute events, Namespace events are treated as secondary, but appear twice
and are accessible twice in the event stream, first from their corresponding StartElement
and then from their corresponding EndElement.

■ Character events are specified for all elements, even if those elements have no character
data. Similarly, Character events can be split across events.

■ The StAX parser maintains a namespace stack, which holds information about all XML
namespaces defined for the current element and its ancestors. The namespace stack, which
is exposed through the javax.xml.namespace.NamespaceContext interface, can be
accessed by namespace prefix or URI.

Choosing between Cursor and Iterator APIs
It is reasonable to ask at this point, “What API should I choose? Should I create instances of
XMLStreamReader or XMLEventReader? Why are there two kinds of APIs anyway?”

StAX API

Chapter 18 • Streaming API for XML 559

Development Goals
The authors of the StAX specification targeted three types of developers:

■ Library and infrastructure developers: Need highly efficient, low-level APIs with minimal
extensibility requirements.

■ J2ME developers: Need small, simple, pull-parsing libraries, and have minimal extensibility
needs.

■ Java EE and Java SE developers: Need clean, efficient pull-parsing libraries, plus need the
flexibility to both read and write XML streams, create new event types, and extend XML
document elements and attributes.

Given these wide-ranging development categories, the StAX authors felt it was more useful to
define two small, efficient APIs rather than overloading one larger and necessarily more
complex API.

Comparing Cursor and Iterator APIs
Before choosing between the cursor and iterator APIs, you should note a few things that you
can do with the iterator API that you cannot do with cursor API:

■ Objects created from the XMLEvent subclasses are immutable, and can be used in arrays,
lists, and maps, and can be passed through your applications even after the parser has
moved on to subsequent events.

■ You can create subtypes of XMLEvent that are either completely new information items or
extensions of existing items but with additional methods.

■ You can add and remove events from an XML event stream in much simpler ways than with
the cursor API.

Similarly, keep some general recommendations in mind when making your choice:

■ If you are programming for a particularly memory-constrained environment, like J2ME,
you can make smaller, more efficient code with the cursor API.

■ If performance is your highest priority (for example, when creating low-level libraries or
infrastructure), the cursor API is more efficient.

■ If you want to create XML processing pipelines, use the iterator API.
■ If you want to modify the event stream, use the iterator API.
■ If you want your application to be able to handle pluggable processing of the event stream,

use the iterator API.
■ In general, if you do not have a strong preference one way or the other, using the iterator

API is recommended because it is more flexible and extensible, thereby “future-proofing”
your applications.

StAX API

The Java EE 5 Tutorial • October 2008560

Using StAX
In general, StAX programmers create XML stream readers, writers, and events by using the
XMLInputFactory, XMLOutputFactory, and XMLEventFactory classes. Configuration is done by
setting properties on the factories, whereby implementation-specific settings can be passed to
the underlying implementation using the setProperty method on the factories. Similarly,
implementation-specific settings can be queried using the getProperty factory method.

The XMLInputFactory, XMLOutputFactory, and XMLEventFactory classes are described below,
followed by discussions of resource allocation, namespace and attribute management, error
handling, and then finally reading and writing streams using the cursor and iterator APIs.

StAX Factory Classes
The StAX factory classes. XMLInputFactory, XMLOutputFactory, and XMLEventFactory, let you
define and configure implementation instances of XML stream reader, stream writer, and event
classes.

XMLInputFactoryClass
The XMLInputFactory class lets you configure implementation instances of XML stream reader
processors created by the factory. New instances of the abstract class XMLInputFactory are
created by calling the newInstance method on the class. The static method
XMLInputFactory.newInstance is then used to create a new factory instance.

Deriving from JAXP, the XMLInputFactory.newInstance method determines the specific
XMLInputFactory implementation class to load by using the following lookup procedure:

1. Use the javax.xml.stream.XMLInputFactory system property.

2. Use the lib/xml.stream.properties file in the J2SE Java Runtime Environment (JRE)
directory.

3. Use the Services API, if available, to determine the classname by looking in the
META-INF/services/javax.xml.stream.XMLInputFactory files in JAR files available to
the JRE.

4. Use the platform default XMLInputFactory instance.

After getting a reference to an appropriate XMLInputFactory, an application can use the factory
to configure and create stream instances. Table 18–4 lists the properties supported by
XMLInputFactory. See the StAX specification for a more detailed listing.

Using StAX

Chapter 18 • Streaming API for XML 561

TABLE 18–4 javax.xml.stream.XMLInputFactoryProperties

Property Description

isValidating Turns on implementation-specific validation.

isCoalescing (Required) Requires the processor to coalesce adjacent character data.

isNamespaceAware Turns off namespace support. All implementations must support
namespaces. Support for non-namespace-aware documents is
optional.

isReplacingEntityReferences (Required) Requires the processor to replace internal entity references
with their replacement value and report them as characters or the set
of events that describe the entity.

isSupportingExternalEntities (Required) Requires the processor to resolve external parsed entities.

reporter (Required) Sets and gets the implementation of the XMLReporter
interface.

resolver (Required) Sets and gets the implementation of the XMLResolver
interface.

allocator (Required) Sets and gets the implementation of the
XMLEventAllocator interface.

XMLOutputFactoryClass
New instances of the abstract class XMLOutputFactory are created by calling the newInstance
method on the class. The static method XMLOutputFactory.newInstance is then used to create
a new factory instance. The algorithm used to obtain the instance is the same as for
XMLInputFactory but references the javax.xml.stream.XMLOutputFactory system property.

XMLOutputFactory supports only one property, javax.xml.stream.isRepairingNamespaces.
This property is required, and its purpose is to create default prefixes and associate them with
Namespace URIs. See the StAX specification for more information.

XMLEventFactoryClass
New instances of the abstract class XMLEventFactory are created by calling the newInstance
method on the class. The static method XMLEventFactory.newInstance is then used to create a
new factory instance. This factory references the javax.xml.stream.XMLEventFactory
property to instantiate the factory. The algorithm used to obtain the instance is the same as for
XMLInputFactory and XMLOutputFactory but references the
javax.xml.stream.XMLEventFactory system property.

There are no default properties for XMLEventFactory.

Using StAX

The Java EE 5 Tutorial • October 2008562

Resources, Namespaces, and Errors
The StAX specification handles resource resolution, attributes and namespace, and errors and
exceptions as described below.

Resource Resolution
The XMLResolver interface provides a means to set the method that resolves resources during
XML processing. An application sets the interface on XMLInputFactory, which then sets the
interface on all processors created by that factory instance.

Attributes and Namespaces
Attributes are reported by a StAX processor using lookup methods and strings in the cursor
interface, and Attribute and Namespace events in the iterator interface. Note here that
namespaces are treated as attributes, although namespaces are reported separately from
attributes in both the cursor and iterator APIs. Note also that namespace processing is optional
for StAX processors. See the StAX specification for complete information about namespace
binding and optional namespace processing.

Error Reporting and Exception Handling
All fatal errors are reported by way of the javax.xml.stream.XMLStreamException interface.
All nonfatal errors and warnings are reported using the javax.xml.stream.XMLReporter
interface.

Reading XML Streams
As described earlier in this chapter, the way you read XML streams with a StAX processor, and
what you get back, vary significantly depending on whether you are using the StAX cursor API
or the event iterator API. The following two sections describe how to read XML streams with
each of these APIs.

Using XMLStreamReader

The XMLStreamReader interface in the StAX cursor API lets you read XML streams or
documents in a forward direction only, one item in the infoset at a time. The following methods
are available for pulling data from the stream or skipping unwanted events:

■ Get the value of an attribute
■ Read XML content
■ Determine whether an element has content or is empty
■ Get indexed access to a collection of attributes
■ Get indexed access to a collection of namespaces

Using StAX

Chapter 18 • Streaming API for XML 563

■ Get the name of the current event (if applicable)
■ Get the content of the current event (if applicable)

Instances of XMLStreamReader have at any one time a single current event on which its methods
operate. When you create an instance of XMLStreamReader on a stream, the initial current event
is the START_DOCUMENT state. The XMLStreamReader.next method can then be used to step to
the next event in the stream.

Reading Properties, Attributes, and Namespaces

The XMLStreamReader.next method loads the properties of the next event in the stream. You
can then access those properties by calling the XMLStreamReader.getLocalName and
XMLStreamReader.getText methods.

When the XMLStreamReader cursor is over a StartElement event, it reads the name and any
attributes for the event, including the namespace. All attributes for an event can be accessed
using an index value, and can also be looked up by namespace URI and local name. Note,
however, that only the namespaces declared on the current StartEvent are available;
previously declared namespaces are not maintained, and redeclared namespaces are not
removed.

XMLStreamReaderMethods

XMLStreamReader provides the following methods for retrieving information about
namespaces and attributes:

int getAttributeCount();

String getAttributeNamespace(int index);

String getAttributeLocalName(int index);

String getAttributePrefix(int index);

String getAttributeType(int index);

String getAttributeValue(int index);

String getAttributeValue(String namespaceUri, String localName);

boolean isAttributeSpecified(int index);

Namespaces can also be accessed using three additional methods:

int getNamespaceCount();

String getNamespacePrefix(int index);

String getNamespaceURI(int index);

Instantiating an XMLStreamReader

This example, taken from the StAX specification, shows how to instantiate an input factory,
create a reader, and iterate over the elements of an XML stream:

Using StAX

The Java EE 5 Tutorial • October 2008564

XMLInputFactory f = XMLInputFactory.newInstance();

XMLStreamReader r = f.createXMLStreamReader(...);

while(r.hasNext()) {

r.next();

}

Using XMLEventReader

The XMLEventReader API in the StAX event iterator API provides the means to map events in
an XML stream to allocated event objects that can be freely reused, and the API itself can be
extended to handle custom events.

XMLEventReader provides four methods for iteratively parsing XML streams:

■ next: Returns the next event in the stream
■ nextEvent: Returns the next typed XMLEvent
■ hasNext: Returns true if there are more events to process in the stream
■ peek: Returns the event but does not iterate to the next event

For example, the following code snippet illustrates the XMLEventReader method declarations:

package javax.xml.stream;

import java.util.Iterator;

public interface XMLEventReader extends Iterator {

public Object next();

public XMLEvent nextEvent() throws XMLStreamException;

public boolean hasNext();

public XMLEvent peek() throws XMLStreamException;

...

}

To read all events on a stream and then print them, you could use the following:

while(stream.hasNext()) {

XMLEvent event = stream.nextEvent();

System.out.print(event);

}

Reading Attributes
You can access attributes from their associated javax.xml.stream.StartElement, as follows:

public interface StartElement extends XMLEvent {

public Attribute getAttributeByName(QName name);

public Iterator getAttributes();

}

You can use the getAttributes method on the StartElement interface to use an Iterator

over all the attributes declared on that StartElement.

Using StAX

Chapter 18 • Streaming API for XML 565

Reading Namespaces

Similar to reading attributes, namespaces are read using an Iterator created by calling the
getNamespaces method on the StartElement interface. Only the namespace for the current
StartElement is returned, and an application can get the current namespace context by using
StartElement.getNamespaceContext.

Writing XML Streams
StAX is a bidirectional API, and both the cursor and event iterator APIs have their own set of
interfaces for writing XML streams. As with the interfaces for reading streams, there are
significant differences between the writer APIs for cursor and event iterator. The following
sections describe how to write XML streams using each of these APIs.

Using XMLStreamWriter

The XMLStreamWriter interface in the StAX cursor API lets applications write back to an XML
stream or create entirely new streams. XMLStreamWriter has methods that let you:
■ Write well-formed XML
■ Flush or close the output
■ Write qualified names

Note that XMLStreamWriter implementations are not required to perform well-formedness or
validity checks on input. While some implementations may perform strict error checking,
others may not. The rules you implement are applied to properties defined in the
XMLOutputFactory class.

The writeCharacters method is used to escape characters such as &, <, >, and ". Binding
prefixes can be handled by either passing the actual value for the prefix, by using the setPrefix
method, or by setting the property for defaulting namespace declarations.

The following example, taken from the StAX specification, shows how to instantiate an output
factory, create a writer, and write XML output:

XMLOutputFactory output = XMLOutputFactory.newInstance();

XMLStreamWriter writer = output.createXMLStreamWriter(...);

writer.writeStartDocument();

writer.setPrefix("c","http://c");
writer.setDefaultNamespace("http://c");
writer.writeStartElement("http://c","a");
writer.writeAttribute("b","blah");
writer.writeNamespace("c","http://c");
writer.writeDefaultNamespace("http://c");
writer.setPrefix("d","http://c");
writer.writeEmptyElement("http://c","d");

Using StAX

The Java EE 5 Tutorial • October 2008566

writer.writeAttribute("http://c","chris","fry");
writer.writeNamespace("d","http://c");
writer.writeCharacters("Jean Arp");
writer.writeEndElement();

writer.flush();

This code generates the following XML (new lines are non-normative):

<?xml version=’1.0’ encoding=’utf-8’?>

<d:d d:chris="fry" xmlns:d="http://c"/>Jean Arp

Using XMLEventWriter

The XMLEventWriter interface in the StAX event iterator API lets applications write back to an
XML stream or create entirely new streams. This API can be extended, but the main API is as
follows:

public interface XMLEventWriter {

public void flush() throws XMLStreamException;

public void close() throws XMLStreamException;

public void add(XMLEvent e) throws XMLStreamException;

// ... other methods not shown.

}

Instances of XMLEventWriter are created by an instance of XMLOutputFactory. Stream events
are added iteratively, and an event cannot be modified after it has been added to an event writer
instance.

Attributes, Escaping Characters, Binding Prefixes

StAX implementations are required to buffer the last StartElement until an event other than
Attribute or Namespace is added or encountered in the stream. This means that when you add
an Attribute or a Namespace to a stream, it is appended the current StartElement event.

You can use the Characters method to escape characters like &, <, >, and ".

The setPrefix(...) method can be used to explicitly bind a prefix for use during output, and
the getPrefix(...) method can be used to get the current prefix. Note that by default,
XMLEventWriter adds namespace bindings to its internal namespace map. Prefixes go out of
scope after the corresponding EndElement for the event in which they are bound.

Using StAX

Chapter 18 • Streaming API for XML 567

Sun’s Streaming XML Parser Implementation
Application Server includes Sun Microsystems’ JSR 173 (StAX) implementation, called the Sun
Java Streaming XML Parser (referred to as Streaming XML Parser). The Streaming XML Parser
is a high-speed, non-validating, W3C XML 1.0 and Namespace 1.0-compliant streaming XML
pull parser built upon the Xerces2 codebase.

In Sun’s Streaming XML Parser implementation, the Xerces2 lower layers, particularly the
Scanner and related classes, have been redesigned to behave in a pull fashion. In addition to the
changes in the lower layers, the Streaming XML Parser includes additional StAX-related
functionality and many performance-enhancing improvements. The Streaming XML Parser is
implemented in the appserv-ws.jar and javaee.jar files, both of which are located in the
as-install/lib/ directory.

Included with this Java EE tutorial are StAX code examples, located in the
tut-install/javaeetutorial5/examples/stax/ directory, that illustrate how Sun’s Streaming
XML Parser implementation works. These examples are described in “Example Code” on
page 569.

Before you proceed with the example code, there are two aspects of the Streaming XML Parser
of which you should be aware:

■ “Reporting CDATA Events” on page 568
■ “Streaming XML Parser Factories Implementation” on page 568

These topics are discussed below.

Reporting CDATA Events
The javax.xml.stream.XMLStreamReader implemented in the Streaming XML Parser does
not report CDATA events. If you have an application that needs to receive such events,
configure the XMLInputFactory to set the following implementation-specific
report-cdata-event property:

XMLInputFactory factory = XMLInptuFactory.newInstance();

factory.setProperty("report-cdata-event", Boolean.TRUE);

Streaming XML Parser Factories Implementation
Most applications do not need to know the factory implementation class name. Just adding the
javaee.jar and appserv-ws.jar files to the classpath is sufficient for most applications
because these two jars supply the factory implementation classname for various Streaming
XML Parser properties under the META-INF/services/ directory (for example,
javax.xml.stream.XMLInputFactory, javax.xml.stream.XMLOutputFactory, and
javax.xml.stream.XMLEventFactory).

Sun’s Streaming XML Parser Implementation

The Java EE 5 Tutorial • October 2008568

However, there may be scenarios when an application would like to know about the factory
implementation class name and set the property explicitly. These scenarios could include cases
where there are multiple JSR 173 implementations in the classpath and the application wants to
choose one, perhaps one that has superior performance, contains a crucial bug fix, or suchlike.

If an application sets the SystemProperty, it is the first step in a lookup operation, and so
obtaining the factory instance would be fast compared to other options; for example:

javax.xml.stream.XMLInputFactory -->

com.sun.xml.stream.ZephyrParserFactory

javax.xml.stream.XMLOutputFactory -->

com.sun.xml.stream.ZephyrWriterFactor

javax.xml.stream.XMLEventFactory -->

com.sun.xml.stream.events.ZephyrEventFactory

Example Code
This section steps through the example StAX code included in the Java EE 5 Tutorial bundle. All
example directories used in this section are located in the
tut-install/javaeetutorial5/examples/stax/ directory.

The topics covered in this section are as follows:
■ “Example Code Organization” on page 569
■ “Example XML Document” on page 570
■ “Cursor Example” on page 570
■ “Cursor-to-Event Example” on page 573
■ “Event Example” on page 575
■ “Filter Example” on page 577
■ “Read-and-Write Example” on page 580
■ “Writer Example” on page 582

Example Code Organization
The tut-install/javaeetutorial5/examples/stax/ directory contains the six StAX example
directories:
■ Cursor example: The cursor directory contains CursorParse.java, which illustrates how

to use the XMLStreamReader (cursor) API to read an XML file.
■ Cursor-to-Event example: The cursor2event directory contains

CursorApproachEventObject.java, which illustrates how an application can get
information as an XMLEvent object when using cursor API.

■ Event example: The event directory contains EventParse.java, which illustrates how to
use the XMLEventReader (event iterator) API to read an XML file.

Example Code

Chapter 18 • Streaming API for XML 569

■ Filter example: The filter directory contains MyStreamFilter.java, which illustrates
how to use the StAX Stream Filter APIs. In this example, the filter accepts only
StartElement and EndElement events, and filters out the remainder of the events.

■ Read-and-Write example: The readnwrite directory contains
EventProducerConsumer.java, which illustrates how the StAX producer/consumer
mechanism can be used to simultaneously read and write XML streams.

■ Writer example: The writer directory contains CursorWriter.java, which illustrates how
to use XMLStreamWriter to write an XML file programatically.

All of the StAX examples except for the Writer example use an example XML document,
BookCatalog.xml.

Example XML Document
The example XML document, BookCatalog.xml, used by most of the StAX example classes, is a
simple book catalog based on the common BookCatalogue namespace. The contents of
BookCatalog.xml are listed below:

<?xml version="1.0" encoding="UTF-8"?>
<BookCatalogue xmlns="http://www.publishing.org">

<Book>

<Title>Yogasana Vijnana: the Science of Yoga</Title>

<author>Dhirendra Brahmachari</Author>

<Date>1966</Date>

<ISBN>81-40-34319-4</ISBN>

<Publisher>Dhirendra Yoga Publications</Publisher>

<Cost currency="INR">11.50</Cost>
</Book>

<Book>

<Title>The First and Last Freedom</Title>

<Author>J. Krishnamurti</Author>

<Date>1954</Date>

<ISBN>0-06-064831-7</ISBN>

<Publisher>Harper & Row</Publisher>

<Cost currency="USD">2.95</Cost>
</Book>

</BookCatalogue>

Cursor Example
Located in the tut-install/javaeetutorial5/examples/stax/cursor/ directory,
CursorParse.java demonstrates using the StAX cursor API to read an XML document. In the
Cursor example, the application instructs the parser to read the next event in the XML input
stream by calling <code>next()</code>.

Example Code

The Java EE 5 Tutorial • October 2008570

Note that <code>next()</code> just returns an integer constant corresponding to underlying
event where the parser is positioned. The application needs to call the relevant function to get
more information related to the underlying event.

You can imagine this approach as a virtual cursor moving across the XML input stream. There
are various accessor methods which can be called when that virtual cursor is at a particular
event.

Stepping through Events
In this example, the client application pulls the next event in the XML stream by calling the next
method on the parser; for example:

try {

for (int i = 0 ; i < count ; i++) {

// pass the file name.. all relative entity

// references will be resolved against this as

// base URI.

XMLStreamReader xmlr =

xmlif.createXMLStreamReader(filename,

new FileInputStream(filename));

// when XMLStreamReader is created, it is positioned

// at START_DOCUMENT event.

int eventType = xmlr.getEventType();

printEventType(eventType);

printStartDocument(xmlr);

// check if there are more events in the input stream

while(xmlr.hasNext()) {

eventType = xmlr.next();

printEventType(eventType);

// these functions print the information about

// the particular event by calling the relevant

// function

printStartElement(xmlr);

printEndElement(xmlr);

printText(xmlr);

printPIData(xmlr);

printComment(xmlr);

}

}

}

Note that next just returns an integer constant corresponding to the event underlying the
current cursor location. The application calls the relevant function to get more information
related to the underlying event. There are various accessor methods which can be called when
the cursor is at particular event.

Example Code

Chapter 18 • Streaming API for XML 571

Returning String Representations
Because the next method only returns integers corresponding to underlying event types, you
typically need to map these integers to string representations of the events; for example:

public final static String getEventTypeString(int eventType) {

switch (eventType) {

case XMLEvent.START_ELEMENT:

return "START_ELEMENT";
case XMLEvent.END_ELEMENT:

return "END_ELEMENT";
case XMLEvent.PROCESSING_INSTRUCTION:

return "PROCESSING_INSTRUCTION";
case XMLEvent.CHARACTERS:

return "CHARACTERS";
case XMLEvent.COMMENT:

return "COMMENT";
case XMLEvent.START_DOCUMENT:

return "START_DOCUMENT";
case XMLEvent.END_DOCUMENT:

return "END_DOCUMENT";
case XMLEvent.ENTITY_REFERENCE:

return "ENTITY_REFERENCE";
case XMLEvent.ATTRIBUTE:

return "ATTRIBUTE";
case XMLEvent.DTD:

return "DTD";
case XMLEvent.CDATA:

return "CDATA";
case XMLEvent.SPACE:

return "SPACE";
}

return "UNKNOWN_EVENT_TYPE , " + eventType;

}

Building and Running the Cursor Example Using NetBeans IDE
Follow these instructions to build and run the Cursor example on your Application Server
instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to the tut-install/javaeetutorial5/examples/stax/

directory.
3. Select the cursor folder.
4. Select the Open as Main Project check box.
5. Click Open Project.

Example Code

The Java EE 5 Tutorial • October 2008572

6. In the Projects tab, right-click the cursor project and select Properties. The Project
Properties dialog is displayed.

7. Enter the following in the Arguments field:

-x 1 BookCatalog.xml

8. Click OK.
9. Right-click the cursor project and select Run.

Building and Running the Cursor Example Using Ant
To compile and run the Cursor example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/cursor/ directory and type the following:

ant run-cursor

Cursor-to-Event Example
Located in the tut-install/javaeetutorial5/examples/stax/cursor2event/ directory,
CursorApproachEventObject.java demonstrates how to get information returned by an
XMLEvent object even when using the cursor API.

The idea here is that the cursor API’s XMLStreamReader returns integer constants
corresponding to particular events, while the event iterator API’s XMLEventReader returns
immutable and persistent event objects. XMLStreamReader is more efficient, but
XMLEventReader is easier to use, because all the information related to a particular event is
encapsulated in a returned XMLEvent object. However, the disadvantage of event approach is the
extra overhead of creating objects for every event, which consumes both time and memory.

With this mind, XMLEventAllocator can be used to get event information as an XMLEvent

object, even when using the cursor API.

Instantiating an XMLEventAllocator

The first step is to create a new XMLInputFactory and instantiate an XMLEventAllocator:

XMLInputFactory xmlif = XMLInputFactory.newInstance();

System.out.println("FACTORY: " + xmlif);

xmlif.setEventAllocator(new XMLEventAllocatorImpl());

allocator = xmlif.getEventAllocator();

XMLStreamReader xmlr = xmlif.createXMLStreamReader(filename,

new FileInputStream(filename));

Creating an Event Iterator
The next step is to create an event iterator:

Example Code

Chapter 18 • Streaming API for XML 573

int eventType = xmlr.getEventType();

while(xmlr.hasNext()){

eventType = xmlr.next();

//Get all "Book" elements as XMLEvent object

if(eventType == XMLStreamConstants.START_ELEMENT &&

xmlr.getLocalName().equals("Book")){
//get immutable XMLEvent

StartElement event = getXMLEvent(xmlr).asStartElement();

System.out.println("EVENT: " + event.toString());

}

}

Creating the Allocator Method
The final step is to create the XMLEventAllocator method:

private static XMLEvent getXMLEvent(XMLStreamReader reader)

throws XMLStreamException {

return allocator.allocate(reader);

}

Building and Running the Cursor-to-Event Example Using NetBeans
IDE
Follow these instructions to build and run the Cursor-to-Event example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to the tut-install/javaeetutorial5/examples/stax/

directory.
3. Select the cursor2event folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the cursor2event project and select Properties. The Project

Properties dialog is displayed.
7. Enter the following in the Arguments field:

BookCatalog.xml

8. Click OK.
9. Right-click the cursor2event project and select Run.

Note how the Book events are returned as strings.

Example Code

The Java EE 5 Tutorial • October 2008574

Building and Running the Cursor-to-Event Example Using Ant
To compile and run the Cursor-to-Event example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/cursor2event/ directory and type the
following:

ant run-cursor2event

Event Example
Located in the tut-install/javaeetutorial5/examples/stax/event/ directory,
EventParse.java demonstrates how to use the StAX event API to read an XML document.

Creating an Input Factory
The first step is to create a new instance of XMLInputFactory:

XMLInputFactory factory = XMLInputFactory.newInstance();

System.out.println("FACTORY: " + factory);

Creating an Event Reader
The next step is to create an instance of XMLEventReader:

XMLEventReader r = factory.createXMLEventReader(filename,

new FileInputStream(filename));

Creating an Event Iterator
The third step is to create an event iterator:

XMLEventReader r = factory.createXMLEventReader(filename,

new FileInputStream(filename));

while(r.hasNext()) {

XMLEvent e = r.nextEvent();

System.out.println(e.toString());

}

Getting the Event Stream
The final step is to get the underlying event stream:

public final static String getEventTypeString(int eventType) {

switch (eventType) {

case XMLEvent.START_ELEMENT:

return "START_ELEMENT";

Example Code

Chapter 18 • Streaming API for XML 575

case XMLEvent.END_ELEMENT:

return "END_ELEMENT";
case XMLEvent.PROCESSING_INSTRUCTION:

return "PROCESSING_INSTRUCTION";
case XMLEvent.CHARACTERS:

return "CHARACTERS";
case XMLEvent.COMMENT:

return "COMMENT";
case XMLEvent.START_DOCUMENT:

return "START_DOCUMENT";
case XMLEvent.END_DOCUMENT:

return "END_DOCUMENT";
case XMLEvent.ENTITY_REFERENCE:

return "ENTITY_REFERENCE";
case XMLEvent.ATTRIBUTE:

return "ATTRIBUTE";
case XMLEvent.DTD:

return "DTD";
case XMLEvent.CDATA:

return "CDATA";
case XMLEvent.SPACE:

return "SPACE";
}

return "UNKNOWN_EVENT_TYPE " + "," + eventType;

}

Returning the Output
When you run the Event example, the EventParse class is compiled, and the XML stream is
parsed as events and returned to STDOUT. For example, an instance of the Author element is
returned as:

<[’http://www.publishing.org’]::Author>
Dhirendra Brahmachari

</[’http://www.publishing.org’]::Author>

Note in this example that the event comprises an opening and closing tag, both of which include
the namespace. The content of the element is returned as a string within the tags.

Similarly, an instance of the Cost element is returned as:

<[’http://www.publishing.org’]::Cost currency=’INR’>
11.50

</[’http://www.publishing.org’]::Cost>

In this case, the currency attribute and value are returned in the opening tag for the event.

Example Code

The Java EE 5 Tutorial • October 2008576

Building and Running the Event Example Using NetBeans IDE
Follow these instructions to build and run the Event example on your Application Server
instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to the tut-install/javaeetutorial5/examples/stax/

directory.
3. Select the event folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the event project and select Properties. The Project

Properties dialog is displayed.
7. Enter the following in the Arguments field:

BookCatalog.xml

8. Click OK.
9. Right-click the event project and select Run.

Building and Running the Event Example Using Ant
To compile and run the Event example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/event/ directory and type the following:

ant run-event

Filter Example
Located in the tut-install/javaeetutorial5/examples/stax/filter/ directory,
MyStreamFilter.java demonstrates how to use the StAX stream filter API to filter out events
not needed by your application. In this example, the parser filters out all events except
StartElement and EndElement.

Implementing the StreamFilterClass
The MyStreamFilter class implements javax.xml.stream.StreamFilter:

public class MyStreamFilter

implements javax.xml.stream.StreamFilter {

Creating an Input Factory
The next step is to create an instance of XMLInputFactory. In this case, various properties are
also set on the factory:

Example Code

Chapter 18 • Streaming API for XML 577

XMLInputFactory xmlif = null ;

try {

xmlif = XMLInputFactory.newInstance();

xmlif.setProperty(

XMLInputFactory.IS_REPLACING_ENTITY_REFERENCES,

Boolean.TRUE);

xmlif.setProperty(

XMLInputFactory.IS_SUPPORTING_EXTERNAL_ENTITIES,

Boolean.FALSE);

xmlif.setProperty(XMLInputFactory.IS_NAMESPACE_AWARE,

Boolean.TRUE);

xmlif.setProperty(XMLInputFactory.IS_COALESCING,

Boolean.TRUE);

} catch (Exception ex) {

ex.printStackTrace();

}

System.out.println("FACTORY: " + xmlif);

System.out.println("filename = "+ filename);

Creating the Filter
The next step is to instantiate a file input stream and create the stream filter:

FileInputStream fis = new FileInputStream(filename);

XMLStreamReader xmlr = xmlif.createFilteredReader(

xmlif.createXMLStreamReader(fis), new MyStreamFilter());

int eventType = xmlr.getEventType();

printEventType(eventType);

while(xmlr.hasNext()) {

eventType = xmlr.next();

printEventType(eventType);

printName(xmlr,eventType);

printText(xmlr);

if (xmlr.isStartElement()) {

printAttributes(xmlr);

}

printPIData(xmlr);

System.out.println("-----------------------------");
}

Capturing the Event Stream
The next step is to capture the event stream. This is done in basically the same way as in the
Event example.

Example Code

The Java EE 5 Tutorial • October 2008578

Filtering the Stream
The final step is to filter the stream:

public boolean accept(XMLStreamReader reader) {

if (!reader.isStartElement() && !reader.isEndElement())

return false;

else

return true;

}

Returning the Output
When you run the Filter example, the MyStreamFilter class is compiled, and the XML stream
is parsed as events and returned to STDOUT. For example, an Author event is returned as follows:

EVENT TYPE(1):START_ELEMENT

HAS NAME: Author

HAS NO TEXT

HAS NO ATTRIBUTES

EVENT TYPE(2):END_ELEMENT

HAS NAME: Author

HAS NO TEXT

Similarly, a Cost event is returned as follows:

EVENT TYPE(1):START_ELEMENT

HAS NAME: Cost

HAS NO TEXT

HAS ATTRIBUTES:

ATTRIBUTE-PREFIX:

ATTRIBUTE-NAMESP: null

ATTRIBUTE-NAME: currency

ATTRIBUTE-VALUE: USD

ATTRIBUTE-TYPE: CDATA

EVENT TYPE(2):END_ELEMENT

HAS NAME: Cost

HAS NO TEXT

See “Iterator API” on page 555 and “Reading XML Streams” on page 563 for a more detailed
discussion of StAX event parsing.

Example Code

Chapter 18 • Streaming API for XML 579

Building and Running the Filter Example Using NetBeans IDE
Follow these instructions to build and run the Filter example on your Application Server
instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to the tut-install/javaeetutorial5/examples/stax/

directory.
3. Select the filter folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the filter project and select Properties. The Project

Properties dialog is displayed.
7. Enter the following in the Arguments field:

-f BookCatalog.xml

8. Click OK.
9. Right-click the filter project and select Run.

Building and Running the Filter Example Using Ant
To compile and run the Filter example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/filter/ directory and type the following:

ant run-filter

Read-and-Write Example
Located in the tut-install/javaeetutorial5/examples/stax/readnwrite/ directory,
EventProducerConsumer.java demonstrates how to use a StAX parser simultaneously as both
a producer and a consumer.

The StAX XMLEventWriter API extends from the XMLEventConsumer interface, and is referred
to as an event consumer. By contrast, XMLEventReader is an event producer. StAX supports
simultaneous reading and writing, such that it is possible to read from one XML stream
sequentially and simultaneously write to another stream.

The Read-and-Write example shows how the StAX producer/consumer mechanism can be
used to read and write simultaneously. This example also shows how a stream can be modified
and how new events can be added dynamically and then written to a different stream.

Example Code

The Java EE 5 Tutorial • October 2008580

Creating an Event Producer/Consumer
The first step is to instantiate an event factory and then create an instance of an event
producer/consumer:

XMLEventFactory m_eventFactory = XMLEventFactory.newInstance();

public EventProducerConsumer() {

}

...

try {

EventProducerConsumer ms = new EventProducerConsumer();

XMLEventReader reader =

XMLInputFactory.newInstance().createXMLEventReader(

new java.io.FileInputStream(args[0]));

XMLEventWriter writer =

XMLOutputFactory.newInstance().createXMLEventWriter(

System.out);

Creating an Iterator
The next step is to create an iterator to parse the stream:

while(reader.hasNext()) {

XMLEvent event = (XMLEvent)reader.next();

if (event.getEventType() == event.CHARACTERS) {

writer.add(ms.getNewCharactersEvent(event.asCharacters()));

} else {

writer.add(event);

}

}

writer.flush();

Creating a Writer
The final step is to create a stream writer in the form of a new Character event:

Characters getNewCharactersEvent(Characters event) {

if (event.getData().equalsIgnoreCase("Name1")) {

return m_eventFactory.createCharacters(

Calendar.getInstance().getTime().toString());

}

//else return the same event

else {

return event;

}

}

Example Code

Chapter 18 • Streaming API for XML 581

Returning the Output
When you run the Read-and-Write example, the EventProducerConsumer class is compiled,
and the XML stream is parsed as events and written back to STDOUT. The output is the contents
of the BookCatalog.xml file described in “Example XML Document” on page 570.

Building and Running the Read-and-Write Example Using NetBeans
IDE
Follow these instructions to build and run the Read-and-Write example on your Application
Server instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to the tut-install/javaeetutorial5/examples/stax/

directory.
3. Select the readnwrite folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the readnwrite project and select Properties. The Project

Properties dialog is displayed.
7. Enter the following in the Arguments field:

BookCatalog.xml

8. Click OK.
9. Right-click the readnwrite project and select Run.

Building and Running the Read-and-Write Example Using Ant
To compile and run the Read-and-Write example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/readnwrite/ directory and type the following:

ant run-readnwrite

Writer Example
Located in the tut-install/javaeetutorial5/examples/stax/writer/ directory,
CursorWriter.java demonstrates how to use the StAX cursor API to write an XML stream.

Creating the Output Factory
The first step is to create an instance of XMLOutputFactory:

XMLOutputFactory xof = XMLOutputFactory.newInstance();

Example Code

The Java EE 5 Tutorial • October 2008582

Creating a Stream Writer
The next step is to create an instance of XMLStreamWriter:

XMLStreamWriter xtw = null;

Writing the Stream
The final step is to write the XML stream. Note that the stream is flushed and closed after the
final EndDocument is written:

xtw = xof.createXMLStreamWriter(new FileWriter(fileName));

xtw.writeComment("all elements here are explicitly in the HTML namespace");
xtw.writeStartDocument("utf-8","1.0");
xtw.setPrefix("html", "http://www.w3.org/TR/REC-html40");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","html");
xtw.writeNamespace("html", "http://www.w3.org/TR/REC-html40");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","head");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","title");
xtw.writeCharacters("Frobnostication");
xtw.writeEndElement();

xtw.writeEndElement();

xtw.writeStartElement("http://www.w3.org/TR/REC-html40","body");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","p");
xtw.writeCharacters("Moved to");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","a");
xtw.writeAttribute("href","http://frob.com");
xtw.writeCharacters("here");
xtw.writeEndElement();

xtw.writeEndElement();

xtw.writeEndElement();

xtw.writeEndElement();

xtw.writeEndDocument();

xtw.flush();

xtw.close();

Returning the Output
When you run the Writer example, the CursorWriter class is compiled, and the XML stream is
parsed as events and written to a file named dist/CursorWriter-Output:

<!--all elements here are explicitly in the HTML namespace-->

<?xml version="1.0" encoding="utf-8"?>
<html:html xmlns:html="http://www.w3.org/TR/REC-html40">
<html:head>

<html:title>Frobnostication</html:title></html:head>

<html:body>

<html:p>Moved to <html:a href="http://frob.com">here</html:a>

Example Code

Chapter 18 • Streaming API for XML 583

</html:p>

</html:body>

</html:html>

In the actual dist/CursorWriter-Output file, this stream is written without any line breaks; the
breaks have been added here to make the listing easier to read. In this example, as with the
object stream in the Event example, the namespace prefix is added to both the opening and
closing HTML tags. Adding this prefix is not required by the StAX specification, but it is good
practice when the final scope of the output stream is not definitively known.

Building and Running the Writer Example Using NetBeans IDE
Follow these instructions to build and run the Writer example on your Application Server
instance using the NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog navigate to the tut-install/javaeetutorial5/examples/stax/

directory.
3. Select the writer folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the writer project and select Properties. The Project

Properties dialog is displayed.
7. Enter the following in the Arguments field:

-f dist/CursorWriter-Output

8. Click OK.
9. Right-click the writer project and select Run.

Building and Running the Writer Example Using Ant
To compile and run the Writer example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/writer/ directory and type the following:

ant run-writer

Example Code

The Java EE 5 Tutorial • October 2008584

Further Information about StAX
For more information about StAX, see:

■ Java Community Process page:
http://jcp.org/en/jsr/detail?id=173.

■ W3C Recommendation “Extensible Markup Language (XML) 1.0”:
http://www.w3.org/TR/REC-xml

■ XML Information Set:
http://www.w3.org/TR/xml-infoset/

■ W3C Recommendation “Document Object Model”:
http://www.w3.org/DOM/

■ SAX “Simple API for XML”:
http://www.saxproject.org/

■ DOM “Document Object Model”:
http://www.w3.org/

TR/2002/WD-DOM-Level-3-Core-20020409/core.html#ID-B63ED1A3

■ W3C Recommendation “Namespaces in XML”:
http://www.w3.org/TR/REC-xml-names/

For some useful articles about working with StAX, see:

■ Jeff Ryan, “Does StAX Belong in Your XML Toolbox?”:
http://www.developer.com/xml/article.php/3397691

■ Elliotte Rusty Harold, “An Introduction to StAX”:
http://www.xml.com/pub/a/2003/09/17/stax.html

Further Information about StAX

Chapter 18 • Streaming API for XML 585

http://jcp.org/en/jsr/detail?id=173
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/DOM/
http://www.saxproject.org/
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409/core.html#ID-B63ED1A3
http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20020409/core.html#ID-B63ED1A3
http://www.w3.org/TR/REC-xml-names/
http://www.developer.com/xml/article.php/3397691
http://www.xml.com/pub/a/2003/09/17/stax.html

586

SOAP with Attachments API for Java

SOAP with Attachments API for Java (SAAJ) is used mainly for the SOAP messaging that goes
on behind the scenes in JAX-WS handlers and JAXR implementations. Secondarily, it is an API
that developers can use when they choose to write SOAP messaging applications directly rather
than use JAX-WS. The SAAJ API allows you to do XML messaging from the Java platform: By
simply making method calls using the SAAJ API, you can read and write SOAP-based XML
messages, and you can optionally send and receive such messages over the Internet (some
implementations may not support sending and receiving). This chapter will help you learn how
to use the SAAJ API.

The SAAJ API conforms to the Simple Object Access Protocol (SOAP) 1.1 and 1.2 specifications
and the SOAP with Attachments specification. The SAAJ 1.3 specification defines the
javax.xml.soap package, which contains the API for creating and populating a SOAP message.
This package has all the API necessary for sending request-response messages.
(Request-response messages are explained in “SOAPConnection Objects” on page 591.)

Note – The javax.xml.messaging package, defined in the Java API for XML Messaging (JAXM)
1.1 specification, is not part of the Java EE platform and is not discussed in this chapter. The
JAXM API is available as a separate download from
http://java.sun.com/xml/downloads/jaxm.html.

This chapter starts with an overview of messages and connections, giving some of the
conceptual background behind the SAAJ API to help you understand why certain things are
done the way they are. Next, the tutorial shows you how to use the basic SAAJ API, giving
examples and explanations of the commonly used features. The code examples in the last part of
the tutorial show you how to build an application. The case study in Chapter 36, “The Coffee
Break Application,” includes SAAJ code for both sending and consuming a SOAP message.

19C H A P T E R 1 9

587

http://java.sun.com/xml/downloads/jaxm.html

Overview of SAAJ
This section presents a high-level view of how SAAJ messaging works and explains concepts in
general terms. Its goal is to give you some terminology and a framework for the explanations
and code examples that are presented in the tutorial section.

The overview looks at SAAJ from two perspectives: messages and connections.

SAAJ Messages
SAAJ messages follow SOAP standards, which prescribe the format for messages and also
specify some things that are required, optional, or not allowed. With the SAAJ API, you can
create XML messages that conform to the SOAP 1.1 or 1.2 specification and to the WS-I Basic
Profile 1.1 specification simply by making Java API calls.

The Structure of an XML Document
An XML document has a hierarchical structure made up of elements, subelements,
subsubelements, and so on. You will notice that many of the SAAJ classes and interfaces
represent XML elements in a SOAP message and have the word element or SOAP (or both) in
their names.

An element is also referred to as a node. Accordingly, the SAAJ API has the interface Node,
which is the base class for all the classes and interfaces that represent XML elements in a SOAP
message. There are also methods such as SOAPElement.addTextNode, Node.detachNode, and
Node.getValue, which you will see how to use in the tutorial section.

What Is in a Message?
The two main types of SOAP messages are those that have attachments and those that do not.

Messages with No Attachments
The following outline shows the very high-level structure of a SOAP message with no
attachments. Except for the SOAP header, all the parts listed are required to be in every SOAP
message.

I. SOAP message
A. SOAP part

1. SOAP envelope
a. SOAP header (optional)
b. SOAP body

The SAAJ API provides the SOAPMessage class to represent a SOAP message, the SOAPPart class
to represent the SOAP part, the SOAPEnvelope interface to represent the SOAP envelope, and so
on. Figure 19–1 illustrates the structure of a SOAP message with no attachments.

Overview of SAAJ

The Java EE 5 Tutorial • October 2008588

Note – Many SAAJ API interfaces extend DOM interfaces. In a SAAJ message, the SOAPPart
class is also a DOM document. See “SAAJ and DOM” on page 591 for details.

When you create a new SOAPMessage object, it will automatically have the parts that are
required to be in a SOAP message. In other words, a new SOAPMessage object has a SOAPPart
object that contains a SOAPEnvelope object. The SOAPEnvelope object in turn automatically
contains an empty SOAPHeader object followed by an empty SOAPBody object. If you do not need
the SOAPHeader object, which is optional, you can delete it. The rationale for having it
automatically included is that more often than not you will need it, so it is more convenient to
have it provided.

The SOAPHeader object can include one or more headers that contain metadata about the
message (for example, information about the sending and receiving parties). The SOAPBody
object, which always follows the SOAPHeader object if there is one, contains the message
content. If there is a SOAPFault object (see “Using SOAP Faults” on page 611), it must be in the
SOAPBody object.

SOAPMessage (an XML document)

SOAPPart

SOAPEnvelope

SOAPHeader (optional)

Header

Header

SOAPBody

XML Content
or SOAPFault

FIGURE 19–1 SOAPMessageObject with No Attachments

Overview of SAAJ

Chapter 19 • SOAP with Attachments API for Java 589

Messages with Attachments

A SOAP message may include one or more attachment parts in addition to the SOAP part. The
SOAP part must contain only XML content; as a result, if any of the content of a message is not
in XML format, it must occur in an attachment part. So if, for example, you want your message
to contain a binary file, your message must have an attachment part for it. Note that an
attachment part can contain any kind of content, so it can contain data in XML format as well.
Figure 19–2 shows the high-level structure of a SOAP message that has two attachments.

SOAPMessage (an XML document)

SOAPPart

SOAPEnvelope

SOAPHeader (optional)

Headers (if any)

SOAPBody

XML Content
or SOAPFault

AttachmentPart

Content (XML or non-XML)

MIME Headers

AttachmentPart

Content (XML or non-XML)

MIME Headers

FIGURE 19–2 SOAPMessageObject with Two AttachmentPart Objects

Overview of SAAJ

The Java EE 5 Tutorial • October 2008590

The SAAJ API provides the AttachmentPart class to represent an attachment part of a SOAP
message. A SOAPMessage object automatically has a SOAPPart object and its required
subelements, but because AttachmentPart objects are optional, you must create and add them
yourself. The tutorial section walks you through creating and populating messages with and
without attachment parts.

If a SOAPMessage object has one or more attachments, each AttachmentPart object must have a
MIME header to indicate the type of data it contains. It may also have additional MIME headers
to identify it or to give its location. These headers are optional but can be useful when there are
multiple attachments. When a SOAPMessage object has one or more AttachmentPart objects,
its SOAPPart object may or may not contain message content.

SAAJ and DOM
The SAAJ APIs extend their counterparts in the org.w3c.dom package:

■ The Node interface extends the org.w3c.dom.Node interface.
■ The SOAPElement interface extends both the Node interface and the org.w3c.dom.Element

interface.
■ The SOAPPart class implements the org.w3c.dom.Document interface.
■ The Text interface extends the org.w3c.dom.Text interface.

Moreover, the SOAPPart of a SOAPMessage is also a DOM Level 2 Document and can be
manipulated as such by applications, tools, and libraries that use DOM. For details on how to
use DOM documents with the SAAJ API, see “Adding Content to the SOAPPart Object” on
page 602 and “Adding a Document to the SOAP Body” on page 603.

SAAJ Connections
All SOAP messages are sent and received over a connection. With the SAAJ API, the connection
is represented by a SOAPConnection object, which goes from the sender directly to its
destination. This kind of connection is called a point-to-point connection because it goes from
one endpoint to another endpoint. Messages sent using the SAAJ API are called
request-response messages. They are sent over a SOAPConnection object with the call method,
which sends a message (a request) and then blocks until it receives the reply (a response).

SOAPConnectionObjects
The following code fragment creates the SOAPConnection object connection and then, after
creating and populating the message, uses connection to send the message. As stated
previously, all messages sent over a SOAPConnection object are sent with the call method,
which both sends the message and blocks until it receives the response. Thus, the return value
for the call method is the SOAPMessage object that is the response to the message that was sent.
The request parameter is the message being sent; endpoint represents where it is being sent.

Overview of SAAJ

Chapter 19 • SOAP with Attachments API for Java 591

SOAPConnectionFactory factory = SOAPConnectionFactory.newInstance();

SOAPConnection connection = factory.createConnection();

. . .// create a request message and give it content

java.net.URL endpoint = new URL("http://fabulous.com/gizmo/order");
SOAPMessage response = connection.call(request, endpoint);

Note that the second argument to the call method, which identifies where the message is being
sent, can be a String object or a URL object. Thus, the last two lines of code from the preceding
example could also have been the following:

String endpoint = "http://fabulous.com/gizmo/order";
SOAPMessage response = connection.call(request, endpoint);

A web service implemented for request-response messaging must return a response to any
message it receives. The response is a SOAPMessage object, just as the request is a SOAPMessage
object. When the request message is an update, the response is an acknowledgment that the
update was received. Such an acknowledgment implies that the update was successful. Some
messages may not require any response at all. The service that gets such a message is still
required to send back a response because one is needed to unblock the call method. In this
case, the response is not related to the content of the message; it is simply a message to unblock
the call method.

Now that you have some background on SOAP messages and SOAP connections, in the next
section you will see how to use the SAAJ API.

SAAJ Tutorial
This tutorial walks you through how to use the SAAJ API. First, it covers the basics of creating
and sending a simple SOAP message. Then you will learn more details about adding content to
messages, including how to create SOAP faults and attributes. Finally, you will learn how to
send a message and retrieve the content of the response.

After going through this tutorial, you will know how to perform the following tasks:

■ “Creating and Sending a Simple Message” on page 593
■ “Adding Content to the Header” on page 601
■ “Adding Content to the SOAPPart Object” on page 602
■ “Adding a Document to the SOAP Body” on page 603
■ “Manipulating Message Content Using SAAJ or DOM APIs” on page 603
■ “Adding Attachments” on page 603
■ “Adding Attributes” on page 606
■ “Using SOAP Faults” on page 611

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008592

In the section “Code Examples” on page 615, you will see the code fragments from earlier parts
of the tutorial in runnable applications, which you can test yourself. To see how the SAAJ API
can be used in server code, see the SAAJ part of the Coffee Break case study (“SAAJ Coffee
Supplier Service” on page 1034), which shows an example of both the client and the server code
for a web service application.

A SAAJ client can send request-response messages to web services that are implemented to do
request-response messaging. This section demonstrates how you can do this.

Creating and Sending a Simple Message
This section covers the basics of creating and sending a simple message and retrieving the
content of the response. It includes the following topics:
■ “Creating a Message” on page 593
■ “Parts of a Message” on page 594
■ “Accessing Elements of a Message” on page 594
■ “Adding Content to the Body” on page 595
■ “Getting a SOAPConnection Object” on page 599
■ “Sending a Message” on page 599
■ “Getting the Content of a Message” on page 600

Creating a Message
The first step is to create a message using a MessageFactory object. The SAAJ API provides a
default implementation of the MessageFactory class, thus making it easy to get an instance.
The following code fragment illustrates getting an instance of the default message factory and
then using it to create a message.

MessageFactory factory = MessageFactory.newInstance();

SOAPMessage message = factory.createMessage();

As is true of the newInstance method for SOAPConnectionFactory, the newInstance method
for MessageFactory is static, so you invoke it by calling MessageFactory.newInstance.

If you specify no arguments to the newInstance method, it creates a message factory for SOAP
1.1 messages. To create a message factory that allows you to create and process SOAP 1.2
messages, use the following method call:

MessageFactory factory =

MessageFactory.newInstance(SOAPConstants.SOAP_1_2_PROTOCOL);

To create a message factory that can create either SOAP 1.1 or SOAP 1.2 messages, use the
following method call:

MessageFactory factory =

MessageFactory.newInstance(SOAPConstants.DYNAMIC_SOAP_PROTOCOL);

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 593

This kind of factory enables you to process an incoming message that might be of either type.

Parts of a Message
A SOAPMessage object is required to have certain elements, and, as stated previously, the SAAJ
API simplifies things for you by returning a new SOAPMessage object that already contains these
elements. When you call createMessage with no arguments, the message that is created
automatically has the following:

I. A SOAPPart object that contains
A. A SOAPEnvelope object that contains

1. An empty SOAPHeader object
2. An empty SOAPBody object

The SOAPHeader object is optional and can be deleted if it is not needed. However, if there is
one, it must precede the SOAPBody object. The SOAPBody object can hold either the content of
the message or a fault message that contains status information or details about a problem with
the message. The section “Using SOAP Faults” on page 611 walks you through how to use
SOAPFault objects.

Accessing Elements of a Message
The next step in creating a message is to access its parts so that content can be added. There are
two ways to do this. The SOAPMessage object message, created in the preceding code fragment,
is the place to start.

The first way to access the parts of the message is to work your way through the structure of the
message. The message contains a SOAPPart object, so you use the getSOAPPart method of
message to retrieve it:

SOAPPart soapPart = message.getSOAPPart();

Next you can use the getEnvelope method of soapPart to retrieve the SOAPEnvelope object
that it contains.

SOAPEnvelope envelope = soapPart.getEnvelope();

You can now use the getHeader and getBody methods of envelope to retrieve its empty
SOAPHeader and SOAPBody objects.

SOAPHeader header = envelope.getHeader();

SOAPBody body = envelope.getBody();

The second way to access the parts of the message is to retrieve the message header and body
directly, without retrieving the SOAPPart or SOAPEnvelope. To do so, use the getSOAPHeader
and getSOAPBody methods of SOAPMessage:

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008594

SOAPHeader header = message.getSOAPHeader();

SOAPBody body = message.getSOAPBody();

This example of a SAAJ client does not use a SOAP header, so you can delete it. (You will see
more about headers later.) Because all SOAPElement objects, including SOAPHeader objects, are
derived from the Node interface, you use the method Node.detachNode to delete header.

header.detachNode();

Adding Content to the Body
The SOAPBody object contains either content or a fault. To add content to the body, you
normally create one or more SOAPBodyElement objects to hold the content. You can also add
subelements to the SOAPBodyElement objects by using the addChildElement method. For each
element or child element, you add content by using the addTextNode method.

When you create any new element, you also need to create an associated
javax.xml.namespace.QName object so that it is uniquely identified.

Note – You can use Name objects instead of QName objects. Name objects are specific to the SAAJ
API, and you create them using either SOAPEnvelope methods or SOAPFactory methods.
However, the Name interface may be deprecated at a future release.

The SOAPFactory class also lets you create XML elements when you are not creating an entire
message or do not have access to a complete SOAPMessage object. For example, JAX-RPC
implementations often work with XML fragments rather than complete SOAPMessage objects.
Consequently, they do not have access to a SOAPEnvelope object, and this makes using a
SOAPFactory object to create Name objects very useful. In addition to a method for creating Name
objects, the SOAPFactory class provides methods for creating Detail objects and SOAP
fragments. You will find an explanation of Detail objects in “Overview of SOAP Faults” on
page 611 and “Creating and Populating a SOAPFault Object” on page 612.

QName objects associated with SOAPBodyElement or SOAPHeaderElement objects must be fully
qualified; that is, they must be created with a namespace URI, a local part, and a namespace
prefix. Specifying a namespace for an element makes clear which one is meant if more than one
element has the same local name.

The following code fragment retrieves the SOAPBody object body from message, constructs a
QName object for the element to be added, and adds a new SOAPBodyElement object to body.

SOAPBody body = message.getSOAPBody();

QName bodyName = new QName("http://wombat.ztrade.com", "GetLastTradePrice", "m");
SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 595

At this point, body contains a SOAPBodyElement object identified by the QName object bodyName,
but there is still no content in bodyElement. Assuming that you want to get a quote for the stock
of Sun Microsystems, Inc., you need to create a child element for the symbol using the
addChildElement method. Then you need to give it the stock symbol using the addTextNode
method. The QName object for the new SOAPElement object symbol is initialized with only a local
name because child elements inherit the prefix and URI from the parent element.

QName name = new QName("symbol");
SOAPElement symbol = bodyElement.addChildElement(name);

symbol.addTextNode("SUNW");

You might recall that the headers and content in a SOAPPart object must be in XML format. The
SAAJ API takes care of this for you, building the appropriate XML constructs automatically
when you call methods such as addBodyElement, addChildElement, and addTextNode. Note
that you can call the method addTextNode only on an element such as bodyElement or any child
elements that are added to it. You cannot call addTextNode on a SOAPHeader or SOAPBody object
because they contain elements and not text.

The content that you have just added to your SOAPBody object will look like the following when
it is sent over the wire:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="http://wombat.ztrade.com">
<symbol>SUNW</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Let’s examine this XML excerpt line by line to see how it relates to your SAAJ code. Note that an
XML parser does not care about indentations, but they are generally used to indicate element
levels and thereby make it easier for a human reader to understand.

Here is the SAAJ code:

SOAPMessage message = messageFactory.createMessage();

SOAPHeader header = message.getSOAPHeader();

SOAPBody body = message.getSOAPBody();

Here is the XML it produces:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>

<SOAP-ENV:Body>

...

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008596

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The outermost element in this XML example is the SOAP envelope element, indicated by
SOAP-ENV:Envelope. Note that Envelope is the name of the element, and SOAP-ENV is the
namespace prefix. The interface SOAPEnvelope represents a SOAP envelope.

The first line signals the beginning of the SOAP envelope element, and the last line signals the
end of it; everything in between is part of the SOAP envelope. The second line is an example of
an attribute for the SOAP envelope element. Because a SOAP envelope element always contains
this attribute with this value, a SOAPMessage object comes with it automatically included. xmlns
stands for “XML namespace,” and its value is the URI of the namespace associated with
Envelope.

The next line is an empty SOAP header. You could remove it by calling header.detachNode
after the getSOAPHeader call.

The next two lines mark the beginning and end of the SOAP body, represented in SAAJ by a
SOAPBody object. The next step is to add content to the body.

Here is the SAAJ code:

QName bodyName = new QName("http://wombat.ztrade.com",
"GetLastTradePrice", "m");

SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

Here is the XML it produces:

<m:GetLastTradePrice

xmlns:m="http://wombat.ztrade.com">
...

</m:GetLastTradePrice>

These lines are what the SOAPBodyElement bodyElement in your code represents.
GetLastTradePrice is its local name, m is its namespace prefix, and
http://wombat.ztrade.com is its namespace URI.

Here is the SAAJ code:

QName name = new QName("symbol");
SOAPElement symbol = bodyElement.addChildElement(name);

symbol.addTextNode("SUNW");

Here is the XML it produces:

<symbol>SUNW</symbol>

The String "SUNW" is the text node for the element <symbol>. This String object is the message
content that your recipient, the stock quote service, receives.

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 597

The following example shows how to add multiple SOAPElement objects and add text to each of
them. The code first creates the SOAPBodyElement object purchaseLineItems, which has a fully
qualified name associated with it. That is, the QName object for it has a namespace URI, a local
name, and a namespace prefix. As you saw earlier, a SOAPBodyElement object is required to have
a fully qualified name, but child elements added to it, such as SOAPElement objects, can have
Name objects with only the local name.

SOAPBody body = message.getSOAPBody();

QName bodyName =

new QName("http://sonata.fruitsgalore.com", "PurchaseLineItems", "PO");
SOAPBodyElement purchaseLineItems =

body.addBodyElement(bodyName);

QName childName = new QName("Order");
SOAPElement order = purchaseLineItems.addChildElement(childName);

childName = new QName("Product");
SOAPElement product = order.addChildElement(childName);

product.addTextNode("Apple");

childName = new QName("Price");
SOAPElement price = order.addChildElement(childName);

price.addTextNode("1.56");

childName = new QName("Order");
SOAPElement order2 = purchaseLineItems.addChildElement(childName);

childName = new QName("Product");
SOAPElement product2 = order2.addChildElement(childName);

product2.addTextNode("Peach");

childName = soapFactory.new QName("Price");
SOAPElement price2 = order2.addChildElement(childName);

price2.addTextNode("1.48");

The SAAJ code in the preceding example produces the following XML in the SOAP body:

<PO:PurchaseLineItems

xmlns:PO="http://sonata.fruitsgalore.com">
<Order>

<Product>Apple</Product>

<Price>1.56</Price>

</Order>

<Order>

<Product>Peach</Product>

<Price>1.48</Price>

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008598

</Order>

</PO:PurchaseLineItems>

Getting a SOAPConnectionObject
The SAAJ API is focused primarily on reading and writing messages. After you have written a
message, you can send it using various mechanisms (such as JMS or JAXM). The SAAJ API
does, however, provide a simple mechanism for request-response messaging.

To send a message, a SAAJ client can use a SOAPConnection object. A SOAPConnection object is
a point-to-point connection, meaning that it goes directly from the sender to the destination
(usually a URL) that the sender specifies.

The first step is to obtain a SOAPConnectionFactory object that you can use to create your
connection. The SAAJ API makes this easy by providing the SOAPConnectionFactory class
with a default implementation. You can get an instance of this implementation using the
following line of code.

SOAPConnectionFactory soapConnectionFactory =

SOAPConnectionFactory.newInstance();

Now you can use soapConnectionFactory to create a SOAPConnection object.

SOAPConnection connection = soapConnectionFactory.createConnection();

You will use connection to send the message that you created.

Sending a Message
A SAAJ client calls the SOAPConnection method call on a SOAPConnection object to send a
message. The call method takes two arguments: the message being sent and the destination to
which the message should go. This message is going to the stock quote service indicated by the
URL object endpoint.

java.net.URL endpoint = new URL("http://wombat.ztrade.com/quotes");

SOAPMessage response = connection.call(message, endpoint);

The content of the message you sent is the stock symbol SUNW; the SOAPMessage object
response should contain the last stock price for Sun Microsystems, which you will retrieve in
the next section.

A connection uses a fair amount of resources, so it is a good idea to close a connection as soon as
you are finished using it.

connection.close();

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 599

Getting the Content of a Message
The initial steps for retrieving a message’s content are the same as those for giving content to a
message: Either you use the Message object to get the SOAPBody object, or you access the
SOAPBody object through the SOAPPart and SOAPEnvelope objects.

Then you access the SOAPBody object’s SOAPBodyElement object, because that is the element to
which content was added in the example. (In a later section you will see how to add content
directly to the SOAPPart object, in which case you would not need to access the
SOAPBodyElement object to add content or to retrieve it.)

To get the content, which was added with the method SOAPElement.addTextNode, you call the
method Node.getValue. Note that getValue returns the value of the immediate child of the
element that calls the method. Therefore, in the following code fragment, the getValue method
is called on bodyElement, the element on which the addTextNode method was called.

To access bodyElement, you call the getChildElements method on soapBody. Passing
bodyName to getChildElements returns a java.util.Iterator object that contains all the
child elements identified by the Name object bodyName. You already know that there is only one,
so calling the next method on it will return the SOAPBodyElement you want. Note that the
Iterator.next method returns a Java Object, so you need to cast the Object it returns to a
SOAPBodyElement object before assigning it to the variable bodyElement.

SOAPBody soapBody = response.getSOAPBody();

java.util.Iterator iterator = soapBody.getChildElements(bodyName);

SOAPBodyElement bodyElement = (SOAPBodyElement)iterator.next();

String lastPrice = bodyElement.getValue();

System.out.print("The last price for SUNW is ");

System.out.println(lastPrice);

If more than one element had the name bodyName, you would have to use a while loop using the
Iterator.hasNext method to make sure that you got all of them.

while (iterator.hasNext()) {

SOAPBodyElement bodyElement = (SOAPBodyElement)iterator.next();

String lastPrice = bodyElement.getValue();

System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

}

At this point, you have seen how to send a very basic request-response message and get the
content from the response. The next sections provide more detail on adding content to
messages.

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008600

Adding Content to the Header
To add content to the header, you create a SOAPHeaderElement object. As with all new
elements, it must have an associated QName object.

For example, suppose you want to add a conformance claim header to the message to state that
your message conforms to the WS-I Basic Profile. The following code fragment retrieves the
SOAPHeader object from message and adds a new SOAPHeaderElement object to it. This
SOAPHeaderElement object contains the correct qualified name and attribute for a WS-I
conformance claim header.

SOAPHeader header = message.getSOAPHeader();

QName headerName = new QName("http://ws-i.org/schemas/conformanceClaim/",
"Claim", "wsi");

SOAPHeaderElement headerElement =

header.addHeaderElement(headerName);

headerElement.addAttribute(new QName("conformsTo"),
"http://ws-i.org/profiles/basic/1.1/");

At this point, header contains the SOAPHeaderElement object headerElement identified by the
QName object headerName. Note that the addHeaderElement method both creates
headerElement and adds it to header.

A conformance claim header has no content. This code produces the following XML header:

<SOAP-ENV:Header>

<wsi:Claim

xmlns:wsi="http://ws-i.org/schemas/conformanceClaim/"
conformsTo="http://ws-i.org/profiles/basic/1.1/"/>

</SOAP-ENV:Header>

For more information about creating SOAP messages that conform to WS-I, see the
Conformance Claim Attachment Mechanisms document described in the Conformance
section of the WS-I Basic Profile.

For a different kind of header, you might want to add content to headerElement. The following
line of code uses the method addTextNode to do this.

headerElement.addTextNode("order");

Now you have the SOAPHeader object header that contains a SOAPHeaderElement object whose
content is "order".

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 601

http://www.ws-i.org/Profiles/BasicProfile-1.1.html#conformance
http://www.ws-i.org/Profiles/BasicProfile-1.1.html#conformance

Adding Content to the SOAPPartObject
If the content you want to send is in a file, SAAJ provides an easy way to add it directly to the
SOAPPart object. This means that you do not access the SOAPBody object and build the XML
content yourself, as you did in the preceding section.

To add a file directly to the SOAPPart object, you use a javax.xml.transform.Source object
from JAXP (the Java API for XML Processing). There are three types of Source objects:
SAXSource, DOMSource, and StreamSource. A StreamSource object holds an XML document in
text form. SAXSource and DOMSource objects hold content along with the instructions for
transforming the content into an XML document.

The following code fragment uses the JAXP API to build a DOMSource object that is passed to the
SOAPPart.setContent method. The first three lines of code get a DocumentBuilderFactory
object and use it to create the DocumentBuilder object builder. Because SOAP messages use
namespaces, you should set the NamespaceAware property for the factory to true. Then builder

parses the content file to produce a Document object.

DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();

dbFactory.setNamespaceAware(true);

DocumentBuilder builder = dbFactory.newDocumentBuilder();

Document document = builder.parse("file:///music/order/soap.xml");
DOMSource domSource = new DOMSource(document);

The following two lines of code access the SOAPPart object (using the SOAPMessage object
message) and set the new Document object as its content. The SOAPPart.setContent method
not only sets content for the SOAPBody object but also sets the appropriate header for the
SOAPHeader object.

SOAPPart soapPart = message.getSOAPPart();

soapPart.setContent(domSource);

The XML file you use to set the content of the SOAPPart object must include Envelope and Body

elements:

<SOAP-ENV:Envelope

xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

...

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

You will see other ways to add content to a message in the sections “Adding a Document to the
SOAP Body” on page 603 and “Adding Attachments” on page 603.

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008602

Adding a Document to the SOAP Body
In addition to setting the content of the entire SOAP message to that of a DOMSource object, you
can add a DOM document directly to the body of the message. This capability means that you
do not have to create a javax.xml.transform.Source object. After you parse the document,
you can add it directly to the message body:

SOAPBody body = message.getSOAPBody();

SOAPBodyElement docElement = body.addDocument(document);

Manipulating Message Content Using SAAJ or DOM
APIs
Because SAAJ nodes and elements implement the DOM Node and Element interfaces, you have
many options for adding or changing message content:

■ Use only DOM APIs.
■ Use only SAAJ APIs.
■ Use SAAJ APIs and then switch to using DOM APIs.
■ Use DOM APIs and then switch to using SAAJ APIs.

The first three of these cause no problems. After you have created a message, whether or not you
have imported its content from another document, you can start adding or changing nodes
using either SAAJ or DOM APIs.

But if you use DOM APIs and then switch to using SAAJ APIs to manipulate the document, any
references to objects within the tree that were obtained using DOM APIs are no longer valid. If
you must use SAAJ APIs after using DOM APIs, you should set all your DOM typed references
to null, because they can become invalid. For more information about the exact cases in which
references become invalid, see the SAAJ API documentation.

The basic rule is that you can continue manipulating the message content using SAAJ APIs as
long as you want to, but after you start manipulating it using DOM, you should no longer use
SAAJ APIs.

Adding Attachments
An AttachmentPart object can contain any type of content, including XML. And because the
SOAP part can contain only XML content, you must use an AttachmentPart object for any
content that is not in XML format.

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 603

Creating an AttachmentPartObject and Adding Content
The SOAPMessage object creates an AttachmentPart object, and the message also must add the
attachment to itself after content has been added. The SOAPMessage class has three methods for
creating an AttachmentPart object.

The first method creates an attachment with no content. In this case, an AttachmentPart

method is used later to add content to the attachment.

AttachmentPart attachment = message.createAttachmentPart();

You add content to attachment by using the AttachmentPart method setContent. This
method takes two parameters: a Java Object for the content, and a String object for the MIME
content type that is used to encode the object. Content in the SOAPBody part of a message
automatically has a Content-Type header with the value "text/xml" because the content must
be in XML. In contrast, the type of content in an AttachmentPart object must be specified
because it can be any type.

Each AttachmentPart object has one or more MIME headers associated with it. When you
specify a type to the setContent method, that type is used for the header Content-Type. Note
that Content-Type is the only header that is required. You may set other optional headers, such
as Content-Id and Content-Location. For convenience, SAAJ provides get and set methods
for the headers Content-Type, Content-Id, and Content-Location. These headers can be
helpful in accessing a particular attachment when a message has multiple attachments. For
example, to access the attachments that have particular headers, you can call the SOAPMessage
method getAttachments and pass it a MIMEHeaders object containing the MIME headers you
are interested in.

The following code fragment shows one of the ways to use the method setContent. The Java
Object in the first parameter can be a String, a stream, a javax.xml.transform.Source
object, or a javax.activation.DataHandler object. The Java Object being added in the
following code fragment is a String, which is plain text, so the second argument must be
"text/plain". The code also sets a content identifier, which can be used to identify this
AttachmentPart object. After you have added content to attachment, you must add it to the
SOAPMessage object, something that is done in the last line.

String stringContent = "Update address for Sunny Skies " +

"Inc., to 10 Upbeat Street, Pleasant Grove, CA 95439";

attachment.setContent(stringContent, "text/plain");
attachment.setContentId("update_address");

message.addAttachmentPart(attachment);

The attachment variable now represents an AttachmentPart object that contains the string
stringContent and has a header that contains the string text/plain. It also has a Content-Id
header with update_address as its value. And attachment is now part of message.

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008604

The other two SOAPMessage.createAttachment methods create an AttachmentPart object
complete with content. One is very similar to the AttachmentPart.setContent method in that
it takes the same parameters and does essentially the same thing. It takes a Java Object
containing the content and a String giving the content type. As with
AttachmentPart.setContent, the Object can be a String, a stream, a
javax.xml.transform.Source object, or a javax.activation.DataHandler object.

The other method for creating an AttachmentPart object with content takes a DataHandler
object, which is part of the JavaBeans Activation Framework (JAF). Using a DataHandler object
is fairly straightforward. First, you create a java.net.URL object for the file you want to add as
content. Then you create a DataHandler object initialized with the URL object:

URL url = new URL("http://greatproducts.com/gizmos/img.jpg");
DataHandler dataHandler = new DataHandler(url);

AttachmentPart attachment = message.createAttachmentPart(dataHandler);

attachment.setContentId("attached_image");

message.addAttachmentPart(attachment);

You might note two things about this code fragment. First, it sets a header for Content-ID using
the method setContentId. This method takes a String that can be whatever you like to identify
the attachment. Second, unlike the other methods for setting content, this one does not take a
String for Content-Type. This method takes care of setting the Content-Type header for you,
something that is possible because one of the things a DataHandler object does is to determine
the data type of the file it contains.

Accessing an AttachmentPartObject
If you receive a message with attachments or want to change an attachment to a message you are
building, you need to access the attachment. The SOAPMessage class provides two versions of
the getAttachments method for retrieving its AttachmentPart objects. When it is given no
argument, the method SOAPMessage.getAttachments returns a java.util.Iterator object
over all the AttachmentPart objects in a message. When getAttachments is given a
MimeHeaders object, which is a list of MIME headers, getAttachments returns an iterator over
the AttachmentPart objects that have a header that matches one of the headers in the list. The
following code uses the getAttachments method that takes no arguments and thus retrieves all
the AttachmentPart objects in the SOAPMessage object message. Then it prints the content ID,
the content type, and the content of each AttachmentPart object.

java.util.Iterator iterator = message.getAttachments();

while (iterator.hasNext()) {

AttachmentPart attachment = (AttachmentPart)iterator.next();

String id = attachment.getContentId();

String type = attachment.getContentType();

System.out.print("Attachment " + id + " has content type " + type);

if (type.equals("text/plain")) {

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 605

Object content = attachment.getContent();

System.out.println("Attachment contains:\n" + content);

}

}

Adding Attributes
An XML element can have one or more attributes that give information about that element. An
attribute consists of a name for the attribute followed immediately by an equal sign (=) and its
value.

The SOAPElement interface provides methods for adding an attribute, for getting the value of an
attribute, and for removing an attribute. For example, in the following code fragment, the
attribute named id is added to the SOAPElement object person. Because person is a
SOAPElement object rather than a SOAPBodyElement object or SOAPHeaderElement object, it is
legal for its QName object to contain only a local name.

QName attributeName = new QName("id");
person.addAttribute(attributeName, "Person7");

These lines of code will generate the first line in the following XML fragment.

<person id="Person7">
...

</person>

The following line of code retrieves the value of the attribute whose name is id.

String attributeValue = person.getAttributeValue(attributeName);

If you had added two or more attributes to person, the preceding line of code would have
returned only the value for the attribute named id. If you wanted to retrieve the values for all the
attributes for person, you would use the method getAllAttributes, which returns an iterator
over all the values. The following lines of code retrieve and print each value on a separate line
until there are no more attribute values. Note that the Iterator.next method returns a Java
Object, which is cast to a QName object so that it can be assigned to the QName object
attributeName. (The examples in “DOM and DOMSource Examples” on page 620 use code
similar to this.)

Iterator iterator = person.getAllAttributesAsQNames();

while (iterator.hasNext()){

QName attributeName = (QName) iterator.next();

System.out.println("Attribute name is " + attributeName.toString());

System.out.println("Attribute value is " +

element.getAttributeValue(attributeName));

}

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008606

The following line of code removes the attribute named id from person. The variable
successful will be true if the attribute was removed successfully.

boolean successful = person.removeAttribute(attributeName);

In this section you have seen how to add, retrieve, and remove attributes. This information is
general in that it applies to any element. The next section discusses attributes that can be added
only to header elements.

Header Attributes
Attributes that appear in a SOAPHeaderElement object determine how a recipient processes a
message. You can think of header attributes as offering a way to extend a message, giving
information about such things as authentication, transaction management, payment, and so on.
A header attribute refines the meaning of the header, whereas the header refines the meaning of
the message contained in the SOAP body.

The SOAP 1.1 specification defines two attributes that can appear only in SOAPHeaderElement

objects: actor and mustUnderstand.

The SOAP 1.2 specification defines three such attributes: role (a new name for actor),
mustUnderstand, and relay.

The next sections discuss these attributes.

See “Header Example” on page 617 for an example that uses the code shown in this section.

The actorAttribute

The actor attribute is optional, but if it is used, it must appear in a SOAPHeaderElement object.
Its purpose is to indicate the recipient of a header element. The default actor is the message’s
ultimate recipient; that is, if no actor attribute is supplied, the message goes directly to the
ultimate recipient.

An actor is an application that can both receive SOAP messages and forward them to the next
actor. The ability to specify one or more actors as intermediate recipients makes it possible to
route a message to multiple recipients and to supply header information that applies specifically
to each of the recipients.

For example, suppose that a message is an incoming purchase order. Its SOAPHeader object
might have SOAPHeaderElement objects with actor attributes that route the message to
applications that function as the order desk, the shipping desk, the confirmation desk, and the
billing department. Each of these applications will take the appropriate action, remove the
SOAPHeaderElement objects relevant to it, and send the message on to the next actor.

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 607

Note – Although the SAAJ API provides the API for adding these attributes, it does not supply
the API for processing them. For example, the actor attribute requires that there be an
implementation such as a messaging provider service to route the message from one actor to the
next.

An actor is identified by its URI. For example, the following line of code, in which orderHeader

is a SOAPHeaderElement object, sets the actor to the given URI.

orderHeader.setActor("http://gizmos.com/orders");

Additional actors can be set in their own SOAPHeaderElement objects. The following code
fragment first uses the SOAPMessage object message to get its SOAPHeader object header. Then
header creates four SOAPHeaderElement objects, each of which sets its actor attribute.

SOAPHeader header = message.getSOAPHeader();

SOAPFactory soapFactory = SOAPFactory.newInstance();

String nameSpace = "ns";
String nameSpaceURI = "http://gizmos.com/NSURI";

QName order = new QName(nameSpaceURI, "orderDesk", nameSpace);

SOAPHeaderElement orderHeader = header.addHeaderElement(order);

orderHeader.setActor("http://gizmos.com/orders");

QName shipping = new QName(nameSpaceURI, "shippingDesk", nameSpace);

SOAPHeaderElement shippingHeader = header.addHeaderElement(shipping);

shippingHeader.setActor("http://gizmos.com/shipping");

QName confirmation = new QName(nameSpaceURI, "confirmationDesk", nameSpace);

SOAPHeaderElement confirmationHeader = header.addHeaderElement(confirmation);

confirmationHeader.setActor("http://gizmos.com/confirmations");

QName billing = new QName(nameSpaceURI, "billingDesk", nameSpace);

SOAPHeaderElement billingHeader = header.addHeaderElement(billing);

billingHeader.setActor("http://gizmos.com/billing");

The SOAPHeader interface provides two methods that return a java.util.Iterator object over
all the SOAPHeaderElement objects that have an actor that matches the specified actor. The first
method, examineHeaderElements, returns an iterator over all the elements that have the
specified actor.

java.util.Iterator headerElements =

header.examineHeaderElements("http://gizmos.com/orders");

The second method, extractHeaderElements, not only returns an iterator over all the
SOAPHeaderElement objects that have the specified actor attribute but also detaches them from

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008608

the SOAPHeader object. So, for example, after the order desk application did its work, it would
call extractHeaderElements to remove all the SOAPHeaderElement objects that applied to it.

java.util.Iterator headerElements =

header.extractHeaderElements("http://gizmos.com/orders");

Each SOAPHeaderElement object can have only one actor attribute, but the same actor can be an
attribute for multiple SOAPHeaderElement objects.

Two additional SOAPHeader methods, examineAllHeaderElements and
extractAllHeaderElements, allow you to examine or extract all the header elements, whether
or not they have an actor attribute. For example, you could use the following code to display the
values of all the header elements:

Iterator allHeaders = header.examineAllHeaderElements();

while (allHeaders.hasNext()) {

SOAPHeaderElement headerElement = (SOAPHeaderElement)allHeaders.next();

QName headerName = headerElement.getElementQName();

System.out.println("\nHeader name is " + headerName.toString());

System.out.println("Actor is " + headerElement.getActor());

}

The roleAttribute
The role attribute is the name used by the SOAP 1.2 specification for the SOAP 1.2 actor

attribute. The SOAPHeaderElement methods setRole and getRole perform the same functions
as the setActor and getActor methods.

The mustUnderstandAttribute
The other attribute that must be added only to a SOAPHeaderElement object is mustUnderstand.
This attribute says whether or not the recipient (indicated by the actor attribute) is required to
process a header entry. When the value of the mustUnderstand attribute is true, the actor must
understand the semantics of the header entry and must process it correctly to those semantics.
If the value is false, processing the header entry is optional. A SOAPHeaderElement object with
no mustUnderstand attribute is equivalent to one with a mustUnderstand attribute whose value
is false.

The mustUnderstand attribute is used to call attention to the fact that the semantics in an
element are different from the semantics in its parent or peer elements. This allows for robust
evolution, ensuring that a change in semantics will not be silently ignored by those who may not
fully understand it.

If the actor for a header that has a mustUnderstand attribute set to true cannot process the
header, it must send a SOAP fault back to the sender. (See “Using SOAP Faults” on page 611.)
The actor must not change state or cause any side effects, so that, to an outside observer, it
appears that the fault was sent before any header processing was done.

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 609

For example, you could set the mustUnderstand attribute to true for the confirmationHeader
in the code fragment in “The actor Attribute” on page 607:

QName confirmation = new QName(nameSpaceURI, "confirmationDesk", nameSpace);

SOAPHeaderElement confirmationHeader = header.addHeaderElement(confirmation);

confirmationHeader.setActor("http://gizmos.com/confirmations");
confirmationHeader.setMustUnderstand(true);

This fragment produces the following XML:

<ns:confirmationDesk

xmlns:ns="http://gizmos.com/NSURI"
SOAP-ENV:actor="http://gizmos.com/confirmations"
SOAP-ENV:mustUnderstand="1"/>

You can use the getMustUnderstand method to retrieve the value of the mustUnderstand
attribute. For example, you could add the following to the code fragment at the end of the
preceding section:

System.out.println("mustUnderstand is " + headerElement.getMustUnderstand());

The relayAttribute
The SOAP 1.2 specification adds a third attribute to a SOAPHeaderElement, relay. This
attribute, like mustUnderstand, is a boolean value. If it is set to true, it indicates that the SOAP
header block must not be processed by any node that is targeted by the header block, but must
only be passed on to the next targeted node. This attribute is ignored on header blocks whose
mustUnderstand attribute is set to true or that are targeted at the ultimate receiver (which is the
default). The default value of this attribute is false.

For example, you could set the relay element to true for the billingHeader in the code
fragment in “The actor Attribute” on page 607 (also changing setActor to setRole):

QName billing = new QName(nameSpaceURI, "billingDesk", nameSpace);

SOAPHeaderElement billingHeader = header.addHeaderElement(billing);

billingHeader.setRole("http://gizmos.com/billing");
billingHeader.setRelay(true);

This fragment produces the following XML:

<ns:billingDesk

xmlns:ns="http://gizmos.com/NSURI"
env:relay="true"
env:role="http://gizmos.com/billing"/>

To display the value of the attribute, call getRelay:

System.out.println("relay is " + headerElement.getRelay());

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008610

Using SOAP Faults
In this section, you will see how to use the API for creating and accessing a SOAP fault element
in an XML message.

Overview of SOAP Faults
If you send a message that was not successful for some reason, you may get back a response
containing a SOAP fault element, which gives you status information, error information, or
both. There can be only one SOAP fault element in a message, and it must be an entry in the
SOAP body. Furthermore, if there is a SOAP fault element in the SOAP body, there can be no
other elements in the SOAP body. This means that when you add a SOAP fault element, you
have effectively completed the construction of the SOAP body.

A SOAPFault object, the representation of a SOAP fault element in the SAAJ API, is similar to
an Exception object in that it conveys information about a problem. However, a SOAPFault
object is quite different in that it is an element in a message’s SOAPBody object rather than part of
the try/catch mechanism used for Exception objects. Also, as part of the SOAPBody object,
which provides a simple means for sending mandatory information intended for the ultimate
recipient, a SOAPFault object only reports status or error information. It does not halt the
execution of an application, as an Exception object can.

If you are a client using the SAAJ API and are sending point-to-point messages, the recipient of
your message may add a SOAPFault object to the response to alert you to a problem. For
example, if you sent an order with an incomplete address for where to send the order, the
service receiving the order might put a SOAPFault object in the return message telling you that
part of the address was missing.

Another example of who might send a SOAP fault is an intermediate recipient, or actor. As
stated in the section “Adding Attributes” on page 606, an actor that cannot process a header that
has a mustUnderstand attribute with a value of true must return a SOAP fault to the sender.

A SOAPFault object contains the following elements:
■ Fault code: Always required. The fault code must be a fully qualified name: it must contain a

prefix followed by a local name. The SOAP specifications define a set of fault code local
name values, which a developer can extend to cover other problems. (These are defined in
section 4.4.1 of the SOAP 1.1 specification and in section 5.4.6 of the SOAP 1.2
specification.) Table 19–1 lists and describes the default fault code local names defined in the
specifications.
A SOAP 1.2 fault code can optionally have a hierarchy of one or more subcodes.

■ Fault string: Always required. A human-readable explanation of the fault.
■ Fault actor: Required if the SOAPHeader object contains one or more actor attributes;

optional if no actors are specified, meaning that the only actor is the ultimate destination.
The fault actor, which is specified as a URI, identifies who caused the fault. For an
explanation of what an actor is, see “The actor Attribute” on page 607.

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 611

■ Detail object: Required if the fault is an error related to the SOAPBody object. If, for
example, the fault code is Client, indicating that the message could not be processed
because of a problem in the SOAPBody object, the SOAPFault object must contain a Detail
object that gives details about the problem. If a SOAPFault object does not contain a Detail
object, it can be assumed that the SOAPBody object was processed successfully.

Creating and Populating a SOAPFaultObject
You have seen how to add content to a SOAPBody object; this section walks you through adding a
SOAPFault object to a SOAPBody object and then adding its constituent parts.

As with adding content, the first step is to access the SOAPBody object.

SOAPBody body = message.getSOAPBody();

With the SOAPBody object body in hand, you can use it to create a SOAPFault object. The
following line of code creates a SOAPFault object and adds it to body.

SOAPFault fault = body.addFault();

The SOAPFault interface provides convenience methods that create an element, add the new
element to the SOAPFault object, and add a text node, all in one operation. For example, in the
following lines of SOAP 1.1 code, the method setFaultCode creates a faultcode element, adds
it to fault, and adds a Text node with the value "SOAP-ENV:Server" by specifying a default
prefix and the namespace URI for a SOAP envelope.

QName faultName = new QName(SOAPConstants.URI_NS_SOAP_ENVELOPE, "Server");
fault.setFaultCode(faultName);

fault.setFaultActor("http://gizmos.com/orders");
fault.setFaultString("Server not responding");

The SOAP 1.2 code would look like this:

QName faultName = new QName(SOAPConstants.URI_NS_SOAP_1_2_ENVELOPE, "Receiver");
fault.setFaultCode(faultName);

fault.setFaultRole("http://gizmos.com/order");
fault.addFaultReasonText("Server not responding", Locale.US);

To add one or more subcodes to the fault code, call the method fault.appendFaultSubcode,
which takes a QName argument.

The SOAPFault object fault, created in the preceding lines of code, indicates that the cause of
the problem is an unavailable server and that the actor at http://gizmos.com/orders is having
the problem. If the message were being routed only to its ultimate destination, there would have
been no need to set a fault actor. Also note that fault does not have a Detail object because it
does not relate to the SOAPBody object. (If you use SOAP 1.2, you can use the setFaultRole
method instead of setFaultActor.)

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008612

The following SOAP 1.1 code fragment creates a SOAPFault object that includes a Detail
object. Note that a SOAPFault object can have only one Detail object, which is simply a
container for DetailEntry objects, but the Detail object can have multiple DetailEntry
objects. The Detail object in the following lines of code has two DetailEntry objects added to
it.

SOAPFault fault = body.addFault();

QName faultName = new QName(SOAPConstants.URI_NS_SOAP_ENVELOPE, "Client");
fault.setFaultCode(faultName);

fault.setFaultString("Message does not have necessary info");

Detail detail = fault.addDetail();

QName entryName = new QName("http://gizmos.com/orders/", "order", "PO");
DetailEntry entry = detail.addDetailEntry(entryName);

entry.addTextNode("Quantity element does not have a value");

QName entryName2 = new QName("http://gizmos.com/orders/", "order", "PO");
DetailEntry entry2 = detail.addDetailEntry(entryName2);

entry2.addTextNode("Incomplete address: no zip code");

See “SOAP Fault Example” on page 626 for an example that uses code like that shown in this
section.

The SOAP 1.1 and 1.2 specifications define slightly different values for a fault code. Table 19–1
lists and describes these values.

TABLE 19–1 SOAP Fault Code Values

SOAP 1.1 SOAP 1.2 Description

VersionMismatch VersionMismatch The namespace or local name for a SOAPEnvelope
object was invalid.

MustUnderstand MustUnderstand An immediate child element of a SOAPHeader object
had its mustUnderstand attribute set to true, and the
processing party did not understand the element or
did not obey it.

Client Sender The SOAPMessage object was not formed correctly or
did not contain the information needed to succeed.

Server Receiver The SOAPMessage object could not be processed
because of a processing error, not because of a
problem with the message itself.

SAAJ Tutorial

Chapter 19 • SOAP with Attachments API for Java 613

TABLE 19–1 SOAP Fault Code Values (Continued)
SOAP 1.1 SOAP 1.2 Description

N/A DataEncodingUnknown A SOAP header block or SOAP body child element
information item targeted at the faulting SOAP node
is scoped with a data encoding that the faulting node
does not support.

Retrieving Fault Information
Just as the SOAPFault interface provides convenience methods for adding information, it also
provides convenience methods for retrieving that information. The following code fragment
shows what you might write to retrieve fault information from a message you received. In the
code fragment, newMessage is the SOAPMessage object that has been sent to you. Because a
SOAPFault object must be part of the SOAPBody object, the first step is to access the SOAPBody
object. Then the code tests to see whether the SOAPBody object contains a SOAPFault object. If it
does, the code retrieves the SOAPFault object and uses it to retrieve its contents. The
convenience methods getFaultCode, getFaultString, and getFaultActor make retrieving
the values very easy.

SOAPBody body = newMessage.getSOAPBody();

if (body.hasFault()) {

SOAPFault newFault = body.getFault();

QName code = newFault.getFaultCodeAsQName();

String string = newFault.getFaultString();

String actor = newFault.getFaultActor();

To retrieve subcodes from a SOAP 1.2 fault, call the method newFault.getFaultSubcodes.

Next the code prints the values it has just retrieved. Not all messages are required to have a fault
actor, so the code tests to see whether there is one. Testing whether the variable actor is null
works because the method getFaultActor returns null if a fault actor has not been set.

System.out.println("SOAP fault contains: ");
System.out.println(" Fault code = " + code.toString());

System.out.println(" Local name = " + code.getLocalPart());

System.out.println(" Namespace prefix = " +

code.getPrefix() + ", bound to " + code.getNamespaceURI());

System.out.println(" Fault string = " + string);

if (actor != null) {

System.out.println(" Fault actor = " + actor);

}

The final task is to retrieve the Detail object and get its DetailEntry objects. The code uses the
SOAPFault object newFault to retrieve the Detail object newDetail, and then it uses
newDetail to call the method getDetailEntries. This method returns the
java.util.Iterator object entries, which contains all the DetailEntry objects in

SAAJ Tutorial

The Java EE 5 Tutorial • October 2008614

newDetail. Not all SOAPFault objects are required to have a Detail object, so the code tests to
see whether newDetail is null. If it is not, the code prints the values of the DetailEntry objects
as long as there are any.

Detail newDetail = newFault.getDetail();

if (newDetail != null) {

Iterator entries = newDetail.getDetailEntries();

while (entries.hasNext()) {

DetailEntry newEntry = (DetailEntry)entries.next();

String value = newEntry.getValue();

System.out.println(" Detail entry = " + value);

}

}

In summary, you have seen how to add a SOAPFault object and its contents to a message as well
as how to retrieve the contents. A SOAPFault object, which is optional, is added to the SOAPBody
object to convey status or error information. It must always have a fault code and a String
explanation of the fault. A SOAPFault object must indicate the actor that is the source of the
fault only when there are multiple actors; otherwise, it is optional. Similarly, the SOAPFault
object must contain a Detail object with one or more DetailEntry objects only when the
contents of the SOAPBody object could not be processed successfully.

See “SOAP Fault Example” on page 626 for an example that uses code like that shown in this
section.

Code Examples
The first part of this tutorial uses code fragments to walk you through the fundamentals of using
the SAAJ API. In this section, you will use some of those code fragments to create applications.
First, you will see the program Request.java. Then you will see how to run the programs
HeaderExample.java, DOMExample.java, DOMSrcExample.java, Attachments.java, and
SOAPFaultTest.java.

Note – Before you run any of the examples, follow the preliminary setup instructions in
“Building the Examples” on page 71.

Request Example
The class Request puts together the code fragments used in the section “SAAJ Tutorial” on
page 592 and adds what is needed to make it a complete example of a client sending a
request-response message. In addition to putting all the code together, it adds import
statements, a main method, and a try/catch block with exception handling.

Code Examples

Chapter 19 • SOAP with Attachments API for Java 615

import javax.xml.soap.*;

import javax.xml.namespace.QName;

import java.util.Iterator;

import java.net.URL;

public class Request {

public static void main(String[] args) {

try {

SOAPConnectionFactory soapConnectionFactory =

SOAPConnectionFactory.newInstance();

SOAPConnection connection =

soapConnectionFactory.createConnection();

MessageFactory factory = MessageFactory.newInstance();

SOAPMessage message = factory.createMessage();

SOAPHeader header = message.getSOAPHeader();

SOAPBody body = message.getSOAPBody();

header.detachNode();

QName bodyName = new QName("http://wombat.ztrade.com",
"GetLastTradePrice", "m");

SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

QName name = new QName("symbol");
SOAPElement symbol = bodyElement.addChildElement(name);

symbol.addTextNode("SUNW");

URL endpoint = new URL("http://wombat.ztrade.com/quotes");
SOAPMessage response = connection.call(message, endpoint);

connection.close();

SOAPBody soapBody = response.getSOAPBody();

Iterator iterator = soapBody.getChildElements(bodyName);

bodyElement = (SOAPBodyElement)iterator.next();

String lastPrice = bodyElement.getValue();

System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

} catch (Exception ex) {

ex.printStackTrace();

}

}

}

Code Examples

The Java EE 5 Tutorial • October 2008616

For the Request class to be runnable, the second argument supplied to the call method would
have to be a valid existing URI, and this is not true in this case.

Header Example
The example HeaderExample.java, based on the code fragments in the section “Adding
Attributes” on page 606, creates a message that has several headers. It then retrieves the contents
of the headers and prints them. The example generates either a SOAP 1.1 message or a SOAP
1.2 message, depending on arguments you specify. You will find the code for HeaderExample in
the following directory:

tut-install/javaeetutorial5/examples/saaj/headers/src/

Building and Running the Header Example
To build the program using NetBeans IDE, follow these steps:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/saaj/.
3. Select the headers folder.
4. Select the Open as Main Project check box.
5. Click Open Project.

A Reference Problems dialog appears. Click Close.
6. Right-click the headers project and choose Resolve Reference Problems.
7. In the Resolve Reference Problems dialog, select the first of the missing JAR files and click

Resolve.
The missing files are activation.jar, javaee.jar, and appserv-ws.jar.

8. Navigate to the as-install/lib/ directory.
9. Select the missing JAR file (activation.jar, for example) and click Open.

In the Resolve Reference Problems dialog, all the files have green check marks to the left of
their names.

10. Click Close.
11. Right-click the project and choose Build.

To run the program using NetBeans IDE, follow these steps:

1. Right-click the headers project and choose Properties.
2. Select Run from the Categories tree.
3. In the Arguments field, type the following:

1.1

Code Examples

Chapter 19 • SOAP with Attachments API for Java 617

This argument specifies the version of SOAP to be used in generating the message.
4. Click OK.
5. Right-click the project and choose Run.
6. Right-click the project and choose Properties.
7. Select Run from the Categories tree.
8. In the Arguments field, type the following:

1.2

9. Click OK.
10. Right-click the project and choose Run.

To build and run HeaderExample using Ant, go to the directory
tut-install/javaeetutorial5/examples/saaj/headers/. Use one of the following commands:

ant run-headers -Dsoap=1.1

ant run-headers -Dsoap=1.2

When you run HeaderExample to generate a SOAP 1.1 message, you will see output similar to
the following:

----- Request Message ----

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>

<ns:orderDesk xmlns:ns="http://gizmos.com/NSURI"
SOAP-ENV:actor="http://gizmos.com/orders"/>
<ns:shippingDesk xmlns:ns="http://gizmos.com/NSURI"
SOAP-ENV:actor="http://gizmos.com/shipping"/>
<ns:confirmationDesk xmlns:ns="http://gizmos.com/NSURI"
SOAP-ENV:actor="http://gizmos.com/confirmations" SOAP-ENV:mustUnderstand="1"/>
<ns:billingDesk xmlns:ns="http://gizmos.com/NSURI"
SOAP-ENV:actor="http://gizmos.com/billing"/>
</SOAP-ENV:Header><SOAP-ENV:Body/></SOAP-ENV:Envelope>

Header name is {http://gizmos.com/NSURI}orderDesk

Actor is http://gizmos.com/orders

mustUnderstand is false

Header name is {http://gizmos.com/NSURI}shippingDesk

Actor is http://gizmos.com/shipping

mustUnderstand is false

Header name is {http://gizmos.com/NSURI}confirmationDesk

Actor is http://gizmos.com/confirmations

Code Examples

The Java EE 5 Tutorial • October 2008618

mustUnderstand is true

Header name is {http://gizmos.com/NSURI}billingDesk

Actor is http://gizmos.com/billing

mustUnderstand is false

When you run HeaderExample to generate a SOAP 1.2 message, you will see output similar to
the following:

----- Request Message ----

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>

<ns:orderDesk xmlns:ns="http://gizmos.com/NSURI"
env:role="http://gizmos.com/orders"/>
<ns:shippingDesk xmlns:ns="http://gizmos.com/NSURI"
env:role="http://gizmos.com/shipping"/>
<ns:confirmationDesk xmlns:ns="http://gizmos.com/NSURI"
env:mustUnderstand="true" env:role="http://gizmos.com/confirmations"/>
<ns:billingDesk xmlns:ns="http://gizmos.com/NSURI"
env:relay="true" env:role="http://gizmos.com/billing"/>
</env:Header><env:Body/></env:Envelope>

Header name is {http://gizmos.com/NSURI}orderDesk

Role is http://gizmos.com/orders

mustUnderstand is false

relay is false

Header name is {http://gizmos.com/NSURI}shippingDesk

Role is http://gizmos.com/shipping

mustUnderstand is false

relay is false

Header name is {http://gizmos.com/NSURI}confirmationDesk

Role is http://gizmos.com/confirmations

mustUnderstand is true

relay is false

Header name is {http://gizmos.com/NSURI}billingDesk

Role is http://gizmos.com/billing

mustUnderstand is false

relay is true

Code Examples

Chapter 19 • SOAP with Attachments API for Java 619

DOM and DOMSource Examples
The examples DOMExample.java and DOMSrcExample.java show how to add a DOM document
to a message and then traverse its contents. They show two ways to do this:
■ DOMExample.java creates a DOM document and adds it to the body of a message.
■ DOMSrcExample.java creates the document, uses it to create a DOMSource object, and then

sets the DOMSource object as the content of the message’s SOAP part.

You will find the code for DOMExample and DOMSrcExample in the following directory:

tut-install/javaeetutorial5/examples/saaj/dom/src/

Examining the DOMExampleClass
DOMExample first creates a DOM document by parsing an XML document. The file it parses is
one that you specify on the command line.

static Document document;

...

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

factory.setNamespaceAware(true);

try {

DocumentBuilder builder = factory.newDocumentBuilder();

document = builder.parse(new File(args[0]));

...

Next, the example creates a SOAP message in the usual way. Then it adds the document to the
message body:

SOAPBodyElement docElement = body.addDocument(document);

This example does not change the content of the message. Instead, it displays the message
content and then uses a recursive method, getContents, to traverse the element tree using
SAAJ APIs and display the message contents in a readable form.

public void getContents(Iterator iterator, String indent) {

while (iterator.hasNext()) {

Node node = (Node) iterator.next();

SOAPElement element = null;

Text text = null;

if (node instanceof SOAPElement) {

element = (SOAPElement)node;

QName name = element.getElementQName();

System.out.println(indent + "Name is " + name.toString());

Iterator attrs = element.getAllAttributesAsQNames();

Code Examples

The Java EE 5 Tutorial • October 2008620

while (attrs.hasNext()){

QName attrName = (QName)attrs.next();

System.out.println(indent + " Attribute name is " +

attrName.toString());

System.out.println(indent + " Attribute value is " +

element.getAttributeValue(attrName));

}

Iterator iter2 = element.getChildElements();

getContents(iter2, indent + " ");
} else {

text = (Text) node;

String content = text.getValue();

System.out.println(indent + "Content is: " + content);

}

}

}

Examining the DOMSrcExampleClass
DOMSrcExample differs from DOMExample in only a few ways. First, after it parses the document,
DOMSrcExample uses the document to create a DOMSource object. This code is the same as that of
DOMExample except for the last line:

static DOMSource domSource;

...

try {

DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.parse(new File(args[0]));

domSource = new DOMSource(document);

...

Then, after DOMSrcExample creates the message, it does not get the header and body and add the
document to the body, as DOMExample does. Instead, DOMSrcExample gets the SOAP part and
sets the DOMSource object as its content:

// Create a message

SOAPMessage message = messageFactory.createMessage();

// Get the SOAP part and set its content to domSource

SOAPPart soapPart = message.getSOAPPart();

soapPart.setContent(domSource);

The example then uses the getContents method to obtain the contents of both the header (if it
exists) and the body of the message.

The most important difference between these two examples is the kind of document you can
use to create the message. Because DOMExample adds the document to the body of the SOAP
message, you can use any valid XML file to create the document. But because DOMSrcExample

Code Examples

Chapter 19 • SOAP with Attachments API for Java 621

makes the document the entire content of the message, the document must already be in the
form of a valid SOAP message, and not just any XML document.

Building and Running the DOM and DOMSource Examples
When you run DOMExample and DOMSrcExample, you can specify one of two sample XML files in
the directory tut-install/javaeetutorial5/examples/saaj/dom/:
■ slide.xml, a file that consists only of a message body
■ domsrc.xml, an example that has a SOAP header (the contents of the HeaderExample SOAP

1.1 output) and the same message body as slide.xml

You can use either of these files when you run DOMExample. You can use domsrc.xml to run
DOMSrcExample.

To build the programs using NetBeans IDE, follow these steps:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/saaj/.
3. Select the dom folder.
4. Select the Open as Main Project check box.
5. Click Open Project.

A Reference Problems dialog appears. Click Close.
6. Right-click the dom project and choose Resolve Reference Problems.
7. In the Resolve Reference Problems dialog, select the first of the missing JAR files and click

Resolve.
The missing files are activation.jar, javaee.jar, and appserv-ws.jar.

8. Navigate to the as-install/lib/ directory.
9. Select the missing JAR file (activation.jar, for example) and click Open.

In the Resolve Reference Problems dialog, all the files have green check marks to the left of
their names.

10. Click Close.
11. Right-click the project and choose Build.

To run DOMExample using NetBeans IDE, follow these steps:

1. Right-click the dom project and choose Properties.
2. Select Run from the Categories tree.
3. Click Browse next to the Main Class field.
4. In the Browse Main Classes dialog, select DomExample.
5. Click Select Main Class.

Code Examples

The Java EE 5 Tutorial • October 2008622

6. In the Arguments field, type the following:

slide.xml

7. Click OK.
8. Right-click the project and choose Run.

To run DOMSrcExample using NetBeans IDE, follow these steps:

1. Right-click the dom project and choose Properties.
2. Select Run from the Categories tree.
3. Click Browse next to the Main Class field.
4. In the Browse Main Classes dialog, select DomSrcExample.
5. Click Select Main Class.
6. In the Arguments field, type the following:

domsrc.xml

7. Click OK.
8. Right-click the project and choose Run.

To run the examples using Ant, go to the directory
tut-install/javaeetutorial5/examples/saaj/dom/.

To run DOMExample using Ant, use the following command:

ant run-dom -Dxml-file=slide.xml

To run DOMSrcExample using Ant, use the following command:

ant run-domsrc -Dxml-file=domsrc.xml

When you run DOMExample using the file slide.xml, you will see output that begins like the
following:

Running DOMExample.

Name is slideshow

Attribute name is author

Attribute value is Yours Truly

Attribute name is date

Attribute value is Date of publication

Attribute name is title

Attribute value is Sample Slide Show

Content is:

...

Code Examples

Chapter 19 • SOAP with Attachments API for Java 623

When you run DOMSrcExample using the file domsrc.xml, you will see output that begins like
the following:

Running DOMSrcExample.

Header contents:

Content is:

Name is {http://gizmos.com/NSURI}orderDesk

Attribute name is SOAP-ENV:actor

Attribute value is http://gizmos.com/orders

Content is:

...

If you run DOMSrcExample with the file slide.xml, you will see runtime errors.

Attachments Example
The example Attachments.java, based on the code fragments in the sections “Creating an
AttachmentPart Object and Adding Content” on page 604 and “Accessing an AttachmentPart

Object” on page 605, creates a message that has a text attachment and an image attachment. It
then retrieves the contents of the attachments and prints the contents of the text attachment.
You will find the code for the Attachments class in the following directory:

tut-install/javaeetutorial5/examples/saaj/attachments/src/

Attachments first creates a message in the usual way. It then creates an AttachmentPart for the
text attachment:

AttachmentPart attachment1 = message.createAttachmentPart();

After it reads input from a file into a string named stringContent, it sets the content of the
attachment to the value of the string and the type to text/plain and also sets a content ID.

attachment1.setContent(stringContent, "text/plain");
attachment1.setContentId("attached_text");

It then adds the attachment to the message:

message.addAttachmentPart(attachment1);

The example uses a javax.activation.DataHandler object to hold a reference to the graphic
that constitutes the second attachment. It creates this attachment using the form of the
createAttachmentPart method that takes a DataHandler argument.

// Create attachment part for image

URL url = new URL("file:///../xml-pic.jpg");
DataHandler dataHandler = new DataHandler(url);

Code Examples

The Java EE 5 Tutorial • October 2008624

AttachmentPart attachment2 = message.createAttachmentPart(dataHandler);

attachment2.setContentId("attached_image");

message.addAttachmentPart(attachment2);

The example then retrieves the attachments from the message. It displays the contentId and
contentType attributes of each attachment and the contents of the text attachment.

Building and Running the Attachments Example
The Attachments class takes a text file as an argument. You can specify any text file. The
attachments directory contains a file named addr.txt that you can use.

To build the program using NetBeans IDE, follow these steps:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/saaj/.
3. Select the attachments folder.
4. Select the Open as Main Project check box.
5. Click Open Project.

A Reference Problems dialog appears. Click Close.
6. Right-click the attachments project and choose Resolve Reference Problems.
7. In the Resolve Reference Problems dialog, select the first of the missing JAR files and click

Resolve.
The missing files are activation.jar, javaee.jar, and appserv-ws.jar.

8. Navigate to the as-install/lib/ directory.
9. Select the missing JAR file (activation.jar, for example) and click Open.

In the Resolve Reference Problems dialog, all the files have green check marks to the left of
their names.

10. Click Close.
11. Right-click the project and choose Build.

To run the program using NetBeans IDE, follow these steps:

1. Right-click the attachments project and choose Properties.
2. Select Run from the Categories tree.
3. In the Arguments field, type the name of a text file:

addr.txt

4. Click OK.
5. Right-click the project and choose Run.

Code Examples

Chapter 19 • SOAP with Attachments API for Java 625

To run Attachments using Ant, go to the directory
tut-install/javaeetutorial5/examples/saaj/attachments/. Use the following command:

ant run-att -Dfile=path-name

Specify a text file as the path-name argument:

ant run-att -Dfile=addr.txt

When you run Attachments using this file, you will see output like the following:

Running Attachments.

Attachment attached_text has content type text/plain

Attachment contains:

Update address for Sunny Skies, Inc., to

10 Upbeat Street

Pleasant Grove, CA 95439

USA

Attachment attached_image has content type image/jpeg

SOAP Fault Example
The example SOAPFaultTest.java, based on the code fragments in the sections “Creating and
Populating a SOAPFault Object” on page 612 and “Retrieving Fault Information” on page 614,
creates a message that has a SOAPFault object. It then retrieves the contents of the SOAPFault
object and prints them. You will find the code for SOAPFaultTest in the following directory:

tut-install/javaeetutorial5/examples/saaj/fault/src/

Like HeaderExample, the SOAPFaultTest class contains code that allows you to generate either a
SOAP 1.1 or a SOAP 1.2 message.

Building and Running the SOAP Fault Example
To build the program using NetBeans IDE, follow these steps:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/saaj/.
3. Select the fault folder.
4. Select the Open as Main Project check box.
5. Click Open Project.

A Reference Problems dialog appears. Click Close.
6. Right-click the fault project and choose Resolve Reference Problems.

Code Examples

The Java EE 5 Tutorial • October 2008626

7. In the Resolve Reference Problems dialog, select the first of the missing JAR files and click
Resolve.
The missing files are activation.jar, javaee.jar, and appserv-ws.jar.

8. Navigate to the as-install/lib/ directory.
9. Select the missing JAR file (activation.jar, for example) and click Open.

In the Resolve Reference Problems dialog, all the files have green check marks to the left of
their names.

10. Click Close.
11. Right-click the project and choose Build.

To run the program using NetBeans IDE, follow these steps:

1. Right-click the fault project and choose Properties.
2. Select Run from the Categories tree.
3. In the Arguments field, type the following:

1.1

This argument specifies the version of SOAP to be used in generating the message.
4. Click OK.
5. Right-click the project and choose Run.
6. Right-click the project and choose Properties.
7. Select Run from the Categories tree.
8. In the Arguments field, type the following:

1.2

9. Click OK.
10. Right-click the project and choose Run.

To build and run SOAPFaultTest using Ant, go to the directory
tut-install/javaeetutorial5/examples/saaj/fault/. Use one of the following commands:

ant run-fault -Dsoap=1.1

ant run-fault -Dsoap=1.2

When you run SOAPFaultTest to generate a SOAP 1.1 message, you will see output like the
following (line breaks have been inserted in the message for readability):

Here is what the XML message looks like:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

Code Examples

Chapter 19 • SOAP with Attachments API for Java 627

<SOAP-ENV:Header/><SOAP-ENV:Body>

<SOAP-ENV:Fault><faultcode>SOAP-ENV:Client</faultcode>

<faultstring>Message does not have necessary info</faultstring>

<faultactor>http://gizmos.com/order</faultactor>

<detail>

<PO:order xmlns:PO="http://gizmos.com/orders/">
Quantity element does not have a value</PO:order>

<PO:confirmation xmlns:PO="http://gizmos.com/confirm">
Incomplete address: no zip code</PO:confirmation>

</detail></SOAP-ENV:Fault>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

SOAP fault contains:

Fault code = {http://schemas.xmlsoap.org/soap/envelope/}Client

Local name = Client

Namespace prefix = SOAP-ENV, bound to http://schemas.xmlsoap.org/soap/envelope/

Fault string = Message does not have necessary info

Fault actor = http://gizmos.com/order

Detail entry = Quantity element does not have a value

Detail entry = Incomplete address: no zip code

When you run SOAPFaultTest to generate a SOAP 1.2 message, the output looks like this:

Here is what the XML message looks like:

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header/><env:Body>

<env:Fault>

<env:Code><env:Value>env:Sender</env:Value></env:Code>

<env:Reason><env:Text xml:lang="en-US">
Message does not have necessary info

</env:Text></env:Reason>

<env:Role>http://gizmos.com/order</env:Role>

<env:Detail>

<PO:order xmlns:PO="http://gizmos.com/orders/">
Quantity element does not have a value</PO:order>

<PO:confirmation xmlns:PO="http://gizmos.com/confirm">
Incomplete address: no zip code</PO:confirmation>

</env:Detail></env:Fault>

</env:Body></env:Envelope>

SOAP fault contains:

Fault code = {http://www.w3.org/2003/05/soap-envelope}Sender

Local name = Sender

Namespace prefix = env, bound to http://www.w3.org/2003/05/soap-envelope

Fault reason text = Message does not have necessary info

Fault role = http://gizmos.com/order

Detail entry = Quantity element does not have a value

Detail entry = Incomplete address: no zip code

Code Examples

The Java EE 5 Tutorial • October 2008628

Further Information about SAAJ
For more information about SAAJ, SOAP, and WS-I, see:

■ SAAJ 1.3 specification, available from
http://java.sun.com/xml/downloads/saaj.html

■ Simple Object Access Protocol (SOAP) 1.1:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

■ SOAP Version 1.2 Part 0: Primer:
http://www.w3.org/TR/soap12-part0/

■ SOAP Version 1.2 Part 1: Messaging Framework:
http://www.w3.org/TR/soap12-part1/

■ SOAP Version 1.2 Part 2: Adjuncts:
http://www.w3.org/TR/soap12-part2/

■ WS-I Basic Profile:
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

■ SOAP Message Transmission Optimization Mechanism (MTOM):
http://www.w3.org/TR/soap12-mtom/

■ XML-binary Optimized Packaging (XOP):
http://www.w3.org/TR/xop10/

■ JAXM web site:
http://java.sun.com/webservices/jaxm/

Further Information about SAAJ

Chapter 19 • SOAP with Attachments API for Java 629

http://java.sun.com/xml/downloads/saaj.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/xop10/
http://java.sun.com/webservices/jaxm/

630

Enterprise Beans
Part Four explores Enterprise JavaBeans.

P A R T I V

631

632

Enterprise Beans

Enterprise beans are Java EE components that implement Enterprise JavaBeans (EJB)
technology. Enterprise beans run in the EJB container, a runtime environment within the
Application Server (see “Container Types” on page 49). Although transparent to the application
developer, the EJB container provides system-level services such as transactions and security to
its enterprise beans. These services enable you to quickly build and deploy enterprise beans,
which form the core of transactional Java EE applications.

What Is an Enterprise Bean?
Written in the Java programming language, an enterprise bean is a server-side component that
encapsulates the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the enterprise
beans might implement the business logic in methods called checkInventoryLevel and
orderProduct. By invoking these methods, clients can access the inventory services provided
by the application.

Benefits of Enterprise Beans
For several reasons, enterprise beans simplify the development of large, distributed
applications. First, because the EJB container provides system-level services to enterprise beans,
the bean developer can concentrate on solving business problems. The EJB container, rather
than the bean developer, is responsible for system-level services such as transaction
management and security authorization.

Second, because the beans rather than the clients contain the application’s business logic, the
client developer can focus on the presentation of the client. The client developer does not have
to code the routines that implement business rules or access databases. As a result, the clients
are thinner, a benefit that is particularly important for clients that run on small devices.

20C H A P T E R 2 0

633

Third, because enterprise beans are portable components, the application assembler can build
new applications from existing beans. These applications can run on any compliant Java EE
server provided that they use the standard APIs.

When to Use Enterprise Beans
You should consider using enterprise beans if your application has any of the following
requirements:

■ The application must be scalable. To accommodate a growing number of users, you may
need to distribute an application’s components across multiple machines. Not only can the
enterprise beans of an application run on different machines, but also their location will
remain transparent to the clients.

■ Transactions must ensure data integrity. Enterprise beans support transactions, the
mechanisms that manage the concurrent access of shared objects.

■ The application will have a variety of clients. With only a few lines of code, remote clients
can easily locate enterprise beans. These clients can be thin, various, and numerous.

Types of Enterprise Beans
Table 20–1 summarizes the two types of enterprise beans. The following sections discuss each
type in more detail.

TABLE 20–1 Enterprise Bean Types

Enterprise Bean Type Purpose

Session Performs a task for a client; optionally may implement a web service

Message-Driven Acts as a listener for a particular messaging type, such as the Java

Message Service API

Note – Entity beans have been replaced by Java Persistence API entities. For information about
entities, see Chapter 24, “Introduction to the Java Persistence API.”

What Is an Enterprise Bean?

The Java EE 5 Tutorial • October 2008634

What Is a Session Bean?
A session bean represents a single client inside the Application Server. To access an application
that is deployed on the server, the client invokes the session bean’s methods. The session bean
performs work for its client, shielding the client from complexity by executing business tasks
inside the server.

As its name suggests, a session bean is similar to an interactive session. A session bean is not
shared; it can have only one client, in the same way that an interactive session can have only one
user. Like an interactive session, a session bean is not persistent. (That is, its data is not saved to
a database.) When the client terminates, its session bean appears to terminate and is no longer
associated with the client.

For code samples, see Chapter 22, “Session Bean Examples.”

State Management Modes
There are two types of session beans: stateful and stateless.

Stateful Session Beans
The state of an object consists of the values of its instance variables. In a stateful session bean,
the instance variables represent the state of a unique client-bean session. Because the client
interacts (“talks”) with its bean, this state is often called the conversational state.

The state is retained for the duration of the client-bean session. If the client removes the bean or
terminates, the session ends and the state disappears. This transient nature of the state is not a
problem, however, because when the conversation between the client and the bean ends there is
no need to retain the state.

Stateless Session Beans
A stateless session bean does not maintain a conversational state with the client. When a client
invokes the methods of a stateless bean, the bean’s instance variables may contain a state specific
to that client, but only for the duration of the invocation. When the method is finished, the
client-specific state should not be retained. Clients may, however, change the state of instance
variables in pooled stateless beans, and this state is held over to the next invocation of the
pooled stateless bean. Except during method invocation, all instances of a stateless bean are
equivalent, allowing the EJB container to assign an instance to any client. That is, the state of a
stateless session bean should apply accross all clients.

Because stateless session beans can support multiple clients, they can offer better scalability for
applications that require large numbers of clients. Typically, an application requires fewer
stateless session beans than stateful session beans to support the same number of clients.

What Is a Session Bean?

Chapter 20 • Enterprise Beans 635

A stateless session bean can implement a web service, but other types of enterprise beans
cannot.

When to Use Session Beans
In general, you should use a session bean if the following circumstances hold:

■ At any given time, only one client has access to the bean instance.
■ The state of the bean is not persistent, existing only for a short period (perhaps a few hours).
■ The bean implements a web service.

Stateful session beans are appropriate if any of the following conditions are true:

■ The bean’s state represents the interaction between the bean and a specific client.
■ The bean needs to hold information about the client across method invocations.
■ The bean mediates between the client and the other components of the application,

presenting a simplified view to the client.
■ Behind the scenes, the bean manages the work flow of several enterprise beans. For an

example, see the AccountControllerBean session bean in Chapter 37, “The Duke’s Bank
Application.”

To improve performance, you might choose a stateless session bean if it has any of these traits:

■ The bean’s state has no data for a specific client.
■ In a single method invocation, the bean performs a generic task for all clients. For example,

you might use a stateless session bean to send an email that confirms an online order.

What Is a Message-Driven Bean?
A message-driven bean is an enterprise bean that allows Java EE applications to process
messages asynchronously. It normally acts as a JMS message listener, which is similar to an
event listener except that it receives JMS messages instead of events. The messages can be sent
by any Java EE component (an application client, another enterprise bean, or a web
component) or by a JMS application or system that does not use Java EE technology.
Message-driven beans can process JMS messages or other kinds of messages.

For a simple code sample, see Chapter 23, “A Message-Driven Bean Example.” For more
information about using message-driven beans, see “Using the JMS API in a Java EE
Application” on page 956 and Chapter 32, “Java EE Examples Using the JMS API.”

What Is a Message-Driven Bean?

The Java EE 5 Tutorial • October 2008636

What Makes Message-Driven Beans Different from
Session Beans?
The most visible difference between message-driven beans and session beans is that clients do
not access message-driven beans through interfaces. Interfaces are described in the section
“Defining Client Access with Interfaces” on page 638. Unlike a session bean, a message-driven
bean has only a bean class.

In several respects, a message-driven bean resembles a stateless session bean.
■ A message-driven bean’s instances retain no data or conversational state for a specific client.
■ All instances of a message-driven bean are equivalent, allowing the EJB container to assign a

message to any message-driven bean instance. The container can pool these instances to
allow streams of messages to be processed concurrently.

■ A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some state across the
handling of client messages (for example, a JMS API connection, an open database connection,
or an object reference to an enterprise bean object).

Client components do not locate message-driven beans and invoke methods directly on them.
Instead, a client accesses a message-driven bean through, for example, JMS by sending messages
to the message destination for which the message-driven bean class is the MessageListener.
You assign a message-driven bean’s destination during deployment by using Application Server
resources.

Message-driven beans have the following characteristics:
■ They execute upon receipt of a single client message.
■ They are invoked asynchronously.
■ They are relatively short-lived.
■ They do not represent directly shared data in the database, but they can access and update

this data.
■ They can be transaction-aware.
■ They are stateless.

When a message arrives, the container calls the message-driven bean’s onMessage method to
process the message. The onMessage method normally casts the message to one of the five JMS
message types and handles it in accordance with the application’s business logic. The onMessage
method can call helper methods, or it can invoke a session bean to process the information in
the message or to store it in a database.

A message can be delivered to a message-driven bean within a transaction context, so all
operations within the onMessage method are part of a single transaction. If message processing

What Is a Message-Driven Bean?

Chapter 20 • Enterprise Beans 637

is rolled back, the message will be redelivered. For more information, see Chapter 23, “A
Message-Driven Bean Example,” and Chapter 33, “Transactions.”

When to Use Message-Driven Beans
Session beans allow you to send JMS messages and to receive them synchronously, but not
asynchronously. To avoid tying up server resources, do not to use blocking synchronous
receives in a server-side component, and in general JMS messages should not be sent or
received synchronously. To receive messages asynchronously, use a message-driven bean.

Defining Client Access with Interfaces
The material in this section applies only to session beans and not to message-driven beans.
Because they have a different programming model, message-driven beans do not have
interfaces that define client access.

A client can access a session bean only through the methods defined in the bean’s business
interface. The business interface defines the client’s view of a bean. All other aspects of the bean
(method implementations and deployment settings) are hidden from the client.

Well-designed interfaces simplify the development and maintenance of Java EE applications.
Not only do clean interfaces shield the clients from any complexities in the EJB tier, but they
also allow the beans to change internally without affecting the clients. For example, if you
change a session bean from a stateless to a stateful session bean, you won’t have to alter the
client code. But if you were to change the method definitions in the interfaces, then you might
have to modify the client code as well. Therefore, it is important that you design the interfaces
carefully to isolate your clients from possible changes in the beans.

Session beans can have more than one business interface. Session beans should, but are not
required to, implement their business interface or interfaces.

When you design a Java EE application, one of the first decisions you make is the type of client
access allowed by the enterprise beans: remote, local, or web service.

Remote Clients
A remote client of an enterprise bean has the following traits:

■ It can run on a different machine and a different Java virtual machine (JVM) than the
enterprise bean it accesses. (It is not required to run on a different JVM.)

■ It can be a web component, an application client, or another enterprise bean.
■ To a remote client, the location of the enterprise bean is transparent.

Defining Client Access with Interfaces

The Java EE 5 Tutorial • October 2008638

To create an enterprise bean that allows remote access, you must do one of the following:

■ Decorate the business interface of the enterprise bean with the @Remote annotation:

@Remote

public interface InterfaceName { ... }

■ Decorate the bean class with @Remote, specifying the business interface or interfaces:

@Remote(InterfaceName.class)

public class BeanName implements InterfaceName { ... }

The remote interface defines the business and life cycle methods that are specific to the bean. For
example, the remote interface of a bean named BankAccountBean might have business methods
named deposit and credit. Figure 20–1 shows how the interface controls the client’s view of
an enterprise bean.

Local Clients
A local client has these characteristics:

■ It must run in the same JVM as the enterprise bean it accesses.
■ It can be a web component or another enterprise bean.
■ To the local client, the location of the enterprise bean it accesses is not transparent.

Remote Client Remote
Interface

deposit()
credit()

BankAccountBean

FIGURE 20–1 Interfaces for an Enterprise Bean with Remote Access

Defining Client Access with Interfaces

Chapter 20 • Enterprise Beans 639

The local business interface defines the bean’s business and life cycle methods. If the bean’s
business interface is not decorated with @Local or @Remote, and the bean class does not specify
the interface using @Local or @Remote, the business interface is by default a local interface. To
build an enterprise bean that allows only local access, you may, but are not required to do one of
the following:
■ Annotate the business interface of the enterprise bean as a @Local interface. For example:

@Local

public interface InterfaceName { ... }

■ Specify the interface by decorating the bean class with @Local and specify the interface
name. For example:

@Local(InterfaceName.class)

public class BeanName implements InterfaceName { ... }

Deciding on Remote or Local Access
Whether to allow local or remote access depends on the following factors.
■ Tight or loose coupling of related beans: Tightly coupled beans depend on one another.

For example, if a session bean that processes sales orders calls a session bean that emails a
confirmation message to the customer, these beans are tightly coupled. Tightly coupled
beans are good candidates for local access. Because they fit together as a logical unit, they
typically call each other often and would benefit from the increased performance that is
possible with local access.

■ Type of client: If an enterprise bean is accessed by application clients, then it should allow
remote access. In a production environment, these clients almost always run on different
machines than the Application Server. If an enterprise bean’s clients are web components or
other enterprise beans, then the type of access depends on how you want to distribute your
components.

■ Component distribution: Java EE applications are scalable because their server-side
components can be distributed across multiple machines. In a distributed application, for
example, the web components may run on a different server than do the enterprise beans
they access. In this distributed scenario, the enterprise beans should allow remote access.

■ Performance: Due to factors such as network latency, remote calls may be slower than local
calls. On the other hand, if you distribute components among different servers, you may
improve the application’s overall performance. Both of these statements are generalizations;
actual performance can vary in different operational environments. Nevertheless, you
should keep in mind how your application design might affect performance.

If you aren’t sure which type of access an enterprise bean should have, choose remote access.
This decision gives you more flexibility. In the future you can distribute your components to
accommodate the growing demands on your application.

Defining Client Access with Interfaces

The Java EE 5 Tutorial • October 2008640

Although it is uncommon, it is possible for an enterprise bean to allow both remote and local
access. If this is the case, either the business interface of the bean must be explicitly designated as
a business interface by being decorated with the @Remote or @Local annotations, or the bean
class must explicitly designate the business interfaces by using the @Remote and @Local

annotations. The same business interface cannot be both a local and remote business interface.

Web Service Clients
A web service client can access a Java EE application in two ways. First, the client can access a
web service created with JAX-WS. (For more information on JAX-WS, see Chapter 16,
“Building Web Services with JAX-WS.”) Second, a web service client can invoke the business
methods of a stateless session bean. Message beans cannot be accessed by web service clients.

Provided that it uses the correct protocols (SOAP, HTTP, WSDL), any web service client can
access a stateless session bean, whether or not the client is written in the Java programming
language. The client doesn’t even “know” what technology implements the service: stateless
session bean, JAX-WS, or some other technology. In addition, enterprise beans and web
components can be clients of web services. This flexibility enables you to integrate Java EE
applications with web services.

A web service client accesses a stateless session bean through the bean’s web service endpoint
implementation class. By default, all public methods in the bean class are accessible to web
service clients. The @WebMethod annotation may be used to customize the behavior of web
service methods. If the @WebMethod annotation is used to decorate the bean class’s methods,
only those methods decorated with @WebMethod are exposed to web service clients.

For a code sample, see “A Web Service Example: helloservice” on page 667.

Method Parameters and Access
The type of access affects the parameters of the bean methods that are called by clients. The
following topics apply not only to method parameters but also to method return values.

Isolation
The parameters of remote calls are more isolated than those of local calls. With remote calls, the
client and bean operate on different copies of a parameter object. If the client changes the value
of the object, the value of the copy in the bean does not change. This layer of isolation can help
protect the bean if the client accidentally modifies the data.

In a local call, both the client and the bean can modify the same parameter object. In general,
you should not rely on this side effect of local calls. Perhaps someday you will want to distribute
your components, replacing the local calls with remote ones.

Defining Client Access with Interfaces

Chapter 20 • Enterprise Beans 641

As with remote clients, web service clients operate on different copies of parameters than does
the bean that implements the web service.

Granularity of Accessed Data
Because remote calls are likely to be slower than local calls, the parameters in remote methods
should be relatively coarse-grained. A coarse-grained object contains more data than a
fine-grained one, so fewer access calls are required. For the same reason, the parameters of the
methods called by web service clients should also be coarse-grained.

The Contents of an Enterprise Bean
To develop an enterprise bean, you must provide the following files:

■ Enterprise bean class: Implements the methods defined in the business interface and any
life cycle callback methods.

■ Business Interfaces: The business interface defines the methods implemented by the
enterprise bean class.

■ Helper classes: Other classes needed by the enterprise bean class, such as exception and
utility classes.

You package the files in the preceding list into an EJB JAR file, the module that stores the
enterprise bean. An EJB JAR file is portable and can be used for different applications. To
assemble a Java EE application, you package one or more modules (such as EJB JAR files) into
an EAR file, the archive file that holds the application. When you deploy the EAR file that
contains the bean’s EJB JAR file, you also deploy the enterprise bean to the Application Server.
You can also deploy an EJB JAR that is not contained in an EAR file. Figure 20–2 shows the
contents of an EJB JAR file.

The Contents of an Enterprise Bean

The Java EE 5 Tutorial • October 2008642

Naming Conventions for Enterprise Beans
Because enterprise beans are composed of multiple parts, it’s useful to follow a naming
convention for your applications. Table 20–2 summarizes the conventions for the example
beans in this tutorial.

TABLE 20–2 Naming Conventions for Enterprise Beans

Item Syntax Example

Enterprise bean name nameBean AccountBean

Enterprise bean class nameBean AccountBean

Business interface name Account

The Life Cycles of Enterprise Beans
An enterprise bean goes through various stages during its lifetime, or life cycle. Each type of
enterprise bean (stateful session, stateless session, or message-driven) has a different life cycle.

The descriptions that follow refer to methods that are explained along with the code examples
in the next two chapters. If you are new to enterprise beans, you should skip this section and run
the code examples first.

ejb-jar.xml
sun-ejb-jar.xml MANIFEST.MF

All .class files
for this module

Assembly
Root

META-INF

FIGURE 20–2 Structure of an Enterprise Bean JAR

The Life Cycles of Enterprise Beans

Chapter 20 • Enterprise Beans 643

The Life Cycle of a Stateful Session Bean
Figure 20–3 illustrates the stages that a session bean passes through during its lifetime. The
client initiates the life cycle by obtaining a reference to a stateful session bean. The container
performs any dependency injection and then invokes the method annotated with
@PostConstruct, if any. The bean is now ready to have its business methods invoked by the
client.

While in the ready stage, the EJB container may decide to deactivate, or passivate, the bean by
moving it from memory to secondary storage. (Typically, the EJB container uses a
least-recently-used algorithm to select a bean for passivation.) The EJB container invokes the
method annotated @PrePassivate, if any, immediately before passivating it. If a client invokes
a business method on the bean while it is in the passive stage, the EJB container activates the
bean, calls the method annotated @PostActivate, if any, and then moves it to the ready stage.

At the end of the life cycle, the client invokes a method annotated @Remove, and the EJB
container calls the method annotated @PreDestroy, if any. The bean’s instance is then ready for
garbage collection.

Your code controls the invocation of only one life-cycle method: the method annotated
@Remove. All other methods in Figure 20–3 are invoked by the EJB container. See Chapter 34,
“Resource Connections,” for more information.

The Life Cycle of a Stateless Session Bean
Because a stateless session bean is never passivated, its life cycle has only two stages: nonexistent
and ready for the invocation of business methods. Figure 20–4 illustrates the stages of a stateless
session bean.

Does Not
Exist Ready

1. Create
2. Dependency injection, if any
3. PostConstruct callback, if any
4. Init method, or ejbCreate<METHOD>,
 if any

1. Remove
2. PreDestroy callback, if any

Passive

PrePassivate
callback, if any

PostActivate
callback, if any

FIGURE 20–3 Life Cycle of a Stateful Session Bean

The Life Cycles of Enterprise Beans

The Java EE 5 Tutorial • October 2008644

The client initiates the life cycle by obtaining a reference to a stateless session bean. The
container performs any dependency injection and then invokes the method annotated
@PostConstruct, if any. The bean is now ready to have its business methods invoked by the
client.

At the end of the life cycle, the EJB container calls the method annotated @PreDestroy, if any.
The bean’s instance is then ready for garbage collection.

The Life Cycle of a Message-Driven Bean
Figure 20–5 illustrates the stages in the life cycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For each instance,
the EJB container performs these tasks:

1. If the message-driven bean uses dependency injection, the container injects these references
before instantiating the instance.

2. The container calls the method annotated @PostConstruct, if any.

Does Not
Exist Ready

1. Dependency injection, if any
2. PostConstruct callbacks, if any

PreDestroy callbacks, if any

FIGURE 20–4 Life Cycle of a Stateless Session Bean

Does Not
Exist

Ready

1. Dependency injection, if any
2. PostConstruct callback, if any

PreDestroy callback, if any

onMessage

FIGURE 20–5 Life Cycle of a Message-Driven Bean

The Life Cycles of Enterprise Beans

Chapter 20 • Enterprise Beans 645

Like a stateless session bean, a message-driven bean is never passivated, and it has only two
states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls the method annotated @PreDestroy, if any. The
bean’s instance is then ready for garbage collection.

Further Information about Enterprise Beans
For more information on Enterprise JavaBeans technology, see:

■ Enterprise JavaBeans 3.0 specification:
http://java.sun.com/products/ejb/docs.html

■ The Enterprise JavaBeans web site:
http://java.sun.com/products/ejb

Further Information about Enterprise Beans

The Java EE 5 Tutorial • October 2008646

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb

Getting Started with Enterprise Beans

This chapter shows how to develop, deploy, and run a simple Java EE application named
converter. The purpose of converter is to calculate currency conversions between Japanese
yen and Eurodollars. converter consists of an enterprise bean, which performs the
calculations, and two types of clients: an application client and a web client.

Here’s an overview of the steps you’ll follow in this chapter:

1. Create the enterprise bean: ConverterBean.
2. Create the application client: ConverterClient.
3. Create the web client in converter-war.
4. Deploy converter onto the server.
5. Run the application client.
6. Using a browser, run the web client.

Before proceeding, make sure that you’ve done the following:

■ Read Chapter 1, “Overview.”
■ Become familiar with enterprise beans (see Chapter 20, “Enterprise Beans”).
■ Started the server (see “Starting and Stopping the Application Server” on page 69).

Creating the Enterprise Bean
The enterprise bean in our example is a stateless session bean called ConverterBean. The source
code for ConverterBean is in the
tut-install/javaeetutorial5/examples/ejb/converter/converter-ejb/src/java/
directory.

Creating ConverterBean requires these steps:

1. Coding the bean’s business interface and class (the source code is provided)
2. Compiling the source code with the Ant tool

21C H A P T E R 2 1

647

Coding the Enterprise Bean
The enterprise bean in this example needs the following code:

■ Remote business interface
■ Enterprise bean class

Coding the Business Interface
The business interface defines the business methods that a client can call. The business methods
are implemented in the enterprise bean class. The source code for the Converter remote
business interface follows.

package com.sun.tutorial.javaee.ejb;

import java.math.BigDecimal;

import javax.ejb.Remote;

@Remote

public interface Converter {

public BigDecimal dollarToYen(BigDecimal dollars);

public BigDecimal yenToEuro(BigDecimal yen);

}

Note the @Remote annotation decorating the interface definition. This lets the container know
that ConverterBean will be accessed by remote clients.

Coding the Enterprise Bean Class
The enterprise bean class for this example is called ConverterBean. This class implements the
two business methods (dollarToYen and yenToEuro) that the Converter remote business
interface defines. The source code for the ConverterBean class follows.

package com.sun.tutorial.javaee.ejb;

import java.math.BigDecimal;

import javax.ejb.*;

@Stateless

public class ConverterBean implements Converter {

private BigDecimal yenRate = new BigDecimal("115.3100");
private BigDecimal euroRate = new BigDecimal("0.0071");

public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}

Creating the Enterprise Bean

The Java EE 5 Tutorial • October 2008648

public BigDecimal yenToEuro(BigDecimal yen) {

BigDecimal result = yen.multiply(euroRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

Note the @Stateless annotation decorating the enterprise bean class. This lets the container
know that ConverterBean is a stateless session bean.

Compiling and Packaging the converter Example
Now you are ready to compile the remote business interface (Converter.java) and the
enterprise bean class (ConverterBean.java), and package the compiled classes into an
enterprise bean JAR.

Compiling and Packaging the converter Example in NetBeans IDE
Follow these instructions to build and package the converter example in NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/ejb/.
3. Select the converter folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. In the Projects tab, right-click the converter project and select Build. You will see the

output in the Output tab.

Compiling and Packaging the converter Example Using Ant
To compile and package converter using Ant, do the following:

1. In a terminal window, go to this directory:

tut-install/javaeetutorial5/examples/ejb/converter/

2. Type the following command:

ant

This command calls the default task, which compiles the source files for the enterprise bean
and the application client, placing the class files in the build subdirectories (not the src
directory) of each submodule. Then the default task packages each submodule into the
appropriate package file: converter-app-client.jar for the application client,

Creating the Enterprise Bean

Chapter 21 • Getting Started with Enterprise Beans 649

converter-ejb.jar for the enterprise bean JAR, and converter-war.war for the web client.
The web client in this example requires no compilation. For more information about the Ant
tool, see “Building the Examples” on page 71.

Note – When compiling the code, the preceding ant task includes the javaee.jar file in the
classpath. This file resides in the lib directory of your Application Server installation. If you
plan to use other tools to compile the source code for Java EE components, make sure that the
classpath includes the javaee.jar file.

Creating the converterApplication Client
An application client is a program written in the Java programming language. At runtime, the
client program executes in a different virtual machine than the Application Server. For detailed
information on the appclient command-line tool, see the man page at appclient(1M).

The application client in this example requires two JAR files. The first JAR file is for the Java EE
component of the client. This JAR file contains the client’s deployment descriptor and class files;
it is created when you run the New Application Client wizard. Defined by the Java EE
Specification, this JAR file is portable across all compliant application servers.

The second JAR file contains all the classes that are required by the client program at runtime.
These classes enable the client to access the enterprise beans that are running in the Application
Server. The JAR file is retrieved before you run the application. Because this retrieved JAR file is
not covered by the Java EE specification, it is implementation-specific, intended only for the
Application Server.

The application client source code is in the ConverterClient.java file, which is in this
directory:

tut-install/javaeetutorial5/examples/ejb/converter/converter-app-client/src/java/

You compiled this code along with the enterprise bean code in the section “Compiling and
Packaging the converter Example” on page 649.

Coding the converterApplication Client
The ConverterClient.java source code illustrates the basic tasks performed by the client of an
enterprise bean:

■ Creating an enterprise bean instance
■ Invoking a business method

Creating the converterApplication Client

The Java EE 5 Tutorial • October 2008650

http://docs.sun.com/doc/819-3675/appclient-1m?a=view

Creating a Reference to an Enterprise Bean Instance
Java EE application clients refer to enterprise bean instances by annotating static fields with the
@EJB annotation. The annotated static field represents the enterprise bean’s business interface,
which will resolve to the session bean instance when the application client container injects the
resource references at runtime.

@EJB

private static Converter converter;

The field is static because the client class runs in a static context.

Invoking a Business Method
Calling a business method is easy: you simply invoke the method on the injected Converter

object. The EJB container will invoke the corresponding method on the ConverterBean
instance that is running on the server. The client invokes the dollarToYen business method in
the following lines of code.

BigDecimal param = new BigDecimal ("100.00");
BigDecimal amount = currencyConverter.dollarToYen(param);

ConverterClient Source Code
The full source code for the ConverterClient program follows.

package com.sun.tutorial.javaee.ejb;

import java.math.BigDecimal;

import javax.ejb.EJB;

public class ConverterClient {

@EJB

private static Converter converter;

public ConverterClient(String[] args) {

}

public static void main(String[] args) {

ConverterClient client = new ConverterClient(args);

client.doConversion();

}

public void doConversion() {

try {

BigDecimal param = new BigDecimal("100.00");
BigDecimal yenAmount = converter.dollarToYen(param);

Creating the converterApplication Client

Chapter 21 • Getting Started with Enterprise Beans 651

System.out.println("$" + param + " is " + yenAmount

+ " Yen.");
BigDecimal euroAmount = converter.yenToEuro(yenAmount);

System.out.println(yenAmount + " Yen is " + euroAmount

+ " Euro.");

System.exit(0);

} catch (Exception ex) {

System.err.println("Caught an unexpected exception!");
ex.printStackTrace();

}

}

}

Compiling the converterApplication Client
The application client files are compiled at the same time as the enterprise bean files, as
described in “Compiling and Packaging the converter Example” on page 649.

Creating the converterWeb Client
The web client is contained in the JSP page
tut-install/javaeetutorial5/examples/ejb/converter/converter-war/web/index.jsp. A
JSP page is a text-based document that contains JSP elements, which construct dynamic
content, and static template data, which can be expressed in any text-based format such as
HTML, WML, and XML.

Coding the converterWeb Client
The statements (in bold in the following code) for locating the business interface, creating an
enterprise bean instance, and invoking a business method are nearly identical to those of the
application client. The parameter of the lookup method is the only difference.

The classes needed by the client are declared using a JSP page directive (enclosed within the <%@
%> characters). Because locating the business interface and creating the enterprise bean are
performed only once, this code appears in a JSP declaration (enclosed within the <%! %>
characters) that contains the initialization method, jspInit, of the JSP page. The declaration is
followed by standard HTML markup for creating a form that contains an input field. A scriptlet
(enclosed within the <% %> characters) retrieves a parameter from the request and converts it to
a BigDecimal object. Finally, a JSP scriptlet invokes the enterprise bean’s business methods, and
JSP expressions (enclosed within the <%= %> characters) insert the results into the stream of data
returned to the client.

Creating the converterWeb Client

The Java EE 5 Tutorial • October 2008652

<%@ page import="converter.ejb.Converter,
java.math.*, javax.naming.*"%>

<%!

private Converter converter = null;

public void jspInit() {

try {

InitialContext ic = new InitialContext();

converter = (Converter)

ic.lookup(Converter.class.getName());

} catch (Exception ex) {

System.out.println("Couldn’t create converter bean."+
ex.getMessage());

}

}

public void jspDestroy() {

converter = null;

}

%>

<html>

<head>

<title>Converter</title>

</head>

<body bgcolor="white">
<h1>Converter</h1>

<hr>

<p>Enter an amount to convert:</p>

<form method="get">
<input type="text" name="amount" size="25">

<p>

<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>

<%

String amount = request.getParameter("amount");
if (amount != null && amount.length() > 0) {

BigDecimal d = new BigDecimal(amount);

BigDecimal yenAmount = converter.dollarToYen(d);

%>

<p>

<%= amount %> dollars are <%= yenAmount %> Yen.

<p>

<%

Creating the converterWeb Client

Chapter 21 • Getting Started with Enterprise Beans 653

BigDecimal euroAmount =

converter.yenToEuro(yenAmount);

%>

<%= amount %> Yen are <%= euroAmount %> Euro.

<%

}

%>

</body>

</html>

Compiling the converterWeb Client
The Application Server automatically compiles web clients that are JSP pages. If the web client
were a servlet, you would have to compile it.

Deploying the converter Java EE Application
Now that the Java EE application contains the components, it is ready for deployment. You can
deploy the application using either NetBeans IDE or Ant.

Deploying the converter Example Using NetBeans
IDE
Follow these instructions to deploy the converter example to your Application Server instance
using NetBeans IDE.

1. In NetBeans IDE, make sure the converter application is open.
2. In the Projects tab, right-click the converter project and select Undeploy and Deploy. You

will see the output in the Output tab.

Deploying the converter Example Using Ant
To deploy converter.ear using Ant, run the deploy task.

ant deploy

converter.ear will be deployed to the Application Server.

Deploying the converter Java EE Application

The Java EE 5 Tutorial • October 2008654

Running the converterApplication Client
When you run the application client, the application client container first injects the resources
specified in the client and then runs the client. You can run the application client using either
NetBeans IDE or Ant.

Running the converterApplication Client Using
NetBeans IDE
Follow these instructions to run the application client using NetBeans IDE.

1. In NetBeans IDE, make sure the converter application is open.
2. In the Projects tab, right-click the converter project and select Run. You will see the

following output in the Output tab:

...

$100.00 is 11258.00 Yen.

11258.00 Yen is 78.81 Euro.

...

Running the converterApplication Client Using Ant
To run the application client using Ant, perform the following steps.

1. In a terminal window, go to this directory:

tut-install/javaeetutorial5/examples/ejb/converter/

2. Type the following command:

ant run

This task will retrieve the application client JAR, converterClient.jar and run the
retrieved client JAR. converterClient.jar contains the application client class and the
support classes needed to access ConverterBean. Although you are using Ant to run the
client, this task is the equivalent of running:

appclient -client client-jar/converterClient.jar

3. In the terminal window, the client displays these lines:

...

$100.00 is 11531.00 Yen.

11531.00 Yen is 81.88 Euro.

...

Running the converterApplication Client

Chapter 21 • Getting Started with Enterprise Beans 655

Running the converterWeb Client
To run the web client, point your browser at the following URL. Replace host with the name of
the host running the Application Server. If your browser is running on the same host as the
Application Server, you can replace host with localhost.

http://host:8080/converter

After entering 100 in the input field and clicking Submit, you should see the screen shown in
Figure 21–1.

Modifying the Java EE Application
The Application Server supports iterative development. Whenever you make a change to a Java
EE application, you must redeploy the application.

Modifying a Class File
To modify a class file in an enterprise bean, you change the source code, recompile it, and
redeploy the application. For example, if you want to change the exchange rate in the
dollarToYen business method of the ConverterBean class, you would follow these steps.

1. Edit ConverterBean.java.
2. Recompile ConverterBean.java.

a. In a terminal window, go to the
tut-install/javaeetutorial5/examples/ejb/converter/ subdirectory.

FIGURE 21–1 converterWeb Client

Running the converterWeb Client

The Java EE 5 Tutorial • October 2008656

b. Type the following command:

ant

This command runs the default task, which repackages the entire application
(application client, enterprise bean JAR, and web client).

3. Type the following command:

ant deploy

To modify the contents of a WAR file, or to modify the application client, follow the preceding
steps.

Modifying the Java EE Application

Chapter 21 • Getting Started with Enterprise Beans 657

658

Session Bean Examples

Session beans provide a simple but powerful way to encapsulate business logic within an
application. They can be accessed from remote Java clients, web service clients, and from
components running in the same server.

In Chapter 21, “Getting Started with Enterprise Beans,” you built a stateless session bean named
ConverterBean. This chapter examines the source code of three more session beans:

■ CartBean: a stateful session bean that is accessed by a remote client
■ HelloServiceBean: a stateless session bean that implements a web service
■ TimerSessionBean: a stateless session bean that sets a timer

The cart Example
The cart session bean represents a shopping cart in an online bookstore. The bean’s client can
add a book to the cart, remove a book, or retrieve the cart’s contents. To assemble cart, you
need the following code:

■ Session bean class (CartBean)
■ Remote business interface (Cart)

All session beans require a session bean class. All enterprise beans that permit remote access
must have a remote business interface. To meet the needs of a specific application, an enterprise
bean may also need some helper classes. The CartBean session bean uses two helper classes
(BookException and IdVerifier) which are discussed in the section “Helper Classes” on
page 664.

The source code for this example is in the tut-install/javaeetutorial5/examples/ejb/cart/
directory.

22C H A P T E R 2 2

659

The Business Interface
The Cart business interface is a plain Java interface that defines all the business methods
implemented in the bean class. If the bean class implements a single interface, that interface is
assumed to the business interface. The business interface is a local interface unless it is
annotated with the javax.ejb.Remote annotation; the javax.ejb.Local annotation is
optional in this case.

The bean class may implement more than one interface. If the bean class implements more than
one interface, either the business interfaces must be explicitly annotated either @Local or
@Remote, or the business interfaces must be specified by decorating the bean class with @Local

or @Remote. However, the following interfaces are excluded when determining if the bean class
implements more than one interface:

■ java.io.Serializable

■ java.io.Externalizable

■ Any of the interfaces defined by the javax.ejb package

The source code for the Cart business interface follows:

package com.sun.tutorial.javaee.ejb;

import java.util.List;

import javax.ejb.Remote;

@Remote

public interface Cart {

public void initialize(String person) throws BookException;

public void initialize(String person, String id)

throws BookException;

public void addBook(String title);

public void removeBook(String title) throws BookException;

public List<String> getContents();

public void remove();

}

Session Bean Class
The session bean class for this example is called CartBean. Like any stateful session bean, the
CartBean class must meet these requirements:

■ The class is annotated @Stateful.
■ The class implements the business methods defined in the business interface.

The cart Example

The Java EE 5 Tutorial • October 2008660

Stateful session beans also may:
■ Implement the business interface, a plain Java interface. It is good practice to implement the

bean’s business interface.
■ Implement any optional life cycle callback methods, annotated @PostConstruct,

@PreDestroy, @PostActivate, and @PrePassivate.
■ Implement any optional business methods annotated @Remove.

The source code for the CartBean class follows.

package com.sun.tutorial.javaee.ejb;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.Remove;

import javax.ejb.Stateful;

@Stateful

public class CartBean implements Cart {

String customerName;

String customerId;

List<String> contents;

public void initialize(String person) throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

customerId = "0";
contents = new ArrayList<String>();

}

public void initialize(String person, String id)

throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(id)) {

customerId = id;

} else {

The cart Example

Chapter 22 • Session Bean Examples 661

throw new BookException("Invalid id: " + id);

}

contents = new ArrayList<String>();

}

public void addBook(String title) {

contents.add(title);

}

public void removeBook(String title) throws BookException {

boolean result = contents.remove(title);

if (result == false) {

throw new BookException(title + " not in cart.");
}

}

public List<String> getContents() {

return contents;

}

@Remove

public void remove() {

contents = null;

}

}

Life-Cycle Callback Methods
Methods in the bean class may be declared as a life-cycle callback method by annotating the
method with the following annotations:

■ javax.annotation.PostConstruct

■ javax.annotation.PreDestroy

■ javax.ejb.PostActivate

■ javax.ejb.PrePassivate

Life-cycle callback methods must return void and have no parameters.

@PostConstruct methods are invoked by the container on newly constructed bean instances
after all dependency injection has completed and before the first business method is invoked on
the enterprise bean.

@PreDestroy methods are invoked after any method annotated @Remove has completed, and
before the container removes the enterprise bean instance.

@PostActivate methods are invoked by the container after the container moves the bean from
secondary storage to active status.

The cart Example

The Java EE 5 Tutorial • October 2008662

@PrePassivate methods are invoked by the container before the container passivates the
enterprise bean, meaning the container temporarily removes the bean from the environment
and saves it to secondary storage.

Business Methods
The primary purpose of a session bean is to run business tasks for the client. The client invokes
business methods on the object reference it gets from dependency injection or JNDI lookup.
From the client’s perspective, the business methods appear to run locally, but they actually run
remotely in the session bean. The following code snippet shows how the CartClient program
invokes the business methods:

cart.create("Duke DeEarl", "123");
...

cart.addBook("Bel Canto");
...

List<String> bookList = cart.getContents();

...

cart.removeBook("Gravity’s Rainbow");

The CartBean class implements the business methods in the following code:

public void addBook(String title) {

contents.addElement(title);

}

public void removeBook(String title) throws BookException {

boolean result = contents.remove(title);

if (result == false) {

throw new BookException(title + "not in cart.");
}

}

public List<String> getContents() {

return contents;

}

The signature of a business method must conform to these rules:
■ The method name must not begin with ejb to avoid conflicts with callback methods defined

by the EJB architecture. For example, you cannot call a business method ejbCreate or
ejbActivate.

■ The access control modifier must be public.
■ If the bean allows remote access through a remote business interface, the arguments and

return types must be legal types for the Java RMI API.
■ If the bean is a web service endpoint, the arguments and return types for the methods

annotated @WebMethod must be legal types for JAX-WS.

The cart Example

Chapter 22 • Session Bean Examples 663

■ The modifier must not be static or final.

The throws clause can include exceptions that you define for your application. The removeBook
method, for example, throws the BookException if the book is not in the cart.

To indicate a system-level problem, such as the inability to connect to a database, a business
method should throw a javax.ejb.EJBException. The container will not wrap application
exceptions such as BookException. Because EJBException is a subclass of RuntimeException,
you do not need to include it in the throws clause of the business method.

The Remove Method
Business methods annotated with javax.ejb.Remove in the stateful session bean class can be
invoked by enterprise bean clients to remove the bean instance. The container will remove the
enterprise bean after a @Remove method completes, either normally or abnormally.

In CartBean, the remove method is a @Remove method:

@Remove

public void remove() {

contents = null;

}

Helper Classes
The CartBean session bean has two helper classes: BookException and IdVerifier. The
BookException is thrown by the removeBook method, and the IdVerifier validates the
customerId in one of the create methods. Helper classes may reside in the EJB JAR file that
contains the enterprise bean class, or in an EAR that contains the EJB JAR.

Building, Packaging, Deploying, and Running the cart
Example
You can build, package, deploy, and run the cart application using either NetBeans IDE or the
Ant tool.

The cart Example

The Java EE 5 Tutorial • October 2008664

Building, Packaging, and Deploying the cart Example Using NetBeans
IDE
Follow these instructions to build, package, and deploy the cart example to your Application
Server instance using the NetBeans IDE IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/ejb/.

3. Select the cart folder.

4. Select the Open as Main Project and Open Required Projects check boxes.

5. Click Open Project.

6. In the Projects tab, right-click the cart project and select Undeploy and Deploy.

This builds and packages the application into cart.ear, located in
tut-install/javaeetutorial5/examples/ejb/cart/dist/, and deploys this EAR file to your
Application Server instance.

Running the cartApplication Client Using NetBeans IDE
To run cart’s application client, select Run→Run Main Project. You will see the output of the
application client in the Output pane:

...

Retrieving book title from cart: Infinite Jest

Retrieving book title from cart: Bel Canto

Retrieving book title from cart: Kafka on the Shore

Removing "Gravity’s Rainbow" from cart.

Caught a BookException: "Gravity’s Rainbow" not in cart.

Java Result: 1

run-cart-app-client:

run-nb:

BUILD SUCCESSFUL (total time: 14 seconds)

The cart Example

Chapter 22 • Session Bean Examples 665

Building, Packaging, and Deploying the cart Example Using Ant
Now you are ready to compile the remote interface (Cart.java), the home interface
(CartHome.java), the enterprise bean class (CartBean.java), the client class
(CartClient.java), and the helper classes (BookException.java and IdVerifier.java).

1. In a terminal window, go to this directory:

tut-install/javaeetutorial5/examples/ejb/cart/

2. Type the following command:

ant

This command calls the default target, which builds and packages the application into an
EAR file, cart.ear, located in the dist directory.

3. Type the following command:

ant deploy

cart.ear will be deployed to the Application Server.

Running the cartApplication Client Using Ant
When you run the client, the application client container injects any component references
declared in the application client class, in this case the reference to the Cart enterprise bean. To
run the application client, perform the following steps.

1. In a terminal window, go to this directory:

tut-install/javaeetutorial5/examples/ejb/cart/

2. Type the following command:

ant run

This task will retrieve the application client JAR, cartClient.jar and run the application
client. cartClient.jar contains the application client class, the helper class
BookException, and the Cart business interface.

This is the equivalent of running:

appclient -client cartClient.jar

3. In the terminal window, the client displays these lines:

[echo] running application client container.

[exec] Retrieving book title from cart: Infinite Jest

[exec] Retrieving book title from cart: Bel Canto

The cart Example

The Java EE 5 Tutorial • October 2008666

[exec] Retrieving book title from cart: Kafka on the Shore

[exec] Removing "Gravity’s Rainbow" from cart.

[exec] Caught a BookException: "Gravity’s Rainbow" not in cart.

[exec] Result: 1

The all Task
As a convenience, the all task will build, package, deploy, and run the application. To do this,
enter the following command:

ant all

Undeploying the cart Example
To undeploy cart.ear using NetBeans IDE:

1. Click the Services tab.

2. Expand the Servers node and locate the Application Server instance to which you deployed
cart.

3. Expand your Application Server instance node, then Applications→Enterprise
Applications.

4. Right-click cart and select Undeploy.

To undeploy cart.ear using Ant, enter the following command:

ant undeploy

A Web Service Example: helloservice
This example demonstrates a simple web service that generates a response based on
information received from the client. HelloServiceBean is a stateless session bean that
implements a single method, sayHello. This method matches the sayHello method invoked by
the client described in “A Simple JAX-WS Client” on page 486.

A Web Service Example: helloservice

Chapter 22 • Session Bean Examples 667

The Web Service Endpoint Implementation Class
HelloServiceBean is the endpoint implementation class. The endpoint implementation class is
typically the primary programming artifact for enterprise bean web service endpoints. The web
service endpoint implementation class has the following requirements:
■ The class must be annotated with either the javax.jws.WebService or

javax.jws.WebServiceProvider annotations.
■ The implementing class may explicitly reference an SEI through the endpointInterface

element of the @WebService annotation, but is not required to do so. If no
endpointInterface is specified in @WebService, an SEI is implicitly defined for the
implementing class.

■ The business methods of the implementing class must be public, and must not be declared
static or final.

■ Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

■ Business methods that are exposed to web service clients must have JAXB-compatible
parameters and return types. See “Default Data Type Bindings” on page 495.

■ The implementing class must not be declared final and must not be abstract.
■ The implementing class must have a default public constructor.
■ The endpoint class must be annotated @Stateless.
■ The implementing class must not define the finalize method.
■ The implementing class may use the javax.annotation.PostConstruct or

javax.annotation.PreDestroy annotations on its methods for life-cycle event callbacks.
The @PostConstruct method is called by the container before the implementing class
begins responding to web service clients.
The @PreDestroy method is called by the container before the endpoint is removed from
operation.

Stateless Session Bean Implementation Class
The HelloServiceBean class implements the sayHello method, which is annotated
@WebMethod. The source code for the HelloServiceBean class follows:

package com.sun.tutorial.javaee.ejb;

import javax.ejb.Stateless;

import javax.jws.WebMethod;

import javax.jws.WebService;

@Stateless

A Web Service Example: helloservice

The Java EE 5 Tutorial • October 2008668

@WebService

public class HelloServiceBean {

private String message = "Hello, ";

public void HelloServiceBean() {}

@WebMethod

public String sayHello(String name) {

return message + name + ".";
}

}

Building, Packaging, Deploying, and Testing the
helloservice Example
You can build, package, and deploy the helloservice example using either NetBeans IDE or
Ant. You can then use the Admin Console to test the web service endpoint methods.

Building, Packaging, and Deploying the helloservice Example Using
NetBeans IDE
Follow these instructions to build, package, and deploy the helloservice example to your
Application Server instance using the NetBeans IDE IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/ejb/.

3. Select the helloservice folder.

4. Select the Open as Main Project and Open Required Projects check boxes.

5. Click Open Project.

6. In the Projects tab, right-click the helloservice project and select Undeploy and Deploy.

This builds and packages to application into helloservice.ear, located in
tut-install/javaeetutorial5/examples/ejb/helloservice/dist, and deploys this ear file to
your Application Server instance.

A Web Service Example: helloservice

Chapter 22 • Session Bean Examples 669

Building, Packaging, and Deploying the helloservice Example Using
Ant
Follow these instructions to build, package, and deploy the helloservice example to your
Application Server instance using Ant.

1. In a terminal window, go to the
tut-install/javaeetutorial5/examples/ejb/helloservice/ directory.

2. To build helloservice, type the following command:

ant

This runs the default task, which compiles the source files and packages the application
into a JAR file located at
tut-install/examples/ejb/helloservice/dist/helloservice.jar.

3. To deploy helloservice, type the following command:

ant deploy

Upon deployment, the Application Server generates additional artifacts required for web
service invocation, including the WSDL file.

Testing the Service without a Client
1. The Application Server Admin Console allows you to test the methods of a web service

endpoint. To test the sayHello method of HelloServiceBean, do the following:Open the
Admin Console by opening the following URL in a web browser:

http://localhost:4848/

2. Enter the admin username and password to log in to the Admin Console.
3. Click Web Services in the left pane of the Admin Console.
4. Click helloservice.
5. Click Test.
6. Under Methods, enter a name as the parameter to the sayHello method.
7. Click the sayHello button.

This will take you to the sayHello Method invocation page.
8. Under Method returned, you’ll see the response from the endpoint.

A Web Service Example: helloservice

The Java EE 5 Tutorial • October 2008670

Using the Timer Service
Applications that model business work flows often rely on timed notifications. The timer
service of the enterprise bean container enables you to schedule timed notifications for all types
of enterprise beans except for stateful session beans. You can schedule a timed notification to
occur at a specific time, after a duration of time, or at timed intervals. For example, you could set
timers to go off at 10:30 AM on May 23, in 30 days, or every 12 hours.

When a timer expires (goes off), the container calls the method annotated @Timeout in the
bean’s implementation class. The @Timeout method contains the business logic that handles the
timed event.

The TimeoutMethod
Methods annotated @Timeout in the enterprise bean class must return void and take a
javax.ejb.Timer object as the only parameter. They may not throw application exceptions.

@Timeout

public void timeout(Timer timer) {

System.out.println("TimerBean: timeout occurred");
}

Creating Timers
To create a timer, the bean invokes one of the createTimer methods of the TimerService
interface. (For details on the method signatures, see the TimerService API documentation at
http://java.sun.com/javaee/5/docs/api/javax/ejb/TimerService.html.) When the
bean invokes createTimer, the timer service begins to count down the timer duration.

The bean described in “The timersession Example” on page 673 creates a timer as follows:

Timer timer = timerService.createTimer(intervalDuration,

"Created new timer");

In the timersession example, createTimer is invoked in a business method, which is called by
a client.

Timers are persistent. If the server is shut down (or even crashes), timers are saved and will
become active again when the server is restarted. If a timer expires while the server is down, the
container will call the @Timeout method when the server is restarted.

The Date and long parameters of the createTimer methods represent time with the resolution
of milliseconds. However, because the timer service is not intended for real-time applications, a
callback to the @Timeout method might not occur with millisecond precision. The timer service
is for business applications, which typically measure time in hours, days, or longer durations.

Using the Timer Service

Chapter 22 • Session Bean Examples 671

http://java.sun.com/javaee/5/docs/api/javax/ejb/TimerService.html

Canceling and Saving Timers
Timers can be canceled by the following events:
■ When a single-event timer expires, the EJB container calls the @Timeout method and then

cancels the timer.
■ When the bean invokes the cancel method of the Timer interface, the container cancels the

timer.

If a method is invoked on a canceled timer, the container throws the
javax.ejb.NoSuchObjectLocalException.

To save a Timer object for future reference, invoke its getHandle method and store the
TimerHandle object in a database. (A TimerHandle object is serializable.) To re-instantiate the
Timer object, retrieve the handle from the database and invoke getTimer on the handle. A
TimerHandle object cannot be passed as an argument of a method defined in a remote or web
service interface. In other words, remote clients and web service clients cannot access a bean’s
TimerHandle object. Local clients, however, do not have this restriction.

Getting Timer Information
In addition to defining the cancel and getHandle methods, the Timer interface defines
methods for obtaining information about timers:

public long getTimeRemaining();

public java.util.Date getNextTimeout();

public java.io.Serializable getInfo();

The getInfo method returns the object that was the last parameter of the createTimer
invocation. For example, in the createTimer code snippet of the preceding section, this
information parameter is a String object with the value created timer.

To retrieve all of a bean’s active timers, call the getTimers method of the TimerService
interface. The getTimers method returns a collection of Timer objects.

Transactions and Timers
An enterprise bean usually creates a timer within a transaction. If this transaction is rolled back,
the timer creation is also rolled back. Similarly, if a bean cancels a timer within a transaction
that gets rolled back, the timer cancellation is rolled back. In this case, the timer’s duration is
reset as if the cancellation had never occurred.

In beans that use container-managed transactions, the @Timeout method usually has the
Required or RequiresNew transaction attribute to preserve transaction integrity. With these

Using the Timer Service

The Java EE 5 Tutorial • October 2008672

attributes, the EJB container begins the new transaction before calling the @Timeout method. If
the transaction is rolled back, the container will call the @Timeout method at least one more
time.

The timersession Example
The source code for this example is in the
tut-install/javaeetutorial5/examples/ejb/timersession/timersession-ejb/src/java/
directory.

TimerSessionBean is a stateless session bean that shows how to set a timer. In the source code
listing of TimerSessionBean that follows, note the createTimer and @Timeout methods.
Because it’s a business method, createTimer is defined in the bean’s remote business interface
(TimerSession) and can be invoked by the client. In this example, the client invokes
createTimer with an interval duration of 30,000 milliseconds. The createTimer method
creates a new timer by invoking the createTimer method of TimerService. A TimerService

instance is injected by the container when the bean is created. Now that the timer is set, the EJB
container will invoke the timeout method of TimerSessionBean when the timer expires, in
about 30 seconds. Here’s the source code for the TimerSessionBean class:

package com.sun.tutorial.javaee.ejb;

import java.util.logging.Logger;

import javax.annotation.Resource;

import javax.ejb.Stateless;

import javax.ejb.Timeout;

import javax.ejb.Timer;

import javax.ejb.TimerService;

@Stateless

public class TimerSessionBean implements TimerSession {

@Resource

TimerService timerService;

private static final Logger logger = Logger

.getLogger("com.sun.tutorial.javaee.ejb.
timersession.TimerSessionBean");

public void createTimer(long intervalDuration) {

Timer timer = timerService.createTimer(intervalDuration,

"Created new timer");
}

@Timeout

public void timeout(Timer timer) {

logger.info("Timeout occurred");

Using the Timer Service

Chapter 22 • Session Bean Examples 673

}

}

Note – Application Server has a default minimum timeout value of 7000 milliseconds, or 7
seconds. If you need to set the timeout value lower than 7000 milliseconds, change the value of
the minimum-delivery-interval-in-millis element in domain-dir/config/domain.xml.
Due to virtual machine constraints, the lowest practical value for
minimum-delivery-interval-in-millis is around 10 milliseconds.

Building, Packaging, Deploying, and Running the
timersession Example
You can build, package, deploy, and run the timersession example using either NetBeans IDE
or Ant.

Building, Packaging, Deploying, and Running the timersession
Example Using NetBeans IDE
Follow these instructions to build, package, and deploy the timersession example to your
Application Server instance using the NetBeans IDE IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/ejb/.

3. Select the timersession folder.

4. Select the Open as Main Project and Open Required Projects check boxes.

5. Click Open Project.

6. Select Run→Run Main Project.

This builds and packages the application into timersession.ear, located in
tut-install/javaeetutorial5/examples/ejb/timersession/dist/, deploys this EAR file to
your Application Server instance, and then runs the application client.

You will see the output from the application client in the Output tab:

...

Creating a timer with an interval duration of 3000 ms.

run-timersession-app-client:

run-nb:

BUILD SUCCESSFUL (total time: 16 seconds)

Using the Timer Service

The Java EE 5 Tutorial • October 2008674

The output from the timer is sent to the server.log file located in the
domain-dir/server/logs/ directory. To view this file:

1. Click the Services tab.
2. Right-click your Application Server instance and select View Server Log.

Look for the following line at the bottom of server.log:

Timeout occurred

Building, Packaging, and Deploying the timersession Example Using
Ant
Follow these instructions to build, package, and deploy the timersession example to your
Application Server instance using Ant.

1. In a terminal window, go to the
tut-install/javaeetutorial5/examples/ejb/timersession/ directory.

2. To build TimerSessionBean, type the following command:

ant build

This runs the default task, which compiles the source files and packages the application
into an EAR file located at
tut-install/examples/ejb/timersession/dist/timersession.ear.

3. To deploy the application, type the following command:

ant deploy

Running the timersessionApplication Client Using Ant
To run the application client, perform the following steps.

1. In a terminal window, go to the
tut-install/javaeetutorial5/examples/ejb/timersession/ directory.

2. Type the following command:

ant run

This task first retrieves the client JAR, timersessionClient.jar to the dist directory, and
then runs the client. This is the equivalent of running:

appclient -client TimerSessionAppClient.jar

3. In the terminal window, the client displays these lines:

Creating a timer with an interval duration of 30000 ms.

Using the Timer Service

Chapter 22 • Session Bean Examples 675

The output from the timer is sent to the server.log file located in the
domain-dir/server/logs/ directory.

View the output in the Admin Console:

1. Open the Admin Console by opening the following URL in a web browser:

http://localhost:4848/

2. Enter the admin username and password to log in to the Admin Console.
3. Click Application Server in the navigation pane.
4. Click View Log Files.
5. At the top of the page, you’ll see this line in the Message column:

Timeout occurred

Alternatively, you can look at the log file directly. After about 30 seconds, open server.log in a
text editor and you will see the following lines:

TimerSessionBean: Timeout occurred

Handling Exceptions
The exceptions thrown by enterprise beans fall into two categories: system and application.

A system exception indicates a problem with the services that support an application. Examples
of these problems include the following: a connection to an external resource cannot be
obtained or an injected resource cannot be found. If your enterprise bean encounters a
system-level problem, it should throw a javax.ejb.EJBException. Because the EJBException
is a subclass of the RuntimeException, you do not have to specify it in the throws clause of the
method declaration. If a system exception is thrown, the EJB container might destroy the bean
instance. Therefore, a system exception cannot be handled by the bean’s client program; it
requires intervention by a system administrator.

An application exception signals an error in the business logic of an enterprise bean. Application
exceptions are typically exceptions that you’ve coded yourself, such as the BookException
thrown by the business methods of the CartBean example. When an enterprise bean throws an
application exception, the container does not wrap it in another exception. The client should be
able to handle any application exception it receives.

If a system exception occurs within a transaction, the EJB container rolls back the transaction.
However, if an application exception is thrown within a transaction, the container does not roll
back the transaction.

Handling Exceptions

The Java EE 5 Tutorial • October 2008676

A Message-Driven Bean Example

Message-driven beans can implement any messaging type. Most commonly, they implement
the Java Message Service (JMS) technology. The example in this chapter uses JMS technology,
so you should be familiar with basic JMS concepts such as queues and messages. To learn about
these concepts, see Chapter 31, “The Java Message Service API.”

This chapter describes the source code of a simple message-driven bean example. Before
proceeding, you should read the basic conceptual information in the section “What Is a
Message-Driven Bean?” on page 636 as well as “Using Message-Driven Beans to Receive
Messages Asynchronously” on page 958 in Chapter 31, “The Java Message Service API.”

simplemessage Example Application Overview
The simplemessage application has the following components:

■ SimpleMessageClient: An application client that sends several messages to a queue
■ SimpleMessageEJB: A message-driven bean that asynchronously receives and processes the

messages that are sent to the queue

Figure 23–1 illustrates the structure of this application. The application client sends messages to
the queue, which was created administratively using the Admin Console. The JMS provider (in
this case, the Application Server) delivers the messages to the instances of the message-driven
bean, which then processes the messages.

23C H A P T E R 2 3

677

The source code for this application is in the
tut-install/javaeetutorial5/examples/ejb/simplemessage/ directory.

The simplemessageApplication Client
The SimpleMessageClient sends messages to the queue that the SimpleMessageBean listens to.
The client starts by injecting the the connection factory and queue resources:

@Resource(mappedName="jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;

@Resource(mappedName=”jms/Queue”)

private static Queue queue;

Next, the client creates the connection, session, and message producer:

connection = connectionFactory.createConnection();

session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

messageProducer = session.createProducer(queue);

Finally, the client sends several messages to the queue:

message = session.createTextMessage();

for (int i = 0; i < NUM_MSGS; i++) {

message.setText("This is message " + (i + 1));

System.out.println("Sending message: " +

message.getText());

messageProducer.send(message);

}

Sends

Msg Queue

Delivers

Msg

Application
Client

Java EE Server

EJB
Container

MDB Instances

FIGURE 23–1 The simplemessageApplication

The simplemessageApplication Client

The Java EE 5 Tutorial • October 2008678

The Message-Driven Bean Class
The code for the SimpleMessageBean class illustrates the requirements of a message-driven
bean class:
■ It must be annotated with the @MessageDriven annotation if it does not use a deployment

descriptor.
■ The class must be defined as public.
■ The class cannot be defined as abstract or final.
■ It must contain a public constructor with no arguments.
■ It must not define the finalize method.

It is recommended, but not required, that a message-driven bean class implement the message
listener interface for the message type it supports. A bean that supports the JMS API
implements the javax.jms.MessageListener interface.

Unlike session beans and entities, message-driven beans do not have the remote or local
interfaces that define client access. Client components do not locate message-driven beans and
invoke methods on them. Although message-driven beans do not have business methods, they
may contain helper methods that are invoked internally by the onMessage method.

For the Application Server, the @MessageDriven annotation typically contains a mappedName
element that specifies the JNDI name of the destination from which the bean will consume
messages. For complex message-driven beans there can also be an activationconfig element
containing @ActivationConfigProperty annotations used by the bean. See “A Java EE
Application That Uses the JMS API with a Session Bean” on page 966 for an example.

A message-driven bean can also inject a MessageDrivenContext resource. Commonly you use
this resource to call the setRollbackOnly method to handle exceptions for a bean that uses
container-managed transactions.

Therefore, the first few lines of the SimpleMessageBean class look like this:

@MessageDriven(mappedName="jms/Queue")
public class SimpleMessageBean implements MessageListener {

@Resource

private MessageDrivenContext mdc;

...

The onMessageMethod
When the queue receives a message, the EJB container invokes the message listener method or
methods. For a bean that uses JMS, this is the onMessage method of the MessageListener
interface.

The Message-Driven Bean Class

Chapter 23 • A Message-Driven Bean Example 679

A message listener method must follow these rules:

■ The method must be declared as public.
■ The method must not be declared as final or static.

The onMessage method is called by the bean’s container when a message has arrived for the
bean to service. This method contains the business logic that handles the processing of the
message. It is the message-driven bean’s responsibility to parse the message and perform the
necessary business logic.

The onMessage method has a single argument: the incoming message.

The signature of the onMessage method must follow these rules:

■ The return type must be void.
■ The method must have a single argument of type javax.jms.Message.

In the SimpleMessageBean class, the onMessage method casts the incoming message to a
TextMessage and displays the text:

public void onMessage(Message inMessage) {

TextMessage msg = null;

try {

if (inMessage instanceof TextMessage) {

msg = (TextMessage) inMessage;

logger.info("MESSAGE BEAN: Message received: " +

msg.getText());

} else {

logger.warning("Message of wrong type: " +

inMessage.getClass().getName());

}

} catch (JMSException e) {

e.printStackTrace();

mdc.setRollbackOnly();

} catch (Throwable te) {

te.printStackTrace();

}

}

Packaging, Deploying, and Running the simplemessage
Example

To package, deploy and run this example, go to the
tut-install/javaeetutorial5/examples/ejb/simplemessage/ directory.

Packaging, Deploying, and Running the simplemessage Example

The Java EE 5 Tutorial • October 2008680

Creating the Administered Objects for the
simplemessage Example
This example requires the following:
■ A JMS connection factory resource
■ A JMS destination resource

If you have run the simple JMS examples in Chapter 31, “The Java Message Service API,” and
have not deleted the resources, you already have these resources and do not need to perform
these steps.

You can use Ant targets to create the resources. The Ant targets, which are defined in the
build.xml file for this example, use the asadmin command. To create the resources needed for
this example, use the following commands:

ant create-cf

ant create-queue

These commands do the following:
■ Create a connection factory resource named jms/ConnectionFactory

■ Create a destination resource named jms/Queue

The Ant targets for these commands refer to other targets that are defined in the
tut-install/javaeetutorial5/examples/bp-project/app-server-ant.xml file.

Building, Deploying, and Running the simplemessage
Application Using NetBeans IDE
To build, deploy, and run the application using NetBeans IDE, do the following:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/ejb/.
3. Select the simplemessage folder.
4. Select the Open as Main Project check box and the Open Required Projects check box.
5. Click Open Project.
6. Right-click the simplemessage project and choose Build.

This task packages the application client and the message-driven bean, then creates a file
named simplemessage.ear in the dist directory.

7. Right-click the project and choose Undeploy and Deploy.
8. Right-click the project and choose Run.

Packaging, Deploying, and Running the simplemessage Example

Chapter 23 • A Message-Driven Bean Example 681

This command returns a JAR file named simplemessageClient.jar and then executes it.

The output of the application client in the Output pane looks like this:

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

To see if the bean received the messages,

check <install_dir>/domains/domain1/logs/server.log.

The output from the message-driven bean appears in the server log
(domain-dir/logs/server.log), wrapped in logging information.

MESSAGE BEAN: Message received: This is message 1

MESSAGE BEAN: Message received: This is message 2

MESSAGE BEAN: Message received: This is message 3

The received messages often appear in a different order from the order in which they were sent.

Undeploy the application after you finish running the client. To undeploy the application,
follow these steps:

1. Click the Services tab.
2. Expand the Servers node.
3. Expand the Sun Java System Application Server node.
4. Expand the Applications node.
5. Expand the Enterprise Applications node.
6. Right-click simplemessage and choose Undeploy.

To remove the generated files, right-click the simplemessage project and choose Clean.

Building, Deploying, and Running the simplemessage
Application Using Ant
To create and package the application using Ant, use the default target for the build.xml file:

ant

This target packages the application client and the message-driven bean, then creates a file
named simplemessage.ear in the dist directory.

By using resource injection and annotations, you avoid having to create deployment descriptor
files for the message-driven bean and application client. You need to use deployment
descriptors only if you want to override the values specified in the annotated source files.

To deploy the application and run the client using Ant, use the following command:

Packaging, Deploying, and Running the simplemessage Example

The Java EE 5 Tutorial • October 2008682

ant run

Ignore the message that states that the application is deployed at a URL.

The output in the terminal window looks like this:

running application client container.

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

To see if the bean received the messages,

check <install_dir>/domains/domain1/logs/server.log.

In the server log file, the following lines should be displayed, wrapped in logging information:

MESSAGE BEAN: Message received: This is message 1

MESSAGE BEAN: Message received: This is message 2

MESSAGE BEAN: Message received: This is message 3

The received messages often appear in a different order from the order in which they were sent.

Undeploy the application after you finish running the client. Use the following command:

ant undeploy

To remove the generated files, use the following command:

ant clean

Removing the Administered Objects for the
simplemessage Example
After you run the example, you can use the following Ant targets to delete the connection
factory and queue:

ant delete-cf

ant delete-queue

Packaging, Deploying, and Running the simplemessage Example

Chapter 23 • A Message-Driven Bean Example 683

Creating Deployment Descriptors for Message-Driven Beans
By using resource injection and annotations, you avoid having to create a standard
ejb-jar.xml deployment descriptor file for a message-driven bean. However, in certain
situations you still need a deployment descriptor specific to the Application Server, in the file
sun-ejb-jar.xml.

You are likely to need a deployment descriptor if the message-driven bean will consume
messages from a remote system. You use the deployment descriptor to specify the connection
factory that points to the remote system. The deployment descriptor would look something like
this:

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>MessageBean</ejb-name>

<mdb-connection-factory>

<jndi-name>jms/JupiterConnectionFactory</jndi-name>

</mdb-connection-factory>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

The ejb element for the message-driven bean contains the following:

■ The ejb-name element contains the package name of the bean class.
■ The mdb-connection-factory element contains a jndi-name element that specifies the

connection factory for the bean.

For an example of the use of such a deployment descriptor, see “An Application Example That
Consumes Messages from a Remote Server” on page 981.

Creating Deployment Descriptors for Message-Driven Beans

The Java EE 5 Tutorial • October 2008684

Persistence
Part Five explores the Java Persistence API.

P A R T V

685

686

Introduction to the Java Persistence API

The Java Persistence API provides an object/relational mapping facility to Java developers for
managing relational data in Java applications. Java Persistence consists of three areas:

■ The Java Persistence API
■ The query language
■ Object/relational mapping metadata

Entities
An entity is a lightweight persistence domain object. Typically an entity represents a table in a
relational database, and each entity instance corresponds to a row in that table. The primary
programming artifact of an entity is the entity class, although entities can use helper classes.

The persistent state of an entity is represented either through persistent fields or persistent
properties. These fields or properties use object/relational mapping annotations to map the
entities and entity relationships to the relational data in the underlying data store.

Requirements for Entity Classes
An entity class must follow these requirements:

■ The class must be annotated with the javax.persistence.Entity annotation.
■ The class must have a public or protected, no-argument constructor. The class may have

other constructors.
■ The class must not be declared final. No methods or persistent instance variables must be

declared final.
■ If an entity instance be passed by value as a detached object, such as through a session bean’s

remote business interface, the class must implement the Serializable interface.

24C H A P T E R 2 4

687

■ Entities may extend both entity and non-entity classes, and non-entity classes may extend
entity classes.

■ Persistent instance variables must be declared private, protected, or package-private, and
can only be accessed directly by the entity class’s methods. Clients must access the entity’s
state through accessor or business methods.

Persistent Fields and Properties in Entity Classes
The persistent state of an entity can be accessed either through the entity’s instance variables or
through JavaBeans-style properties. The fields or properties must be of the following Java
language types:

■ Java primitive types
■ java.lang.String

■ Other serializable types including:
■ Wrappers of Java primitive types
■ java.math.BigInteger

■ java.math.BigDecimal

■ java.util.Date

■ java.util.Calendar

■ java.sql.Date

■ java.sql.Time

■ java.sql.TimeStamp

■ User-defined serializable types
■ byte[]

■ Byte[]

■ char[]

■ Character[]

■ Enumerated types
■ Other entities and/or collections of entities
■ Embeddable classes

Entities may either use persistent fields or persistent properties. If the mapping annotations are
applied to the entity’s instance variables, the entity uses persistent fields. If the mapping
annotations are applied to the entity’s getter methods for JavaBeans-style properties, the entity
uses persistent properties. You cannot apply mapping annotations to both fields and properties
in a single entity.

Entities

The Java EE 5 Tutorial • October 2008688

Persistent Fields
If the entity class uses persistent fields, the Persistence runtime accesses entity class instance
variables directly. All fields not annotated javax.persistence.Transient or not marked as
Java transient will be persisted to the data store. The object/relational mapping annotations
must be applied to the instance variables.

Persistent Properties
If the entity uses persistent properties, the entity must follow the method conventions of
JavaBeans components. JavaBeans-style properties use getter and setter methods that are
typically named after the entity class’s instance variable names. For every persistent property
property of type Type of the entity, there is a getter method getProperty and setter method
setProperty. If the property is a boolean, you may use isProperty instead of getProperty. For
example, if a Customer entity uses persistent properties, and has a private instance variable
called firstName, the class defines a getFirstName and setFirstName method for retrieving
and setting the state of the firstName instance variable.

The method signature for single-valued persistent properties are as follows:

Type getProperty()

void setProperty(Type type)

Collection-valued persistent fields and properties must use the supported Java collection
interfaces regardless of whether the entity uses persistent fields or properties. The following
collection interfaces may be used:

■ java.util.Collection

■ java.util.Set

■ java.util.List

■ java.util.Map

If the entity class uses persistent fields, the type in the above method signatures must be one of
these collection types. Generic variants of these collection types may also be used. For example,
if the Customer entity has a persistent property that contains a set of phone numbers, it would
have the following methods:

Set<PhoneNumber> getPhoneNumbers() {}

void setPhoneNumbers(Set<PhoneNumber>) {}

The object/relational mapping annotations for must be applied to the getter methods. Mapping
annotations cannot be applied to fields or properties annotated @Transient or marked
transient.

Entities

Chapter 24 • Introduction to the Java Persistence API 689

Primary Keys in Entities
Each entity has a unique object identifier. A customer entity, for example, might be identified by
a customer number. The unique identifier, or primary key, enables clients to locate a particular
entity instance. Every entity must have a primary key. An entity may have either a simple or a
composite primary key.

Simple primary keys use the javax.persistence.Id annotation to denote the primary key
property or field.

Composite primary keys must correspond to either a single persistent property or field, or to a
set of single persistent properties or fields. Composite primary keys must be defined in a
primary key class. Composite primary keys are denoted using the
javax.persistence.EmbeddedId and javax.persistence.IdClass annotations.

The primary key, or the property or field of a composite primary key, must be one of the
following Java language types:
■ Java primitive types
■ Java primitive wrapper types
■ java.lang.String

■ java.util.Date (the temporal type should be DATE)
■ java.sql.Date

Floating point types should never be used in primary keys. If you use a generated primary key,
only integral types will be portable.

Primary Key Classes
A primary key class must meet these requirements:
■ The access control modifier of the class must be public.
■ The properties of the primary key class must be public or protected if property-based

access is used.
■ The class must have a public default constructor.
■ The class must implement the hashCode() and equals(Object other) methods.
■ The class must be serializable.
■ A composite primary key must be represented and mapped to multiple fields or properties

of the entity class, or must be represented and mapped as an embeddable class.
■ If the class is mapped to multiple fields or properties of the entity class, the names and types

of the primary key fields or properties in the primary key class must match those of the
entity class.

The following primary key class is a composite key, the orderId and itemId fields together
uniquely identify an entity.

Entities

The Java EE 5 Tutorial • October 2008690

public final class LineItemKey implements Serializable {

public Integer orderId;

public int itemId;

public LineItemKey() {}

public LineItemKey(Integer orderId, int itemId) {

this.orderId = orderId;

this.itemId = itemId;

}

public boolean equals(Object otherOb) {

if (this == otherOb) {

return true;

}

if (!(otherOb instanceof LineItemKey)) {

return false;

}

LineItemKey other = (LineItemKey) otherOb;

return (

(orderId==null?other.orderId==null:orderId.equals

(other.orderId)

)

&&

(itemId == other.itemId)

);

}

public int hashCode() {

return (

(orderId==null?0:orderId.hashCode())

^

((int) itemId)

);

}

public String toString() {

return "" + orderId + "-" + itemId;

}

}

Multiplicity in Entity Relationships
There are four types of multiplicities: one-to-one, one-to-many, many-to-one, and
many-to-many.

Entities

Chapter 24 • Introduction to the Java Persistence API 691

One-to-one: Each entity instance is related to a single instance of another entity. For example, to
model a physical warehouse in which each storage bin contains a single widget, StorageBin and
Widget would have a one-to-one relationship. One-to-one relationships use the
javax.persistence.OneToOne annotation on the corresponding persistent property or field.

One-to-many: An entity instance can be related to multiple instances of the other entities. A
sales order, for example, can have multiple line items. In the order application, Order would
have a one-to-many relationship with LineItem. One-to-many relationships use the
javax.persistence.OneToMany annotation on the corresponding persistent property or field.

Many-to-one: Multiple instances of an entity can be related to a single instance of the other
entity. This multiplicity is the opposite of a one-to-many relationship. In the example just
mentioned, from the perspective of LineItem the relationship to Order is many-to-one.
Many-to-one relationships use the javax.persistence.ManyToOne annotation on the
corresponding persistent property or field.

Many-to-many: The entity instances can be related to multiple instances of each other. For
example, in college each course has many students, and every student may take several courses.
Therefore, in an enrollment application, Course and Student would have a many-to-many
relationship. Many-to-many relationships use the javax.persistence.ManyToMany
annotation on the corresponding persistent property or field.

Direction in Entity Relationships
The direction of a relationship can be either bidirectional or unidirectional. A bidirectional
relationship has both an owning side and an inverse side. A unidirectional relationship has only
an owning side. The owning side of a relationship determines how the Persistence runtime
makes updates to the relationship in the database.

Bidirectional Relationships
In a bidirectional relationship, each entity has a relationship field or property that refers to the
other entity. Through the relationship field or property, an entity class’s code can access its
related object. If an entity has a related field, then the entity is said to “know” about its related
object. For example, if Order knows what LineItem instances it has and if LineItem knows
what Order it belongs to, then they have a bidirectional relationship.

Bidirectional relationships must follow these rules:

■ The inverse side of a bidirectional relationship must refer to its owning side by using the
mappedBy element of the @OneToOne, @OneToMany, or @ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the
relationship.

■ The many side of many-to-one bidirectional relationships must not define the mappedBy
element. The many side is always the owning side of the relationship.

Entities

The Java EE 5 Tutorial • October 2008692

■ For one-to-one bidirectional relationships, the owning side corresponds to the side that
contains the corresponding foreign key.

■ For many-to-many bidirectional relationships either side may be the owning side.

Unidirectional Relationships
In a unidirectional relationship, only one entity has a relationship field or property that refers to
the other. For example, LineItem would have a relationship field that identifies Product, but
Product would not have a relationship field or property for LineItem. In other words, LineItem
knows about Product, but Product doesn’t know which LineItem instances refer to it.

Queries and Relationship Direction
Java Persistence query language queries often navigate across relationships. The direction of a
relationship determines whether a query can navigate from one entity to another. For example,
a query can navigate from LineItem to Product but cannot navigate in the opposite direction.
For Order and LineItem, a query could navigate in both directions, because these two entities
have a bidirectional relationship.

Cascade Deletes and Relationships
Entities that use relationships often have dependencies on the existence of the other entity in
the relationship. For example, a line item is part of an order, and if the order is deleted, then the
line item should also be deleted. This is called a cascade delete relationship.

Cascade delete relationships are specified using the cascade=REMOVE element specification for
@OneToOne and @OneToMany relationships. For example:

@OneToMany(cascade=REMOVE, mappedBy="customer")
public Set<Order> getOrders() { return orders; }

Entity Inheritance
Entities support class inheritance, polymorphic associations, and polymorphic queries. They
can extend non-entity classes, and non-entity classes can extend entity classes. Entity classes
can be both abstract and concrete.

The roster example application demonstrates entity inheritance, and is described in “Entity
Inheritance in the roster Application” on page 729.

Abstract Entities
An abstract class may be declared an entity by decorating the class with @Entity. Abstract
entities differ from concrete entities only in that they cannot be instantiated.

Entities

Chapter 24 • Introduction to the Java Persistence API 693

Abstract entities can be queried just like concrete queries. If an abstract entity is the target of a
query, the query operates on all the concrete subclasses of the abstract entity.

@Entity

public abstract class Employee {

@Id

protected Integer employeeId;

...

}

@Entity

public class FullTimeEmployee extends Employee {

protected Integer salary;

...

}

@Entity

public class PartTimeEmployee extends Employee {

protected Float hourlyWage;

}

Mapped Superclasses
Entities may inherit from superclasses that contain persistent state and mapping information,
but are not entities. That is, the superclass is not decorated with the @Entity annotation, and is
not mapped as an entity by the Java Persistence provider. These superclasses are most often
used when you have state and mapping information common to multiple entity classes.

Mapped superclasses are specified by decorating the class with the
javax.persistence.MappedSuperclass annotation.

@MappedSuperclass

public class Employee {

@Id

protected Integer employeeId;

...

}

@Entity

public class FullTimeEmployee extends Employee {

protected Integer salary;

...

}

@Entity

public class PartTimeEmployee extends Employee {

protected Float hourlyWage;

...

}

Entities

The Java EE 5 Tutorial • October 2008694

Mapped superclasses are not queryable, and can’t be used in EntityManager or Query
operations. You must use entity subclasses of the mapped superclass in EntityManager or
Query operations. Mapped superclasses can’t be targets of entity relationships. Mapped
superclasses can be abstract or concrete.

Mapped superclasses do not have any corresponding tables in the underlying datastore. Entities
that inherit from the mapped superclass define the table mappings. For instance, in the code
sample above the underlying tables would be FULLTIMEEMPLOYEE and PARTTIMEEMPLOYEE, but
there is no EMPLOYEE table.

Non-Entity Superclasses
Entities may have non-entity superclasses, and these superclasses can be either abstract or
concrete. The state of non-entity superclasses is non-persistent, and any state inherited from
the non-entity superclass by an entity class is non-persistent. Non-entity superclasses may not
be used in EntityManager or Query operations. Any mapping or relationship annotations in
non-entity superclasses are ignored.

Entity Inheritance Mapping Strategies
You can configure how the Java Persistence provider maps inherited entities to the underlying
datastore by decorating the root class of the hierarchy with the
javax.persistence.Inheritance annotation. There are three mapping strategies that are
used to map the entity data to the underlying database:

■ A single table per class hierarchy
■ A table per concrete entity class
■ A “join” strategy, where fields or properties that are specific to a subclass are mapped to a

different table than the fields or properties that are common to the parent class

The strategy is configured by setting the strategy element of @Inheritance to one of the
options defined in the javax.persistence.InheritanceType enumerated type:

public enum InheritanceType {

SINGLE_TABLE,

JOINED,

TABLE_PER_CLASS

};

The default strategy is InheritanceType.SINGLE_TABLE, and is used if the @Inheritance
annotation is not specified on the root class of the entity hierarchy.

Entities

Chapter 24 • Introduction to the Java Persistence API 695

The Single Table per Class Hierarchy Strategy

With this strategy, which corresponds to the default InheritanceType.SINGLE_TABLE, all
classes in the hierarchy are mapped to a single table in the database. This table has a
discriminator column, a column that contains a value that identifies the subclass to which the
instance represented by the row belongs.

The discriminator column can be specified by using the
javax.persistence.DiscriminatorColumn annotation on the root of the entity class
hierarchy.

TABLE 24–1 @DiscriminatorColumnElements

Type Name Description

String name The name of the column in the table to be used as
the discriminator column. The default is DTYPE.
This element is optional.

DiscriminatorType discriminatorType The type of the column to be used as a
discriminator column. The default is
DiscriminatorType.STRING. This element is
optional.

String columnDefinition The SQL fragment to use when creating the
discriminator column. The default is generated by
the Persistence provider, and is
implementation-specific. This element is
optional.

String length The column length for String-based
discriminator types. This element is ignored for
non-String discriminator types. The default is
31. This element is optional.

The javax.persistence.DiscriminatorType enumerated type is used to set the type of the
discriminator column in the database by setting the discriminatorType element of
@DiscriminatorColumn to one of the defined types. DiscriminatorType is defined as:

public enum DiscriminatorType {

STRING,

CHAR,

INTEGER

};

If @DiscriminatorColumn is not specified on the root of the entity hierarchy and a
discriminator column is required, the Persistence provider assumes a default column name of
DTYPE, and column type of DiscriminatorType.STRING.

Entities

The Java EE 5 Tutorial • October 2008696

The javax.persistence.DiscriminatorValue annotation may be used to set the value
entered into the discriminator column for each entity in a class hierarchy. You may only
decorate concrete entity classes with @DiscriminatorValue.

If @DiscriminatorValue is not specified on an entity in a class hierarchy that uses a
discriminator column, the Persistence provider will provide a default, implementation-specific
value. If the discriminatorType element of @DiscriminatorColumn is
DiscriminatorType.STRING, the default value is the name of the entity.

This strategy provides good support for polymorphic relationships between entities and queries
that cover the entire entity class hierarchy. However, it requires the columns that contain the
state of subclasses to be nullable.

The Table per Concrete Class Strategy
In this strategy, which corresponds to InheritanceType.TABLE_PER_CLASS, each concrete class
is mapped to a separate table in the database. All fields or properties in the class, including
inherited fields or properties, are mapped to columns in the class’s table in the database.

This strategy provides poor support for polymorphic relationships, and usually requires either
SQL UNION queries or separate SQL queries for each subclass for queries that cover the entire
entity class hierarchy.

Support for this strategy is optional, and may not be supported by all Java Persistence API
providers. The default Java Persistence API provider in the Application Server does not support
this strategy.

The Joined Subclass Strategy
In this strategy, which corresponds to InheritanceType.JOINED, the root of the class hierarchy
is represented by a single table, and each subclass has a separate table that only contains those
fields specific to that subclass. That is, the subclass table does not contain columns for inherited
fields or properties. The subclass table also has a column or columns that represent its primary
key, which is a foreign key to the primary key of the superclass table.

This strategy provides good support for polymorphic relationships, but requires one or more
join operations to be performed when instantiating entity subclasses. This may result in poor
performance for extensive class hierarchies. Similarly, queries that cover the entire class
hierarchy require join operations between the subclass tables, resulting in decreased
performance.

Some Java Persistence API providers, including the default provider in the Application Server,
require a discriminator column in the table that corresponds to the root entity when using the
joined subclass strategy. If you are not using automatic table creation in your application, make
sure the database table is set up correctly for the discriminator column defaults, or use the
@DiscriminatorColumn annotation to match your database schema. For information on
discriminator columns, see “The Single Table per Class Hierarchy Strategy” on page 696.

Entities

Chapter 24 • Introduction to the Java Persistence API 697

Managing Entities
Entities are managed by the entity manager. The entity manager is represented by
javax.persistence.EntityManager instances. Each EntityManager instance is associated
with a persistence context. A persistence context defines the scope under which particular entity
instances are created, persisted, and removed.

The Persistence Context
A persistence context is a set of managed entity instances that exist in a particular data store.
The EntityManager interface defines the methods that are used to interact with the persistence
context.

The EntityManager Interface
The EntityManager API creates and removes persistent entity instances, finds entities by the
entity’s primary key, and allows queries to be run on entities.

Container-Managed Entity Managers
With a container-managed entity manager, an EntityManager instance’s persistence context is
automatically propagated by the container to all application components that use the
EntityManager instance within a single Java Transaction Architecture (JTA) transaction.

JTA transactions usually involve calls across application components. To complete a JTA
transaction, these components usually need access to a single persistence context. This occurs
when an EntityManager is injected into the application components by means of the
javax.persistence.PersistenceContext annotation. The persistence context is
automatically propagated with the current JTA transaction, and EntityManager references that
are mapped to the same persistence unit provide access to the persistence context within that
transaction. By automatically propagating the persistence context, application components
don’t need to pass references to EntityManager instances to each other in order to make
changes within a single transaction. The Java EE container manages the life cycle of
container-managed entity managers.

To obtain an EntityManager instance, inject the entity manager into the application
component:

@PersistenceContext

EntityManager em;

Managing Entities

The Java EE 5 Tutorial • October 2008698

Application-Managed Entity Managers
With application-managed entity managers, on the other hand, the persistence context is not
propagated to application components, and the life cycle of EntityManager instances is
managed by the application.

Application-managed entity managers are used when applications need to access a persistence
context that is not propagated with the JTA transaction across EntityManager instances in a
particular persistence unit. In this case, each EntityManager creates a new, isolated persistence
context. The EntityManager, and its associated persistence context, is created and destroyed
explicitly by the application.

Applications create EntityManager instances in this case by using the createEntityManager
method of javax.persistence.EntityManagerFactory.

To obtain an EntityManager instance, you first must obtain an EntityManagerFactory

instance by injecting it into the application component by means of the
javax.persistence.PersistenceUnit annotation:

@PersistenceUnit

EntityManagerFactory emf;

Then, obtain an EntityManager from the EntityManagerFactory instance:

EntityManager em = emf.createEntityManager();

Finding Entities Using the EntityManager
The EntityManager.find method is used to look up entities in the data store by the entity’s
primary key.

@PersistenceContext

EntityManager em;

public void enterOrder(int custID, Order newOrder) {

Customer cust = em.find(Customer.class, custID);

cust.getOrders().add(newOrder);

newOrder.setCustomer(cust);

}

Managing an Entity Instance’s Life Cycle
You manage entity instances by invoking operations on the entity by means of an
EntityManager instance. Entity instances are in one of four states: new, managed, detached, or
removed.

New entity instances have no persistent identity and are not yet associated with a persistence
context.

Managing Entities

Chapter 24 • Introduction to the Java Persistence API 699

Managed entity instances have a persistent identity and are associated with a persistence
context.

Detached entity instances have a persistent identify and are not currently associated with a
persistence context.

Removed entity instances have a persistent identity, are associated with a persistent context,
and are scheduled for removal from the data store.

Persisting Entity Instances

New entity instances become managed and persistent either by invoking the persist method,
or by a cascading persist operation invoked from related entities that have the
cascade=PERSIST or cascade=ALL elements set in the relationship annotation. This means the
entity’s data is stored to the database when the transaction associated with the persist
operation is completed. If the entity is already managed, the persist operation is ignored,
although the persist operation will cascade to related entities that have the cascade element
set to PERSIST or ALL in the relationship annotation. If persist is called on a removed entity
instance, it becomes managed. If the entity is detached, persist will throw an
IllegalArgumentException, or the transaction commit will fail.

@PersistenceContext

EntityManager em;

...

public LineItem createLineItem(Order order, Product product,

int quantity) {

LineItem li = new LineItem(order, product, quantity);

order.getLineItems().add(li);

em.persist(li);

return li;

}

The persist operation is propagated to all entities related to the calling entity that have the
cascade element set to ALL or PERSIST in the relationship annotation.

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Removing Entity Instances

Managed entity instances are removed by invoking the remove method, or by a cascading
remove operation invoked from related entities that have the cascade=REMOVE or cascade=ALL
elements set in the relationship annotation. If the remove method is invoked on a new entity,
the remove operation is ignored, although remove will cascade to related entities that have the

Managing Entities

The Java EE 5 Tutorial • October 2008700

cascade element set to REMOVE or ALL in the relationship annotation. If remove is invoked on a
detached entity it will throw an IllegalArgumentException, or the transaction commit will
fail. If remove is invoked on an already removed entity, it will be ignored. The entity’s data will
be removed from the data store when the transaction is completed, or as a result of the flush
operation.

public void removeOrder(Integer orderId) {

try {

Order order = em.find(Order.class, orderId);

em.remove(order);

}...

In this example, all LineItem entities associated with the order are also removed, as
Order.getLineItems has cascade=ALL set in the relationship annotation.

Synchronizing Entity Data to the Database

The state of persistent entities is synchronized to the database when the transaction with which
the entity is associated commits. If a managed entity is in a bidirectional relationship with
another managed entity, the data will be persisted based on the owning side of the relationship.

To force synchronization of the managed entity to the data store, invoke the flush method of
the entity. If the entity is related to another entity, and the relationship annotation has the
cascade element set to PERSIST or ALL, the related entity’s data will be synchronized with the
data store when flush is called.

If the entity is removed, calling flush will remove the entity data from the data store.

Creating Queries
The EntityManager.createQuery and EntityManager.createNamedQuery methods are used
to query the datastore using Java Persistence query language queries. See Chapter 27, “The Java
Persistence Query Language,” for more information on the query language.

The createQuery method is used to create dynamic queries, queries that are defined directly
within an application’s business logic.

public List findWithName(String name) {

return em.createQuery(

"SELECT c FROM Customer c WHERE c.name LIKE :custName")
.setParameter("custName", name)

.setMaxResults(10)

.getResultList();

}

The createNamedQuery method is used to create static queries, queries that are defined in
metadata using the javax.persistence.NamedQuery annotation. The name element of

Managing Entities

Chapter 24 • Introduction to the Java Persistence API 701

@NamedQuery specifies the name of the query that will be used with the createNamedQuery
method. The query element of @NamedQuery is the query.

@NamedQuery(

name="findAllCustomersWithName",
query="SELECT c FROM Customer c WHERE c.name LIKE :custName"

)

Here’s an example of createNamedQuery, which uses the @NamedQuery defined above.

@PersistenceContext

public EntityManager em;

...

customers = em.createNamedQuery("findAllCustomersWithName")
.setParameter("custName", "Smith")
.getResultList();

Named Parameters in Queries

Named parameters are parameters in a query that are prefixed with a colon (:). Named
parameters in a query are bound to an argument by the
javax.persistence.Query.setParameter(String name, Object value) method. In the
following example, the name argument to the findWithName business method is bound to the
:custName named parameter in the query by calling Query.setParameter.

public List findWithName(String name) {

return em.createQuery(

"SELECT c FROM Customer c WHERE c.name LIKE :custName")
.setParameter("custName", name)

.getResultList();

}

Named parameters are case-sensitive, and may be used by both dynamic and static queries.

Positional Parameters in Queries

You may alternately use positional parameters in queries, instead of named parameters.
Positional parameters are prefixed with a question mark (?) followed the numeric position of
the parameter in the query. The Query.setParameter(integer position, Object value)

method is used to set the parameter values.

In the following example, the findWithName business method is rewritten to use input
parameters:

public List findWithName(String name) {

return em.createQuery(

“SELECT c FROM Customer c WHERE c.name LIKE ?1”)

Managing Entities

The Java EE 5 Tutorial • October 2008702

.setParameter(1, name)

.getResultList();

}

Input parameters are numbered starting from 1. Input parameters are case-sensitive, and may
be used by both dynamic and static queries.

Persistence Units
A persistence unit defines a set of all entity classes that are managed by EntityManager
instances in an application. This set of entity classes represents the data contained within a
single data store.

Persistence units are defined by the persistence.xml configuration file. The JAR file or
directory whose META-INF directory contains persistence.xml is called the root of the
persistence unit. The scope of the persistence unit is determined by the persistence unit’s root.

Each persistence unit must be identified with a name that is unique to the persistence unit’s
scope.

Persistent units can be packaged as part of a WAR or EJB JAR file, or can be packaged as a JAR
file that can then be included in an WAR or EAR file.

If you package the persistent unit as a set of classes in an EJB JAR file, persistence.xml should
be put in the EJB JAR’s META-INF directory.

If you package the persistence unit as a set of classes in a WAR file, persistence.xml should be
located in the WAR file’s WEB-INF/classes/META-INF directory.

If you package the persistence unit in a JAR file that will be included in a WAR or EAR file, the
JAR file should be located:

■ In the WEB-INF/lib directory of a WAR.
■ In the top-level of an EAR file.
■ In the EAR file’s library directory.

The persistence.xml File
persistence.xml defines one or more persistence units. The following is an example
persistence.xml file.

<persistence>

<persistence-unit name="OrderManagement">
<description>This unit manages orders and customers.

It does not rely on any vendor-specific features and can

therefore be deployed to any persistence provider.

Managing Entities

Chapter 24 • Introduction to the Java Persistence API 703

</description>

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

<jar-file>MyOrderApp.jar</jar-file>

<class>com.widgets.Order</class>

<class>com.widgets.Customer</class>

</persistence-unit>

</persistence>

This file defines a persistence unit named OrderManagement, which uses a JTA-aware data
source jdbc/MyOrderDB. The jar-file and class elements specify managed persistence
classes: entity classes, embeddable classes, and mapped superclasses. The jar-file element
specifies JAR files that are visible to the packaged persistence unit that contain managed
persistence classes, while the class element explicitly names managed persistence classes.

The jta-data-source (for JTA-aware data sources) and non-jta-data-source

(non-JTA-aware data sources) elements specify the global JNDI name of the data source to be
used by the container.

Managing Entities

The Java EE 5 Tutorial • October 2008704

Persistence in the Web Tier

This chapter describes how to use the Java Persistence API from web applications. The material
here focuses on the source code and settings of an example called bookstore, a web application
that manages entities related to a book store. This chapter assumes that you are familiar with the
concepts detailed in Chapter 24, “Introduction to the Java Persistence API.”

Accessing Databases from Web Applications
Data that is shared between web components and is persistent between invocations of a web
application is usually maintained in a database. Web applications use the Java Persistence API
(see Chapter 24, “Introduction to the Java Persistence API”) to access relational databases.

The Java Persistence API provides a facility for managing the object/relational mapping (ORM)
of Java objects to persistent data (stored in a database). A Java object that maps to a database
table is called an entity class. It is a regular Java object (also known as a POJO, or plain, old Java
object) with properties that map to columns in the database table. The Duke’s Bookstore
application has one entity class, called Book that maps to WEB_BOOKSTORE_BOOKS.

To manage the interaction of entities with the Java Persistence facility, an application uses the
EntityManager interface. This interface provides methods that perform common database
functions, such as querying and updating the database. The BookDBAO class of the Duke’s
Bookstore application uses the entity manager to query the database for the book data and to
update the inventory of books that are sold.

The set of entities that can be managed by an entity manager are defined in a persistence unit. It
oversees all persistence operations in the application. The persistence unit is configured by a
descriptor file called persistence.xml. This file also defines the data source, what type of
transactions the application uses, along with other information. For the Duke’s Bookstore
application, the persistence.xml file and the Book class are packaged into a separate JAR file
and added to the application’s WAR file.

25C H A P T E R 2 5

705

As in JDBC technology, a DataSource object has a set of properties that identify and describe
the real world data source that it represents. These properties include information such as the
location of the database server, the name of the database, the network protocol to use to
communicate with the server, and so on.

An application that uses the Java Persistence API does not need to explicitly create a connection
to the data source, as it would when using JDBC technology exclusively. Still, the DataSource
object must be created in the Application Server.

To maintain the catalog of books, the Duke’s Bookstore examples described in Chapters
“Further Information about Web Applications” on page 98 through “Including the Classes,
Pages, and Other Resources” on page 468 use the Java DB evaluation database included with the
Application Server.

To populate the database, follow the instructions in “Populating the Example Database” on
page 97.

To create a data source, follow the instructions in “Creating a Data Source in the Application
Server” on page 98.

This section describes the following:

■ “Defining the Persistence Unit” on page 706
■ “Creating an Entity Class” on page 707
■ “Obtaining Access to an Entity Manager” on page 708
■ “Accessing Data from the Database” on page 710
■ “Updating Data in the Database” on page 710

Defining the Persistence Unit
As described in “Accessing Databases from Web Applications” on page 705, a persistence unit is
defined by a persistence.xml file, which is packaged with the application WAR file. This file
includes the following:

■ A persistence element that identifies the schema that the descriptor validates against and
includes a persistence-unit element.

■ A persistence-unit element that identifies the name of a persistence unit and the
transaction type.

■ An optional description element.
■ A jta-data-source element that specifies the global JNDI name of the JTA data source.

The jta-data-source element indicates that the transactions in which the entity manager
takes part are JTA transactions, meaning that transactions are managed by the container.
Alternatively, you can use resource-local transactions, which are transactions controlled by the
application itself. In general, web application developers will use JTA transactions so that they
don’t need to manually manage the life cycle of the EntityManager instance.

Accessing Databases from Web Applications

The Java EE 5 Tutorial • October 2008706

A resource-local entity manager cannot participate in global transactions. In addition, the web
container will not roll back pending transactions left behind by poorly written applications.

Creating an Entity Class
As explained in “Accessing Databases from Web Applications” on page 705, an entity class is a
component that represents a table in the database. In the case of the Duke’s Bookstore
application, there is only one database table and therefore only one entity class: the Book class.

The Book class contains properties for accessing each piece of data for a particular book, such as
the book’s title and author. To make it an entity class that is accessible to an entity manager, you
need to do the following:

■ Add the @Entity annotation to the class.
■ Add the @Id annotation to the property that represents the primary key of the table.
■ Add the @Table annotation to the class to identify the name of the database table if it is

different from the name of the entity class.
■ Optionally make the class Serializable.

The following code shows part of the Book class:

import java.io.Serializable;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name="WEB_BOOKSTORE_BOOKS")

public class Book implements Serializable {

private String bookId;

private String title;

public Book() { }

public Book(String bookId, String title, ...) {

this.bookId = bookId;

this.title = title;

...

}

@Id

public String getBookId() {

return this.bookId;

Accessing Databases from Web Applications

Chapter 25 • Persistence in the Web Tier 707

}

public String getTitle() {

return this.title;

}

...

public void setBookId(String id) {

this.bookId=id;

}

public void setTitle(String title) {

this.title=title;

}

...

}

Obtaining Access to an Entity Manager
The BookDBAO object of the Duke’s Bookstore application includes methods for getting the book
data from the database and updating the inventory in the database when books are sold. In
order to perform database queries, the BookDBAO object needs to obtain an EntityManager

instance.

The Java Persistence API allows developers to use annotations to identify a resource so that the
container can transparently inject it into an object. You can give an object access to an
EntityManager instance by using the @PersistenceUnit annotation to inject an
EntityManagerFactory, from which you can obtain an EntityManager instance.

Unfortunately for the web application developer, resource injection using annotations can only
be used with classes that are managed by a Java EE compliant container. Because the web
container does not manage JavaBeans components, you cannot inject resources into them. One
exception is a request-scoped JavaServer Faces managed bean. These beans are managed by the
container and therefore support resource injection. This is only helpful if your application is a
JavaServer Faces application.

You can still use resource injection in a web application that is not a JavaServer Faces
application if you can do it in an object that is managed by the container. These objects include
servlets and ServletContextListener objects. These objects can then give the application’s
beans access to the resources.

In the case of Duke’s Bookstore, the ContextListener object creates the BookDBAO object and
puts it into application scope. In the process, it passes to the BookDBAO object the
EntityManagerFactory object that was injected into ContextListener:

Accessing Databases from Web Applications

The Java EE 5 Tutorial • October 2008708

public final class ContextListener implements SerlvetContextListener {

...

@PersistenceUnit

private EntityManagerFactory emf;

public void contextInitialized(ServletContexEvent event) {

context = event.getServletContext();

...

try {

BookDBAO bookDB = new BookDBAO(emf);

context.setAttribute("bookDB", bookDB);

} catch (Exception ex) {

System.out.println(

"Couldn’t create bookstore database bean: "
+ ex.getMessage());

}

}

}

The BookDBAO object can then obtain an EntityManager from the EntityManagerFactory that
the ContextListener object passes to it:

private EntityManager em;

public BookDBAO (EntityManagerFactory emf) throws Exception {

em = emf.getEntityManager();

...

}

The JavaServer Faces version of Duke’s Bookstore gets access to the EntityManager instance a
little differently. Because managed beans allow resource injection, you can inject the
EntityManagerFactory instance into BookDBAO.

In fact, you can bypass injecting EntityManagerFactory and instead inject the EntityManager
directly into BookDBAO. This is because thread safety is not an issue with request-scoped beans.
Conversely, developers need to be concerned with thread safety when working with servlets and
listeners. Therefore, a servlet or listener needs to inject an EntityManagerFactory instance,
which is thread-safe, whereas a persistence context is not thread-safe. The following code shows
part of the BookDBAO object included in the JavaServer Faces version of Duke’s Bookstore:

import javax.ejb.*;

import javax.persistence.*;

import javax.transaction.NotSupportedException;

public class BookDBAO {

@PersistenceContext

private EntityManager em;

...

Accessing Databases from Web Applications

Chapter 25 • Persistence in the Web Tier 709

As shown in the preceding code, an EntityManager instance is injected into an object using the
@PersistenceContext annotation. An EntityManager instance is associated with a persistence
context, which is a set of entity instances that the entity manager is tasked with managing.

The annotation may specify the name of the persistence unit with which it is associated. This
name must match a persistence unit defined in the application’s persistence.xml file.

The next section explains how the BookDBAO object uses the entity manager instance to query
the database.

Accessing Data from the Database
After the BookDBAO object obtains an EntityManager instance, it can access data from the
database. The getBooks method of BookDBAO calls the createQuery method of the
EntityManager instance to retrieve a list of all books by bookId:

public List getBooks() throws BooksNotFoundException {

try {

return em.createQuery(

"SELECT bd FROM Book bd ORDER BY bd.bookId").
getResultList();

} catch(Exception ex){

throw new BooksNotFoundException("Could not get books: "
+ ex.getMessage());

}

}

The getBook method of BookDBAO uses the find method of the EntityManager instance to
search the database for a particular book and return the associated Book instance:

public Book getBook(String bookId) throws BookNotFoundException {

Book requestedBook = em.find(Book.class, bookId);

if (requestedBook == null) {

throw new BookNotFoundException("Couldn’t find book: "
+ bookId);

}

return requestedBook;

}

The next section describes how Duke’s Bookstore performs updates to the data.

Updating Data in the Database
In the Duke’s Bookstore application, updates to the database involve decrementing the
inventory count of a book when the user buys copies of the book. The BookDBAO performs this
update in the buyBooks and buyBook methods:

Accessing Databases from Web Applications

The Java EE 5 Tutorial • October 2008710

public void buyBooks(ShoppingCart cart) throws OrderException{

Collection items = cart.getItems();

Iterator i = items.iterator();

try {

while (i.hasNext()) {

ShoppingCartItem sci = (ShoppingCartItem)i.next();

Book bd = (Book)sci.getItem();

String id = bd.getBookId();

int quantity = sci.getQuantity();

buyBook(id, quantity);

}

} catch (Exception ex) {

throw new OrderException("Commit failed: "
+ ex.getMessage());

}

}

public void buyBook(String bookId, int quantity)

throws OrderException {

try {

Book requestedBook = em.find(Book.class, bookId);

if (requestedBook != null) {

int inventory = requestedBook.getInventory();

if ((inventory - quantity) >= 0) {

int newInventory = inventory - quantity;

requestedBook.setInventory(newInventory);

} else{

throw new OrderException("Not enough of "
+ bookId + " in stock to complete order.");

}

}

} catch (Exception ex) {

throw new OrderException("Couldn’t purchase book: "
+ bookId + ex.getMessage());

}

}

In the buyBook method, the find method of the EntityManager instance retrieves one of the
books that is in the shopping cart. The buyBook method then updates the inventory on the Book
object.

To ensure that the update is processed in its entirety, the call to buyBooks is wrapped in a single
transaction. In the JSP versions of Duke’s Bookstore, the Dispatcher servlet calls buyBooks and
therefore sets the transaction demarcations.

In the following code, the UserTransaction resource is injected into the Dispatcher servlet.
UserTransaction is an interface to the underlying JTA transaction manager used to begin a
new transaction and end a transaction. After getting the UserTransaction resource, the servlet
calls to the begin and commit methods of UserTransaction to mark the boundaries of the

Accessing Databases from Web Applications

Chapter 25 • Persistence in the Web Tier 711

transaction. The call to the rollback method of UserTransaction undoes the effects of all
statements in the transaction so as to protect the integrity of the data.

@Resource

UserTransaction utx;

...

try {

utx.begin();

bookDBAO.buyBooks(cart);

utx.commit();

} catch (Exception ex) {

try {

utx.rollback();

} catch (Exception exe) {

System.out.println("Rollback failed: "+exe.getMessage());
}

...

Accessing Databases from Web Applications

The Java EE 5 Tutorial • October 2008712

Persistence in the EJB Tier

This chapter describes how to use the Java Persistence API from enterprise beans. The material
here focuses on the source code and settings of two examples. The first example called order is
an application that uses a stateful session bean to manage entities related to an ordering system.
The second example is roster, an application that manages a community sports system. This
chapter assumes that you are familiar with the concepts detailed in Chapter 24, “Introduction to
the Java Persistence API.”

The orderApplication
The order application is a simple inventory and ordering application for maintaining a catalog
of parts and placing an itemized order of those parts. It has entities that represent parts,
vendors, orders, and line items. These entities are accessed using a stateful session bean that
holds the business logic of the application. A simple command-line client adds data to the
entities, manipulates the data, and displays data from the catalog.

The information contained in an order can be divided into different elements. What is the order
number? What parts are included in the order? What parts make up that part? Who makes the
part? What are the specifications for the part? Are there any schematics for the part? order is a
simplified version of an ordering system that has all these elements.

The order application consists of two modules: order-ejb, an enterprise bean JAR file
containing the entities, the support classes, and a stateful session bean that accesses the data in
the entities; and order-app-client, the application client that populates the entities with data
and manipulates the data, displaying the results in a terminal.

Entity Relationships in the orderApplication
The order application demonstrates several types of entity relationships: one-to-many,
many-to-one, one-to-one, unidirectional, and self-referential relationships.

26C H A P T E R 2 6

713

Self-Referential Relationships
A self-referential relationship is a relationship between relationship fields in the same entity.
Part has a field bomPart that has a one-to-many relationship with the field parts, which is also
in Part. That is, a part can be made up of many parts, and each of those parts has exactly one
bill-of-material part.

The primary key for Part is a compound primary key, a combination of the partNumber and
revision fields. It is mapped to the PARTNUMBER and REVISION columns in the EJB_ORDER_PART
table.

...

@ManyToOne

@JoinColumns({

@JoinColumn(name="BOMPARTNUMBER",
referencedColumnName="PARTNUMBER"),

@JoinColumn(name="BOMREVISION",
referencedColumnName="REVISION")

})

public Part getBomPart() {

return bomPart;

}

...

@OneToMany(mappedBy="bomPart")
public Collection<Part> getParts() {

return parts;

}

...

One-to-One Relationships
Part has a field, vendorPart, that has a one-to-one relationship with VendorPart’s part field.
That is, each part has exactly one vendor part, and vice versa.

Here is the relationship mapping in Part:

@OneToOne(mappedBy="part")
public VendorPart getVendorPart() {

return vendorPart;

}

Here is the relationship mapping in VendorPart:

@OneToOne

@JoinColumns({

@JoinColumn(name="PARTNUMBER",
referencedColumnName="PARTNUMBER"),

@JoinColumn(name="PARTREVISION",

The orderApplication

The Java EE 5 Tutorial • October 2008714

referencedColumnName="REVISION")
})

public Part getPart() {

return part;

}

Note that, because Part uses a compound primary key, the @JoinColumns annotation is used to
map the columns in the EJB_ORDER_VENDOR_PART table to the columns in EJB_ORDER_PART.
EJB_ORDER_VENDOR_PART’s PARTREVISION column refers to EJB_ORDER_PART’s REVISION
column.

One-to-Many Relationship Mapped to Overlapping Primary and
Foreign Keys
Order has a field, lineItems, that has a one-to-many relationship with LineItem’s field order.
That is, each order has one or more line item.

LineItem uses a compound primary key that is made up of the orderId and itemId fields. This
compound primary key maps to the ORDERID and ITEMID columns in the EJB_ORDER_LINEITEM
database table. ORDERID is a foreign key to the ORDERID column in the EJB_ORDER_ORDER table.
This means that the ORDERID column is mapped twice: once as a primary key field, orderId; and
again as a relationship field, order.

Here’s the relationship mapping in Order:

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Here is the relationship mapping in LineItem:

@ManyToOne

public Order getOrder() {

return order;

}

Unidirectional Relationships
LineItem has a field, vendorPart, that has a unidirectional many-to-one relationship with
VendorPart. That is, there is no field in the target entity in this relationship.

@ManyToOne

public VendorPart getVendorPart() {

return vendorPart;

}

The orderApplication

Chapter 26 • Persistence in the EJB Tier 715

Primary Keys in the orderApplication
The order application uses several types of primary keys: single-valued primary keys,
compound primary keys, and generated primary keys.

Generated Primary Keys
VendorPart uses a generated primary key value. That is, the application does not assign primary
key values for the entities, but instead relies on the persistence provider to generate the primary
key values. The @GeneratedValue annotation is used to specify that an entity will use a
generated primary key.

In VendorPart, the following code specifies the settings for generating primary key values:

@TableGenerator(

name="vendorPartGen",
table="EJB_ORDER_SEQUENCE_GENERATOR",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="VENDOR_PART_ID",
allocationSize=10)

@Id

@GeneratedValue(strategy=GenerationType.TABLE,

generator="vendorPartGen")
public Long getVendorPartNumber() {

return vendorPartNumber;

}

The @TableGenerator annotation is used in conjunction with @GeneratedValue’s
strategy=TABLE element. That is, the strategy used to generate the primary keys is use a table in
the database. @TableGenerator is used to configure the settings for the generator table. The
name element sets the name of the generator, which is vendorPartGen in VendorPart.

The EJB_ORDER_SEQUENCE_GENERATOR table, which has two columns GEN_KEY and GEN_VALUE,
will store the generated primary key values. This table could be used to generate other entity’s
primary keys, so the pkColumnValue element is set to VENDOR_PART_ID to distinguish this
entity’s generated primary keys from other entity’s generated primary keys. The
allocationSize element specifies the amount to increment when allocating primary key
values In this case, each VendorPart’s primary key will increment by 10.

The primary key field vendorPartNumber is of type Long, as the generated primary key’s field
must be an integral type.

Compound Primary Keys
A compound primary key is made up of multiple fields and follows the requirements described
in “Primary Key Classes” on page 690. To use a compound primary key, you must create a
wrapper class.

The orderApplication

The Java EE 5 Tutorial • October 2008716

In order, two entities use compound primary keys: Part and LineItem.

Part uses the PartKey wrapper class. Part’s primary key is a combination of the part number
and the revision number. PartKey encapsulates this primary key.

LineItem uses the LineItemKey class. LineItem’s primary key is a combination of the order
number and the item number. LineItemKey encapsulates this primary key. This is the
LineItemKey compound primary key wrapper class:

package order.entity;

public final class LineItemKey implements

java.io.Serializable {

private Integer orderId;

private int itemId;

public int hashCode() {

return ((this.getOrderId()==null

?0:this.getOrderId().hashCode())

^ ((int) this.getItemId()));

}

public boolean equals(Object otherOb) {

if (this == otherOb) {

return true;

}

if (!(otherOb instanceof LineItemKey)) {

return false;

}

LineItemKey other = (LineItemKey) otherOb;

return ((this.getOrderId()==null

?other.orderId==null:this.getOrderId().equals

(other.orderId)) && (this.getItemId ==

other.itemId));

}

public String toString() {

return "" + orderId + "-" + itemId;

}

}

The @IdClass annotation is used to specify the primary key class in the entity class. In
LineItem, @IdClass is used as follows:

@IdClass(order.entity.LineItemKey.class)

@Entity

...

The orderApplication

Chapter 26 • Persistence in the EJB Tier 717

public class LineItem {

...

}

The two fields in LineItem are tagged with the @Id annotation to mark those fields as part of the
compound primary key:

@Id

public int getItemId() {

return itemId;

}

...

@Id

@Column(name="ORDERID", nullable=false,

insertable=false, updatable=false)

public Integer getOrderId() {

return orderId;

}

For orderId, you also use the @Column annotation to specify the column name in the table, and
that this column should not be inserted or updated, as it is an overlapping foreign key pointing
at the EJB_ORDER_ORDER table’s ORDERID column (see “One-to-Many Relationship Mapped to
Overlapping Primary and Foreign Keys” on page 715). That is, orderId will be set by the Order
entity.

In LineItem’s constructor, the line item number (LineItem.itemId) is set using the
Order.getNextId method.

public LineItem(Order order, int quantity, VendorPart

vendorPart) {

this.order = order;

this.itemId = order.getNextId();

this.orderId = order.getOrderId();

this.quantity = quantity;

this.vendorPart = vendorPart;

}

Order.getNextId counts the number of current line items, adds one, and returns that number.

public int getNextId() {

return this.lineItems.size() + 1;

}

Part doesn’t require the @Column annotation on the two fields that comprise Part’s compound
primary key. This is because Part’s compound primary key is not an overlapping primary
key/foreign key.

The orderApplication

The Java EE 5 Tutorial • October 2008718

@IdClass(order.entity.PartKey.class)

@Entity

...

public class Part {

...

@Id

public String getPartNumber() {

return partNumber;

}

...

@Id

public int getRevision() {

return revision;

}

...

}

Entity Mapped to More Than One Database Table
Part’s fields map to more than one database table: EJB_ORDER_PART and
EJB_ORDER_PART_DETAIL. The EJB_ORDER_PART_DETAIL table holds the specification and
schematics for the part. The @SecondaryTable annotation is used to specify the secondary table.

...

@Entity

@Table(name="EJB_ORDER_PART")
@SecondaryTable(name="EJB_ORDER_PART_DETAIL", pkJoinColumns={

@PrimaryKeyJoinColumn(name="PARTNUMBER",
referencedColumnName="PARTNUMBER"),

@PrimaryKeyJoinColumn(name="REVISION",
referencedColumnName="REVISION")

})

public class Part {

...

}

EJB_ORDER_PART_DETAIL shares the same primary key values as EJB_ORDER_PART. The
pkJoinColumns element of @SecondaryTable is used to specify that EJB_ORDER_PART_DETAIL’s
primary key columns are foreign keys to EJB_ORDER_PART. The @PrimaryKeyJoinColumn
annotation sets the primary key column names and specifies which column in the primary table
the column refers to. In this case, the primary key column names for both
EJB_ORDER_PART_DETAIL and EJB_ORDER_PART are the same: PARTNUMBER and REVISION,
respectively.

The orderApplication

Chapter 26 • Persistence in the EJB Tier 719

Cascade Operations in the orderApplication
Entities that have relationships to other entities often have dependencies on the existence of the
other entity in the relationship. For example, a line item is part of an order, and if the order is
deleted, then the line item should also be deleted. This is called a cascade delete relationship.

In order, there are two cascade delete dependencies in the entity relationships. If the Order to
which a LineItem is related is deleted, then the LineItem should also be deleted. If the Vendor to
which a VendorPart is related is deleted, then the VendorPart should also be deleted.

You specify the cascade operations for entity relationships by setting the cascade element in the
inverse (non-owning) side of the relationship. The cascade element is set to ALL in the case of
Order.lineItems. This means that all persistence operations (deletes, updates, and so on) are
cascaded from orders to line items.

Here is the relationship mapping in Order:

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Here is the relationship mapping in LineItem:

@ManyToOne

public Order getOrder() {

return order;

}

BLOB and CLOB Database Types in the order
Application
The PARTDETAIL table in the database has a column, DRAWING, of type BLOB. BLOB stands for
binary large objects, which are used for storing binary data such as an image. The DRAWING
column is mapped to the field Part. drawing of type java.io.Serializable. The @Lob
annotation is used to denote that the field is large object.

@Column(table="EJB_ORDER_PART_DETAIL")
@Lob

public Serializable getDrawing() {

return drawing;

}

PARTDETAIL also has a column, SPECIFICATION, of type CLOB. CLOB stands for character large
objects, which are used to store string data too large to be stored in a VARCHAR column.

The orderApplication

The Java EE 5 Tutorial • October 2008720

SPECIFICATION is mapped to the field Part.specification of type java.lang.String. The
@Lob annotation is also used here to denote that the field is a large object.

@Column(table="EJB_ORDER_PART_DETAIL")
@Lob

public String getSpecification() {

return specification;

}

Both of these fields use the @Column annotation and set the table element to the secondary
table.

Temporal Types in the orderApplication
The Order.lastUpdate persistent property, which is of type java.util.Date, is mapped to the
EJB_ORDER_ORDER.LASTUPDATE database field, which is of the SQL type TIMESTAMP. To ensure
the proper mapping between these types, you must use the @Temporal annotation with the
proper temporal type specified in @Temporal’s element. @Temporal’s elements are of type
javax.persistence.TemporalType. The possible values are:

■ DATE, which maps to java.sql.Date

■ TIME, which maps to java.sql.Time

■ TIMESTAMP, which maps to java.sql.Timestamp

Here is the relevant section of Order:

@Temporal(TIMESTAMP)

public Date getLastUpdate() {

return lastUpdate;

}

Managing the orderApplication’s Entities
The RequestBean stateful session bean contains the business logic and manages the entities of
order.

RequestBean uses the @PersistenceContext annotation to retrieve an entity manager instance
which is used to manage order’s entities in RequestBean’s business methods.

@PersistenceContext

private EntityManager em;

This EntityManager instance is a container-managed entity manager, so the container takes
care of all the transactions involved in the managing order’s entities.

The orderApplication

Chapter 26 • Persistence in the EJB Tier 721

Creating Entities
The RequestBean.createPart business method creates a new Part entity. The
EntityManager.persist method is used to persist the newly created entity to the database.

Part part = new Part(partNumber,

revision,

description,

revisionDate,

specification,

drawing);

em.persist(part);

Finding Entities
The RequestBean.getOrderPrice business method returns the price of a given order, based on
the orderId. The EntityManager.find method is used to retrieve the entity from the database.

Order order = em.find(Order.class, orderId);

The first argument of EntityManager.find is the entity class, and the second is the primary
key.

Setting Entity Relationships
The RequestBean.createVendorPart business method creates a VendorPart associated with a
particular Vendor. The EntityManager.persist method is used to persist the newly created
VendorPart entity to the database, and the VendorPart.setVendor and
Vendor.setVendorPart methods are used to associate the VendorPart with the Vendor.

PartKey pkey = new PartKey();

pkey.partNumber = partNumber;

pkey.revision = revision;

Part part = em.find(Part.class, pkey);

VendorPart vendorPart = new VendorPart(description, price,

part);

em.persist(vendorPart);

Vendor vendor = em.find(Vendor.class, vendorId);

vendor.addVendorPart(vendorPart);

vendorPart.setVendor(vendor);

Using Queries
The RequestBean.adjustOrderDiscount business method updates the discount applied to all
orders. It uses the findAllOrders named query, defined in Order:

The orderApplication

The Java EE 5 Tutorial • October 2008722

@NamedQuery(

name="findAllOrders",
query="SELECT o FROM Order o"

)

The EntityManager.createNamedQuery method is used to run the query. Because the query
returns a List of all the orders, the Query.getResultList method is used.

List orders = em.createNamedQuery(

"findAllOrders")
.getResultList();

The RequestBean.getTotalPricePerVendor business method returns the total price of all the
parts for a particular vendor. It uses a named parameter, id, defined in the named query
findTotalVendorPartPricePerVendor defined in VendorPart.

@NamedQuery(

name="findTotalVendorPartPricePerVendor",
query="SELECT SUM(vp.price) " +

"FROM VendorPart vp " +

"WHERE vp.vendor.vendorId = :id"
)

When running the query, the Query.setParameter method is used to set the named parameter
id to the value of vendorId, the parameter to RequestBean.getTotalPricePerVendor.

return (Double) em.createNamedQuery(

"findTotalVendorPartPricePerVendor")
.setParameter("id", vendorId)

.getSingleResult();

The Query.getSingleResult method is used for this query because the query returns a single
value.

Removing Entities
The RequestBean.removeOrder business method deletes a given order from the database. It
uses the EntityManager.remove method to delete the entity from the database.

Order order = em.find(Order.class, orderId);

em.remove(order);

Building and Running the orderApplication
This section describes how to build, package, deploy, and run the order application. To do this,
you will create the database tables in the Java DB server, then build, deploy, and run the
example.

The orderApplication

Chapter 26 • Persistence in the EJB Tier 723

Creating the Database Tables in NetBeans IDE
To create the database tables in Java DB, the database server included with Application Server,
you need to create the database connection and execute the SQL commands in
tut-install/examples/common/sql/javadb/tutorial.sql.

Creating the Database Connection

To create the database connection do the following:

1. Click the Services tab.
2. Right-click the Databases node and select New Connection to open the New Connection

dialog.
3. Under Name, select Java DB (Network).
4. Set Database URL to the following:

jdbc:derby://localhost:1527/sun-appserv-samples

5. Set User Name to APP.
6. Set Password to APP.
7. Select the Remember Password during this Session box.
8. Click OK.

Creating the Tables

To create the tutorial tables, do the following:

1. Select File→Open File.
2. Navigate to tut-install/examples/common/sql/javadb/ and open tutorial.sql.
3. In the editor pane, select the connection URL to Java DB:

jdbc:derby://localhost:1527/sun-appserv-samples

4. Click the Run SQL button at the top of the editor pane.
You will see the output from the SQL commands in the Output tab.

Deleting the Tables

To delete the tutorial tables, do the following:

1. Select File→Open File.
2. Navigate to tut-install/examples/common/sql/javadb/ and open delete.sql.
3. In the editor pane, select the connection URL to Java DB:

jdbc:derby://localhost:1527/sun-appserv-samples

The orderApplication

The Java EE 5 Tutorial • October 2008724

4. Click the Run SQL button at the top of the editor pane.
You will see the output from the SQL commands in the Output tab.

Creating the Database Tables Using Ant
The database tables are automatically created by the create-tables task, which is called before
you deploy the application with the ant deploy task. To manually create the tables, do the
following:

1. In a terminal window, navigate to tut-install/javaeetutorial5/examples/ejb/order/.
2. Type the following command:

ant create-tables

Note – The first time the create-tables task is run, you will see error messages when the
task attempts to remove tables that don’t exist. Ignore these error messages. Subsequent calls
to create-tables will run with no errors and will reset the database tables.

Building, Packaging, Deploying, and Running order In NetBeans IDE
Follow these instructions to build, package, deploy, and run the order example to your
Application Server instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/ejb/.
3. Select the order folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. In the Projects tab, right-click the order project and select Run.

You will see the following output from the application client in the Output tab:

...

Cost of Bill of Material for PN SDFG-ERTY-BN Rev: 7: $241.86

Cost of Order 1111: $664.68

Cost of Order 4312: $2,011.44

Adding 5% discount

Cost of Order 1111: $627.75

Cost of Order 4312: $1,910.87

Removing 7% discount

Cost of Order 1111: $679.45

Cost of Order 4312: $2,011.44

The orderApplication

Chapter 26 • Persistence in the EJB Tier 725

Average price of all parts: $117.55

Total price of parts for Vendor 100: $501.06

Ordered list of vendors for order 1111

200 Gadget, Inc. Mrs. Smith

100 WidgetCorp Mr. Jones

Counting all line items

Found 6 line items

Removing Order 4312

Counting all line items

Found 3 line items

Found 1 out of 2 vendors with ’I’ in the name:

Gadget, Inc.

run-order-app-client:

run-ant:

run:

BUILD SUCCESSFUL (total time: 22 seconds)

Building, Packaging, Deploying, and Running orderUsing Ant
To build the application components of order, enter the following command:

ant

This runs the default task, which compiles the source files and packages the application into an
EAR file located at tut-install/examples/ejb/order/dist/order.ear.

To deploy the EAR, make sure the Application Server is started, then enter the following
command:

ant deploy

After order.ear is deployed, a client JAR, orderClient.jar, is retrieved. This contains the
application client.

To run the application client, enter the following command:

ant run

You will see the following output:

...

run:

[echo] Running appclient for Order.

The orderApplication

The Java EE 5 Tutorial • October 2008726

appclient-command-common:

[exec] Cost of Bill of Material for PN SDFG-ERTY-BN Rev: 7:

$241.86

[exec] Cost of Order 1111: $664.68

[exec] Cost of Order 4312: $2,011.44

[exec] Adding 5% discount

[exec] Cost of Order 1111: $627.75

[exec] Cost of Order 4312: $1,910.87

[exec] Removing 7% discount

[exec] Cost of Order 1111: $679.45

[exec] Cost of Order 4312: $2,011.44

[exec] Average price of all parts: $117.55

[exec] Total price of parts for Vendor 100: $501.06

[exec] Ordered list of vendors for order 1111

[exec] 200 Gadget, Inc. Mrs. Smith

[exec] 100 WidgetCorp Mr. Jones

[exec] Counting all line items

[exec] Found 6 line items

[exec] Removing Order 4312

[exec] Counting all line items

[exec] Found 3 line items

[exec] Found 1 out of 2 vendors with ’I’ in the name:

[exec] Gadget, Inc.

BUILD SUCCESSFUL

Note – Before re-running the application client, you must reset the database by running the
create-tables task.

The all Task

As a convenience, the all task will build, package, deploy, and run the application. To do this,
enter the following command:

ant all

The orderApplication

Chapter 26 • Persistence in the EJB Tier 727

Undeploying order

To undeploy order.ear, enter the following command:

ant undeploy

The rosterApplication
The roster application maintains the team rosters for players in recreational sports leagues.
The application has four components: Java Persistence API entities (Player, Team, and League),
a stateful session bean (RequestBean), an application client (RosterClient), and three helper
classes (PlayerDetails, TeamDetails, and LeagueDetails).

Functionally, roster is similar to the order application described earlier in this chapter with
three new features that order does not have: many-to-many relationships, entity inheritance,
and automatic table creation at deploytime.

Relationships in the rosterApplication
A recreational sports system has the following relationships:

■ A player can be on many teams.
■ A team can have many players.
■ A team is in exactly one league.
■ A league has many teams.

In roster this is reflected by the following relationships between the Player, Team, and League

entities:

■ There is a many-to-many relationship between Player and Team.
■ There is a many-to-one relationship between Team and League.

The Many-To-Many Relationship in roster

The many-to-many relationship between Player and Team is specified by using the
@ManyToMany annotation.

In Team.java, the @ManyToMany annotation decorates the getPlayers method:

@ManyToMany

@JoinTable(

name="EJB_ROSTER_TEAM_PLAYER",
joinColumns=

@JoinColumn(name="TEAM_ID", referencedColumnName="ID"),
inverseJoinColumns=

The rosterApplication

The Java EE 5 Tutorial • October 2008728

@JoinColumn(name="PLAYER_ID", referencedColumnName="ID")
)

public Collection<Player> getPlayers() {

return players;

}

The @JoinTable annotation is used to specify a table in the database that will associate player
IDs with team IDs. The entity that specifies the @JoinTable is the owner of the relationship, so
in this case the Team entity is the owner of the relationship with the Player entity. Because
roster uses automatic table creation at deploytime, the container will create a join table in the
database named EJB_ROSTER_TEAM_PLAYER.

Player is the inverse, or non-owning side of the relationship with Team. As one-to-one and
many-to-one relationships, the non-owning side is marked by the mappedBy element in the
relationship annotation. Because the relationship between Player and Team is bidirectional, the
choice of which entity is the owner of the relationship is arbitrary.

In Player.java, the @ManyToMany annotation decorates the getTeams method:

@ManyToMany(mappedBy="players")
public Collection<Team> getTeams() {

return teams;

}

Entity Inheritance in the rosterApplication
The roster application demonstrates how to use entity inheritance, as described in “Entity
Inheritance” on page 693.

The League entity in roster is an abstract entity with two concrete subclasses: SummerLeague
and WinterLeague. Because League is an abstract class it cannot be instantiated:

...

@Entity

@Table(name = "EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

Instead, SummerLeague or WinterLeague are used by clients when creating a league.
SummerLeague and WinterLeague inherit the persistent properties defined in League, and only
add a constructor that verifies that the sport parameter matches the type of sport allowed in that
seasonal league. For example, here is the SummerLeague entity:

...

@Entity

public class SummerLeague extends League

The rosterApplication

Chapter 26 • Persistence in the EJB Tier 729

implements java.io.Serializable {

/** Creates a new instance of SummerLeague */

public SummerLeague() {

}

public SummerLeague(String id, String name,

String sport) throws IncorrectSportException {

this.id = id;

this.name = name;

if (sport.equalsIgnoreCase("swimming") ||

sport.equalsIgnoreCase("soccer") ||

sport.equalsIgnoreCase("basketball") ||

sport.equalsIgnoreCase("baseball")) {

this.sport = sport;

} else {

throw new IncorrectSportException(

"Sport is not a summer sport.");
}

}

}

The roster application uses the default mapping strategy of InheritanceType.SINGLE_TABLE,
so the @Inheritance annotation is not required. If you wanted to use a different mapping
strategy, decorate League with @Inheritance and specify the mapping strategy in the strategy
element:

@Entity

@Inheritance(strategy=JOINED)

@Table(name="EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

roster uses the default discriminator column name, so the @DiscriminatorColumn annotation
is not required. Because you are using automatic table generation in roster the Persistence
provider will create a discriminator column in the EJB_ROSTER_LEAGUE table called DTYPE,
which will store the name of the inherited entity used to create the league. If you want to use a
different name for the discriminator column, decorate League with @DiscriminatorColumn

and set the name element:

@Entity

@DiscriminatorColumn(name="DISCRIMINATOR")
@Table(name="EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

The rosterApplication

The Java EE 5 Tutorial • October 2008730

Automatic Table Generation in the rosterApplication
At deploytime the Application Server will automatically drop and create the database tables
used by roster. This is done by setting the toplink.ddl-generation property to
drop-and-create-tables in persistence.xml.

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

<persistence-unit name="em" transaction-type="JTA">
<jta-data-source>jdbc/__default</jta-data-source>

<properties>

<property name="toplink.ddl-generation"
value="drop-and-create-tables"/>

</properties>

</persistence-unit>

</persistence>

This feature is specific to the Java Persistence API provider used by the Application Server, and
is non-portable across Java EE servers. Automatic table creation is useful for development
purposes, however, and the toplink.ddl-generation property may be removed from
persistence.xml when preparing the application for production use, or when deploying to
other Java EE servers.

Building and Running the rosterApplication
This section describes how to build, package, deploy, and run the roster application. You can
do this using either NetBeans IDE or Ant.

Building, Packaging, Deploying, and Running roster in NetBeans IDE
Follow these instructions to build, package, deploy, and run the roster example to your
Application Server instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/ejb/.
3. Select the roster folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. In the Projects tab, right-click the roster project and select Run.

You will see the following partial output from the application client in the Output tab:

The rosterApplication

Chapter 26 • Persistence in the EJB Tier 731

List all players in team T2:

P6 Ian Carlyle goalkeeper 555.0

P7 Rebecca Struthers midfielder 777.0

P8 Anne Anderson forward 65.0

P9 Jan Wesley defender 100.0

P10 Terry Smithson midfielder 100.0

List all teams in league L1:

T1 Honey Bees Visalia

T2 Gophers Manteca

T5 Crows Orland

List all defenders:

P2 Alice Smith defender 505.0

P5 Barney Bold defender 100.0

P9 Jan Wesley defender 100.0

P22 Janice Walker defender 857.0

P25 Frank Fletcher defender 399.0

...

Building, Packaging, Deploying, and Running rosterUsing Ant
To build the application components of roster, enter the following command:

ant

This runs the default task, which compiles the source files and packages the application into an
EAR file located at tut-install/examples/ejb/roster/dist/roster.ear.

To deploy the EAR, make sure the Application Server is started, then enter the following
command:

ant deploy

The build system will check to see if the Java DB database server is running and start it if it is not
running, then deploy roster.ear. The Application Server will then drop and create the
database tables during deployment, as specified in persistence.xml.

After roster.ear is deployed, a client JAR, rosterClient.jar, is retrieved. This contains the
application client.

To run the application client, enter the following command:

ant run

You will see the output, which begins:

The rosterApplication

The Java EE 5 Tutorial • October 2008732

[echo] running application client container.

[exec] List all players in team T2:

[exec] P6 Ian Carlyle goalkeeper 555.0

[exec] P7 Rebecca Struthers midfielder 777.0

[exec] P8 Anne Anderson forward 65.0

[exec] P9 Jan Wesley defender 100.0

[exec] P10 Terry Smithson midfielder 100.0

[exec] List all teams in league L1:

[exec] T1 Honey Bees Visalia

[exec] T2 Gophers Manteca

[exec] T5 Crows Orland

[exec] List all defenders:

[exec] P2 Alice Smith defender 505.0

[exec] P5 Barney Bold defender 100.0

[exec] P9 Jan Wesley defender 100.0

[exec] P22 Janice Walker defender 857.0

[exec] P25 Frank Fletcher defender 399.0

...

The all Task

As a convenience, the all task will build, package, deploy, and run the application. To do this,
enter the following command:

ant all

Undeploying order

To undeploy roster.ear, enter the following command:

ant undeploy

The rosterApplication

Chapter 26 • Persistence in the EJB Tier 733

734

The Java Persistence Query Language

The Java Persistence query language defines queries for entities and their persistent state. The
query language allows you to write portable queries that work regardless of the underlying data
store.

The query language uses the abstract persistence schemas of entities, including their
relationships, for its data model, and it defines operators and expressions based on this data
model. The scope of a query spans the abstract schemas of related entities that are packaged in
the same persistence unit. The query language uses a SQL-like syntax to select objects or values
based on entity abstract schema types and relationships among them.

This chapter relies on the material presented in earlier chapters. For conceptual information,
see Chapter 24, “Introduction to the Java Persistence API.” For code examples, see Chapters
“The persistence.xml File” on page 703 and “Updating Data in the Database” on page 710.

Query Language Terminology
The following list defines some of the terms referred to in this chapter.
■ Abstract schema: The persistent schema abstraction (persistent entities, their state, and

their relationships) over which queries operate. The query language translates queries over
this persistent schema abstraction into queries that are executed over the database schema
to which entities are mapped.

■ Abstract schema type: All expressions evaluate to a type. The abstract schema type of an
entity is derived from the entity class and the metadata information provided by Java
language annotations.

■ Backus-Naur Form (BNF): A notation that describes the syntax of high-level languages.
The syntax diagrams in this chapter are in BNF notation.

■ Navigation: The traversal of relationships in a query language expression. The navigation
operator is a period.

■ Path expression: An expression that navigates to a entity’s state or relationship field.

27C H A P T E R 2 7

735

■ State field: A persistent field of an entity.
■ Relationship field: A persistent relationship field of an entity whose type is the abstract

schema type of the related entity.

Simplified Query Language Syntax
This section briefly describes the syntax of the query language so that you can quickly move on
to the next section, “Example Queries” on page 737. When you are ready to learn about the
syntax in more detail, see the section “Full Query Language Syntax” on page 742.

Select Statements
A select query has six clauses: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY. The
SELECT and FROM clauses are required, but the WHERE, GROUP BY, HAVING, and ORDER BY clauses
are optional. Here is the high-level BNF syntax of a query language query:

QL_statement ::= select_clause from_clause

[where_clause][groupby_clause][having_clause][orderby_clause]

The SELECT clause defines the types of the objects or values returned by the query.

The FROM clause defines the scope of the query by declaring one or more identification variables,
which can be referenced in the SELECT and WHERE clauses. An identification variable represents
one of the following elements:

■ The abstract schema name of an entity
■ An element of a collection relationship
■ An element of a single-valued relationship
■ A member of a collection that is the multiple side of a one-to-many relationship

The WHERE clause is a conditional expression that restricts the objects or values retrieved by the
query. Although it is optional, most queries have a WHERE clause.

The GROUP BY clause groups query results according to a set of properties.

The HAVING clause is used with the GROUP BY clause to further restrict the query results
according to a conditional expression.

The ORDER BY clause sorts the objects or values returned by the query into a specified order.

Update and Delete Statements
Update and delete statements provide bulk operations over sets of entities. They have the
following syntax:

Simplified Query Language Syntax

The Java EE 5 Tutorial • October 2008736

update_statement :: = update_clause [where_clause] delete_statement :: =

delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The
WHERE clause may be used to restrict the scope of the update or delete operation.

Example Queries
The following queries are from the Player entity of the roster application, which is
documented in Chapter 26, “Persistence in the EJB Tier.”

Simple Queries
If you are unfamiliar with the query language, these simple queries are a good place to start.

A Basic Select Query
SELECT p

FROM Player p

Data retrieved: All players.

Description: The FROM clause declares an identification variable named p, omitting the optional
keyword AS. If the AS keyword were included, the clause would be written as follows:

FROM Player AS

p

The Player element is the abstract schema name of the Player entity.

See also: “Identification Variables” on page 749

Eliminating Duplicate Values
SELECT DISTINCT

p

FROM Player p

WHERE p.position = ?1

Data retrieved: The players with the position specified by the query’s parameter.

Description: The DISTINCT keyword eliminates duplicate values.

The WHERE clause restricts the players retrieved by checking their position, a persistent field of
the Player entity. The ?1 element denotes the input parameter of the query.

Example Queries

Chapter 27 • The Java Persistence Query Language 737

See also: “Input Parameters” on page 754, “The DISTINCT Keyword” on page 763

Using Named Parameters
SELECT DISTINCT p

FROM Player p

WHERE p.position = :position AND p.name = :name

Data retrieved: The players having the specified positions and names.

Description: The position and name elements are persistent fields of the Player entity. The
WHERE clause compares the values of these fields with the named parameters of the query, set
using the Query.setNamedParameter method. The query language denotes a named input
parameter using colon (:) followed by an identifier. The first input parameter is :position, the
second is :name.

Queries That Navigate to Related Entities
In the query language, an expression can traverse (or navigate) to related entities. These
expressions are the primary difference between the Java Persistence query language and SQL.
Queries navigates to related entities, whereas SQL joins tables.

A Simple Query with Relationships
SELECT DISTINCT p

FROM Player p, IN(p.teams) t

Data retrieved: All players who belong to a team.

Description: The FROM clause declares two identification variables: p and t. The p variable
represents the Player entity, and the t variable represents the related Team entity. The
declaration for t references the previously declared p variable. The IN keyword signifies that
teams is a collection of related entities. The p.teams expression navigates from a Player to its
related Team. The period in the p.teams expression is the navigation operator.

You may also use the JOIN statement to write the same query:

SELECT DISTINCT p

FROM Player p JOIN p.teams t

This query could also be rewritten as:

SELECT DISTINCT p

FROM Player p

WHERE p.team IS NOT EMPTY

Example Queries

The Java EE 5 Tutorial • October 2008738

Navigating to Single-Valued Relationship Fields
Use the JOIN clause statement to navigate to a single-valued relationship field:

SELECT t

FROM Team t JOIN t.league l

WHERE l.sport = ’soccer’ OR l.sport =’football’

In this example, the query will return all teams that are in either soccer or football leagues.

Traversing Relationships with an Input Parameter
SELECT DISTINCT p

FROM Player p, IN (p.teams) AS t

WHERE t.city = :city

Data retrieved: The players whose teams belong to the specified city.

Description: This query is similar to the previous example, but it adds an input parameter. The
AS keyword in the FROM clause is optional. In the WHERE clause, the period preceding the
persistent variable city is a delimiter, not a navigation operator. Strictly speaking, expressions
can navigate to relationship fields (related entities), but not to persistent fields. To access a
persistent field, an expression uses the period as a delimiter.

Expressions cannot navigate beyond (or further qualify) relationship fields that are collections.
In the syntax of an expression, a collection-valued field is a terminal symbol. Because the teams
field is a collection, the WHERE clause cannot specify p.teams.city (an illegal expression).

See also: “Path Expressions” on page 751

Traversing Multiple Relationships
SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league = :league

Data retrieved: The players that belong to the specified league.

Description: The expressions in this query navigate over two relationships. The p.teams
expression navigates the Player-Team relationship, and the t.league expression navigates the
Team-League relationship.

In the other examples, the input parameters are String objects, but in this example the
parameter is an object whose type is a League. This type matches the league relationship field
in the comparison expression of the WHERE clause.

Example Queries

Chapter 27 • The Java Persistence Query Language 739

Navigating According to Related Fields
SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league.sport = :sport

Data retrieved: The players who participate in the specified sport.

Description: The sport persistent field belongs to the League entity. To reach the sport field,
the query must first navigate from the Player entity to Team (p.teams) and then from Team to
the League entity (t.league). Because the league relationship field is not a collection, it can be
followed by the sport persistent field.

Queries with Other Conditional Expressions
Every WHERE clause must specify a conditional expression, of which there are several kinds. In
the previous examples, the conditional expressions are comparison expressions that test for
equality. The following examples demonstrate some of the other kinds of conditional
expressions. For descriptions of all conditional expressions, see the section “WHERE Clause” on
page 753.

The LIKE Expression
SELECT p

FROM Player p

WHERE p.name LIKE ’Mich%’

Data retrieved: All players whose names begin with “Mich.”

Description: The LIKE expression uses wildcard characters to search for strings that match the
wildcard pattern. In this case, the query uses the LIKE expression and the % wildcard to find all
players whose names begin with the string “Mich.” For example, “Michael” and “Michelle” both
match the wildcard pattern.

See also: “LIKE Expressions” on page 756

The IS NULL Expression
SELECT t

FROM Team t

WHERE t.league IS NULL

Data retrieved: All teams not associated with a league.

Description: The IS NULL expression can be used to check if a relationship has been set
between two entities. In this case, the query checks to see if the teams are associated with any
leagues, and returns the teams that do not have a league.

Example Queries

The Java EE 5 Tutorial • October 2008740

See also: “NULL Comparison Expressions” on page 756, “NULL Values” on page 760

The IS EMPTY Expression
SELECT p

FROM Player p

WHERE p.teams IS EMPTY

Data retrieved: All players who do not belong to a team.

Description: The teams relationship field of the Player entity is a collection. If a player does
not belong to a team, then the teams collection is empty and the conditional expression is TRUE.

See also: “Empty Collection Comparison Expressions” on page 757

The BETWEEN Expression
SELECT DISTINCT p

FROM Player p

WHERE p.salary BETWEEN :lowerSalary AND :higherSalary

Data retrieved: The players whose salaries fall within the range of the specified salaries.

Description: This BETWEEN expression has three arithmetic expressions: a persistent field
(p.salary) and the two input parameters (:lowerSalary and :higherSalary). The following
expression is equivalent to the BETWEEN expression:

p.salary >= :lowerSalary AND p.salary <= :higherSalary

See also: “BETWEEN Expressions” on page 755

Comparison Operators
SELECT DISTINCT p1

FROM Player p1, Player p2

WHERE p1.salary > p2.salary AND p2.name = :name

Data retrieved: All players whose salaries are higher than the salary of the player with the
specified name.

Description: The FROM clause declares two identification variables (p1 and p2) of the same type
(Player). Two identification variables are needed because the WHERE clause compares the salary
of one player (p2) with that of the other players (p1).

See also: “Identification Variables” on page 749

Example Queries

Chapter 27 • The Java Persistence Query Language 741

Bulk Updates and Deletes
The following examples show how to use the UPDATE and DELETE expressions in queries. UPDATE
and DELETE operate on multiple entities according to the condition or conditions set in the
WHERE clause. The WHERE clause in UPDATE and DELETE queries follows the same rules as SELECT
queries.

Update Queries
UPDATE Player p

SET p.status = ’inactive’
WHERE p.lastPlayed < :inactiveThresholdDate

Description: This query sets the status of a set of players to inactive if the player’s last game
was longer than the date specified in inactiveThresholdDate.

Delete Queries
DELETE

FROM Player p

WHERE p.status = ’inactive’
AND p.teams IS EMPTY

Description: This query deletes all inactive players who are not on a team.

Full Query Language Syntax
This section discusses the query language syntax, as defined in the Java Persistence
specification. Much of the following material paraphrases or directly quotes the specification.

BNF Symbols
Table 27–1 describes the BNF symbols used in this chapter.

TABLE 27–1 BNF Symbol Summary

Symbol Description

::= The element to the left of the symbol is defined by the constructs on the right.

* The preceding construct may occur zero or more times.

{...} The constructs within the curly braces are grouped together.

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008742

TABLE 27–1 BNF Symbol Summary (Continued)
Symbol Description

[...] The constructs within the square brackets are optional.

| An exclusive OR.

BOLDFACE A keyword (although capitalized in the BNF diagram, keywords are not case-sensitive).

White space A white space character can be a space, a horizontal tab, or a line feed.

BNF Grammar of the Java Persistence Query Language
Here is the entire BNF diagram for the query language:

QL_statement ::= select_statement | update_statement | delete_statement

select_statement ::= select_clause from_clause [where_clause] [groupby_clause]

[having_clause] [orderby_clause]

update_statement ::= update_clause [where_clause]

delete_statement ::= delete_clause [where_clause]

from_clause ::=

FROM identification_variable_declaration

{, {identification_variable_declaration |

collection_member_declaration}}*

identification_variable_declaration ::=

range_variable_declaration { join | fetch_join }*

range_variable_declaration ::= abstract_schema_name [AS]

identification_variable

join ::= join_spec join_association_path_expression [AS]

identification_variable

fetch_join ::= join_specFETCH join_association_path_expression

association_path_expression ::=

collection_valued_path_expression |

single_valued_association_path_expression

join_spec::= [LEFT [OUTER] |INNER] JOIN

join_association_path_expression ::=

join_collection_valued_path_expression |

join_single_valued_association_path_expression

join_collection_valued_path_expression::=

identification_variable.collection_valued_association_field

join_single_valued_association_path_expression::=

identification_variable.single_valued_association_field

collection_member_declaration ::=

IN (collection_valued_path_expression) [AS]

identification_variable

single_valued_path_expression ::=

state_field_path_expression |

single_valued_association_path_expression

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 743

state_field_path_expression ::=

{identification_variable |

single_valued_association_path_expression}.state_field

single_valued_association_path_expression ::=

identification_variable.{single_valued_association_field.}*

single_valued_association_field

collection_valued_path_expression ::=

identification_variable.{single_valued_association_field.}*

collection_valued_association_field

state_field ::=

{embedded_class_state_field.}*simple_state_field

update_clause ::=UPDATE abstract_schema_name [[AS]

identification_variable] SET update_item {, update_item}*

update_item ::= [identification_variable.]{state_field |

single_valued_association_field} = new_value

new_value ::=

simple_arithmetic_expression |

string_primary |

datetime_primary |

boolean_primary |

enum_primary simple_entity_expression |

NULL

delete_clause ::= DELETE FROM abstract_schema_name [[AS]

identification_variable]

select_clause ::= SELECT [DISTINCT] select_expression {,

select_expression}*

select_expression ::=

single_valued_path_expression |

aggregate_expression |

identification_variable |

OBJECT(identification_variable) |

constructor_expression

constructor_expression ::=

NEW constructor_name(constructor_item {,

constructor_item}*)

constructor_item ::= single_valued_path_expression |

aggregate_expression

aggregate_expression ::=

{AVG |MAX |MIN |SUM} ([DISTINCT]

state_field_path_expression) |

COUNT ([DISTINCT] identification_variable |

state_field_path_expression |

single_valued_association_path_expression)

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*

groupby_item ::= single_valued_path_expression

having_clause ::= HAVING conditional_expression

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008744

orderby_item ::= state_field_path_expression [ASC |DESC]

subquery ::= simple_select_clause subquery_from_clause

[where_clause] [groupby_clause] [having_clause]

subquery_from_clause ::=

FROM subselect_identification_variable_declaration

{, subselect_identification_variable_declaration}*

subselect_identification_variable_declaration ::=

identification_variable_declaration |

association_path_expression [AS] identification_variable |

collection_member_declaration

simple_select_clause ::= SELECT [DISTINCT]

simple_select_expression

simple_select_expression::=

single_valued_path_expression |

aggregate_expression |

identification_variable

conditional_expression ::= conditional_term |

conditional_expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND

conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression |(

conditional_expression)

simple_cond_expression ::=

comparison_expression |

between_expression |

like_expression |

in_expression |

null_comparison_expression |

empty_collection_comparison_expression |

collection_member_expression |

exists_expression

between_expression ::=

arithmetic_expression [NOT] BETWEEN

arithmetic_expressionAND arithmetic_expression |

string_expression [NOT] BETWEEN string_expression AND

string_expression |

datetime_expression [NOT] BETWEEN

datetime_expression AND datetime_expression

in_expression ::=

state_field_path_expression [NOT] IN (in_item {, in_item}*

| subquery)

in_item ::= literal | input_parameter

like_expression ::=

string_expression [NOT] LIKE pattern_value [ESCAPE

escape_character]

null_comparison_expression ::=

{single_valued_path_expression | input_parameter} IS [NOT]

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 745

NULL

empty_collection_comparison_expression ::=

collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::= entity_expression

[NOT] MEMBER [OF] collection_valued_path_expression

exists_expression::= [NOT] EXISTS (subquery)

all_or_any_expression ::= {ALL |ANY |SOME} (subquery)

comparison_expression ::=

string_expression comparison_operator {string_expression |

all_or_any_expression} |

boolean_expression {= |<> } {boolean_expression |

all_or_any_expression} |

enum_expression {= |<> } {enum_expression |

all_or_any_expression} |

datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |

entity_expression {= |<> } {entity_expression |

all_or_any_expression} |

arithmetic_expression comparison_operator

{arithmetic_expression | all_or_any_expression}

comparison_operator ::= = |> |>= |< |<= |<>

arithmetic_expression ::= simple_arithmetic_expression |

(subquery)

simple_arithmetic_expression ::=

arithmetic_term | simple_arithmetic_expression {+ |- }

arithmetic_term

arithmetic_term ::= arithmetic_factor | arithmetic_term {* |/ }

arithmetic_factor

arithmetic_factor ::= [{+ |- }] arithmetic_primary

arithmetic_primary ::=

state_field_path_expression |

numeric_literal |

(simple_arithmetic_expression) |

input_parameter |

functions_returning_numerics |

aggregate_expression

string_expression ::= string_primary | (subquery)

string_primary ::=

state_field_path_expression |

string_literal |

input_parameter |

functions_returning_strings |

aggregate_expression

datetime_expression ::= datetime_primary | (subquery)

datetime_primary ::=

state_field_path_expression |

input_parameter |

functions_returning_datetime |

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008746

aggregate_expression

boolean_expression ::= boolean_primary | (subquery)

boolean_primary ::=

state_field_path_expression |

boolean_literal |

input_parameter

enum_expression ::= enum_primary | (subquery)

enum_primary ::=

state_field_path_expression |

enum_literal |

input_parameter

entity_expression ::=

single_valued_association_path_expression |

simple_entity_expression

simple_entity_expression ::=

identification_variable |

input_parameter

functions_returning_numerics::=

LENGTH(string_primary) |

LOCATE(string_primary, string_primary[,

simple_arithmetic_expression]) |

ABS(simple_arithmetic_expression) |

SQRT(simple_arithmetic_expression) |

MOD(simple_arithmetic_expression,

simple_arithmetic_expression) |

SIZE(collection_valued_path_expression)

functions_returning_datetime ::=

CURRENT_DATE |

CURRENT_TIME |

CURRENT_TIMESTAMP

functions_returning_strings ::=

CONCAT(string_primary, string_primary) |

SUBSTRING(string_primary,

simple_arithmetic_expression,

simple_arithmetic_expression)|

TRIM([[trim_specification] [trim_character] FROM]

string_primary) |

LOWER(string_primary) |

UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH

FROMClause
The FROM clause defines the domain of the query by declaring identification variables.

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 747

Identifiers
An identifier is a sequence of one or more characters. The first character must be a valid first
character (letter, $, _) in an identifier of the Java programming language (hereafter in this
chapter called simply “Java”). Each subsequent character in the sequence must be a valid
non-first character (letter, digit, $, _) in a Java identifier. (For details, see the Java SE API
documentation of the isJavaIdentifierStart and isJavaIdentifierPart methods of the
Character class.) The question mark (?) is a reserved character in the query language and
cannot be used in an identifier.

A query language identifier is case-sensitive with two exceptions:

■ Keywords
■ Identification variables

An identifier cannot be the same as a query language keyword. Here is a list of query language
keywords:

ALL

AND

ANY

AS

ASC

AVG

BETWEEN

BY

COUNT

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

DELETE

DESC

DISTINCT

EMPTY

EXISTS

FALSE

FETCH

FROM

GROUP

HAVING

IN

INNER

IS

JOIN

LEFT

LIKE

MAX

MEMBER

MIN

MOD

NEW

NOT

NULL

OBJECT

OF

OUTER

OR

ORDER

SELECT

SOME

SUM

TRIM

TRUE

UNKNOWN

UPDATE

UPPER

WHERE

It is not recommended that you use a SQL keyword as an identifier, because the list of keywords
may expand to include other reserved SQL words in the future.

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008748

Identification Variables
An identification variable is an identifier declared in the FROM clause. Although the SELECT and
WHERE clauses can reference identification variables, they cannot declare them. All identification
variables must be declared in the FROM clause.

Because an identification variable is an identifier, it has the same naming conventions and
restrictions as an identifier with the exception that an identification variables is case-insensitive.
For example, an identification variable cannot be the same as a query language keyword. (See
the preceding section for more naming rules.) Also, within a given persistence unit, an
identification variable name must not match the name of any entity or abstract schema.

The FROM clause can contain multiple declarations, separated by commas. A declaration can
reference another identification variable that has been previously declared (to the left). In the
following FROM clause, the variable t references the previously declared variable p:

FROM Player p, IN (p.teams) AS t

Even if an identification variable is not used in the WHERE clause, its declaration can affect the
results of the query. For an example, compare the next two queries. The following query returns
all players, whether or not they belong to a team:

SELECT p

FROM Player p

In contrast, because the next query declares the t identification variable, it fetches all players
that belong to a team:

SELECT p

FROM Player p, IN (p.teams) AS t

The following query returns the same results as the preceding query, but the WHERE clause makes
it easier to read:

SELECT p

FROM Player p

WHERE p.teams IS NOT EMPTY

An identification variable always designates a reference to a single value whose type is that of
the expression used in the declaration. There are two kinds of declarations: range variable and
collection member.

Range Variable Declarations
To declare an identification variable as an abstract schema type, you specify a range variable
declaration. In other words, an identification variable can range over the abstract schema type
of an entity. In the following example, an identification variable named p represents the abstract
schema named Player:

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 749

FROM Player p

A range variable declaration can include the optional AS operator:

FROM Player AS p

In most cases, to obtain objects a query uses path expressions to navigate through the
relationships. But for those objects that cannot be obtained by navigation, you can use a range
variable declaration to designate a starting point (or root).

If the query compares multiple values of the same abstract schema type, then the FROM clause
must declare multiple identification variables for the abstract schema:

FROM Player p1, Player p2

For a sample of such a query, see “Comparison Operators” on page 741.

Collection Member Declarations
In a one-to-many relationship, the multiple side consists of a collection of entities. An
identification variable can represent a member of this collection. To access a collection
member, the path expression in the variable’s declaration navigates through the relationships in
the abstract schema. (For more information on path expressions, see the following section.)
Because a path expression can be based on another path expression, the navigation can traverse
several relationships. See “Traversing Multiple Relationships” on page 739.

A collection member declaration must include the IN operator, but it can omit the optional AS
operator.

In the following example, the entity represented by the abstract schema named Player has a
relationship field called teams. The identification variable called t represents a single member
of the teams collection.

FROM Player p, IN (p.tea

ms) t

Joins
The JOIN operator is used to traverse over relationships between entities, and is functionally
similar to the IN operator.

In the following example, the query joins over the relationship between customers and orders:

SELECT c

FROM Customer c JOIN c.orders o

WHERE c.status = 1 AND o.totalPrice > 10000

The INNER keyword is optional:

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008750

SELECT c

FROM Customer c INNER JOIN c.orders o

WHERE c.status = 1 AND o.totalPrice > 10000

These examples are equivalent to the following query, which uses the IN operator:

SELECT c

FROM Customer c, IN(c.orders) o

WHERE c.status = 1 AND o.totalPrice > 10000

You can also join a single-valued relationship.

SELECT t

FROM Team t JOIN t.league l

WHERE l.sport = :sport

A LEFT JOIN or LEFT OUTER JOIN retrieves a set of entities where matching values in the join
condition may be absent. The OUTER keyword is optional.

SELECT c.name, o.totalPrice

FROM Order o LEFT JOIN o.customer c

A FETCH JOIN is a join operation that returns associated entities as a side-effect of running the
query. In the following example, the query returns a set of departments, and as a side-effect, the
associated employees of the departments, even though the employees were not explicitly
retrieved by the SELECT clause.

SELECT d

FROM Department d LEFT JOIN FETCH d.employees

WHERE d.deptno = 1

Path Expressions
Path expressions are important constructs in the syntax of the query language, for several
reasons. First, they define navigation paths through the relationships in the abstract schema.
These path definitions affect both the scope and the results of a query. Second, they can appear
in any of the main clauses of a query (SELECT, DELETE, HAVING, UPDATE, WHERE, FROM, GROUP BY,
ORDER BY). Finally, although much of the query language is a subset of SQL, path expressions
are extensions not found in SQL.

Examples of Path Expressions
Here, the WHERE clause contains a single_valued_path_expression. The p is an identification
variable, and salary is a persistent field of Player.

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 751

SELECT DISTINCT p

FROM Player p

WHERE p.salary BETWEEN :lowerSalary AND :higherSalary

Here, the WHERE clause also contains a single_valued_path_expression. The t is an
identification variable, league is a single-valued relationship field, and sport is a persistent
field of league.

SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league.sport = :sport

Here, the WHERE clause contains a collection_valued_path_expression. The p is an
identification variable, and teams designates a collection-valued relationship field.

SELECT DISTINCT p

FROM Player p

WHERE p.teams IS EMPTY

Expression Types
The type of a path expression is the type of the object represented by the ending element, which
can be one of the following:

■ Persistent field
■ Single-valued relationship field
■ Collection-valued relationship field

For example, the type of the expression p.salary is double because the terminating persistent
field (salary) is a double.

In the expression p.teams, the terminating element is a collection-valued relationship field
(teams). This expression’s type is a collection of the abstract schema type named Team. Because
Team is the abstract schema name for the Team entity, this type maps to the entity. For more
information on the type mapping of abstract schemas, see the section “Return Types” on
page 761.

Navigation
A path expression enables the query to navigate to related entities. The terminating elements of
an expression determine whether navigation is allowed. If an expression contains a
single-valued relationship field, the navigation can continue to an object that is related to the
field. However, an expression cannot navigate beyond a persistent field or a collection-valued
relationship field. For example, the expression p.teams.league.sport is illegal, because teams
is a collection-valued relationship field. To reach the sport field, the FROM clause could define an
identification variable named t for the teams field:

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008752

FROM Player AS p, IN (p.teams) t

WHERE t.league.sport = ’soccer’

WHEREClause
The WHERE clause specifies a conditional expression that limits the values returned by the query.
The query returns all corresponding values in the data store for which the conditional
expression is TRUE. Although usually specified, the WHERE clause is optional. If the WHERE clause
is omitted, then the query returns all values. The high-level syntax for the WHERE clause follows:

where_clause ::= WHERE conditional_expression

Literals
There are four kinds of literals: string, numeric, Boolean, and enum.

String Literals

A string literal is enclosed in single quotes:

’Duke’

If a string literal contains a single quote, you indicate the quote by using two single quotes:

’Duke’’s’

Like a Java String, a string literal in the query language uses the Unicode character encoding.

Numeric Literals

There are two types of numeric literals: exact and approximate.

An exact numeric literal is a numeric value without a decimal point, such as 65,– 233, and +12.
Using the Java integer syntax, exact numeric literals support numbers in the range of a Java
long.

An approximate numeric literal is a numeric value in scientific notation, such as 57.,– 85.7, and
+2.1. Using the syntax of the Java floating-point literal, approximate numeric literals support
numbers in the range of a Java double.

Boolean Literals

A Boolean literal is either TRUE or FALSE. These keywords are not case-sensitive.

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 753

Enum Literals

The Java Persistence Query Language supports the use of enum literals using the Java enum
literal syntax. The enum class name must be specified as fully qualified class name.

SELECT e

FROM Employee e

WHERE e.status = com.xyz.EmployeeStatus.FULL_TIME

Input Parameters
An input parameter can be either a named parameter or a positional parameter.

A named input parameter is designated by a colon (:) followed by a string. For example, :name.

A positional input parameter is designated by a question mark (?) followed by an integer. For
example, the first input parameter is ?1, the second is ?2, and so forth.

The following rules apply to input parameters:

■ They can be used only in a WHERE or HAVING clause.
■ Positional parameters must be numbered, starting with the integer 1.
■ Named parameters and positional parameters may not be mixed in a single query.
■ Named parameters are case-sensitive.

Conditional Expressions
A WHERE clause consists of a conditional expression, which is evaluated from left to right within
a precedence level. You can change the order of evaluation by using parentheses.

Operators and Their Precedence
Table 27–2 lists the query language operators in order of decreasing precedence.

TABLE 27–2 Query Language Order Precedence

Type Precedence Order

Navigation . (a period)

Arithmetic + – (unary)

* / (multiplication and division)

+ – (addition and subtraction)

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008754

TABLE 27–2 Query Language Order Precedence (Continued)
Type Precedence Order

Comparison =

>

>=

<

<=

<> (not equal)

[NOT] BETWEEN

[NOT] LIKE

[NOT] IN

IS [NOT] NULL

IS [NOT] EMPTY

[NOT] MEMBER OF

Logical NOT

AND

OR

BETWEEN Expressions
A BETWEEN expression determines whether an arithmetic expression falls within a range of
values.

These two expressions are equivalent:

p.age BETWEEN 15 AND 19

p.age >= 15 AND p.age <= 19

The following two expressions are also equivalent:

p.age NOT BETWEEN 15 AND 19

p.age < 15 OR p.age > 19

If an arithmetic expression has a NULL value, then the value of the BETWEEN expression is
unknown.

IN Expressions
An IN expression determines whether or not a string belongs to a set of string literals, or
whether a number belongs to a set of number values.

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 755

The path expression must have a string or numeric value. If the path expression has a NULL
value, then the value of the IN expression is unknown.

In the following example, if the country is UK the expression is TRUE. If the country is Peru it is
FALSE.

o.country IN (’UK’, ’US’, ’France’)

You may also use input parameters:

o.country IN (’UK’, ’US’, ’France’, :country)

LIKE Expressions
A LIKE expression determines whether a wildcard pattern matches a string.

The path expression must have a string or numeric value. If this value is NULL, then the value of
the LIKE expression is unknown. The pattern value is a string literal that can contain wildcard
characters. The underscore (_) wildcard character represents any single character. The percent
(%) wildcard character represents zero or more characters. The ESCAPE clause specifies an escape
character for the wildcard characters in the pattern value. Table 27–3 shows some sample LIKE
expressions.

TABLE 27–3 LIKEExpression Examples

Expression TRUE FALSE

address.phone LIKE ’12%3’ ’123’

’12993’

’1234’

asentence.word LIKE ’l_se’ ’lose’ ’loose’

aword.underscored LIKE ’_%’ ESCAPE ’\’ ’_foo’ ’bar’

address.phone NOT LIKE ’12%3’ ’1234’ ’123’

’12993’

NULLComparison Expressions
A NULL comparison expression tests whether a single-valued path expression or an input
parameter has a NULL value. Usually, the NULL comparison expression is used to test whether or
not a single-valued relationship has been set.

SELECT t

FROM Team t

WHERE t.league IS NULL

This query selects all teams where the league relationship is not set. Please note, the following
query is not equivalent:

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008756

SELECT t

FROM Team t

WHERE t.league = NULL

The comparison with NULL using the equals operator (=) always returns an unknown value,
even if the relationship is not set. The second query will always return an empty result.

Empty Collection Comparison Expressions
The IS [NOT] EMPTY comparison expression tests whether a collection-valued path expression
has no elements. In other words, it tests whether or not a collection-valued relationship has
been set.

If the collection-valued path expression is NULL, then the empty collection comparison
expression has a NULL value.

Here is an example that finds all orders that do not have any line items:

SELECT o

FROM Order o

WHERE o.lineItems IS EMPTY

Collection Member Expressions
The [NOT] MEMBER [OF] collection member expression determines whether a value is a member
of a collection. The value and the collection members must have the same type.

If either the collection-valued or single-valued path expression is unknown, then the collection
member expression is unknown. If the collection-valued path expression designates an empty
collection, then the collection member expression is FALSE.

The OF keyword is optional.

The following example tests whether a line item is part of an order:

SELECT o

FROM Order o

WHERE :lineItem MEMBER OF o.lineItems

Subqueries
Subqueries may be used in the WHERE or HAVING clause of a query. Subqueries must be
surrounded by parentheses.

The following example find all customers who have placed more than 10 orders:

SELECT c

FROM Customer c

WHERE (SELECT COUNT(o) FROM c.orders o) > 10

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 757

EXISTS Expressions

The [NOT] EXISTS expression is used with a subquery, and is true only if the result of the
subquery consists of one or more values and is false otherwise.

The following example finds all employees whose spouse is also an employee:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (

SELECT spouseEmp

FROM Employee spouseEmp

WHERE spouseEmp = emp.spouse)

ALL and ANY Expressions

The ALL expression is used with a subquery, and is true if all the values returned by the subquery
are true, or if the subquery is empty.

The ANY expression is used with a subquery, and is true if some of the values returned by the
subquery are true. An ANY expression is false if the subquery result is empty, or if all the values
returned are false. The SOME keyword is synonymous with ANY.

The ALL and ANY expressions are used with the =, <, <=, >, >=, <> comparison operators.

The following example finds all employees whose salary is higher than the salary of the
managers in the employee’s department:

SELECT emp

FROM Employee emp

WHERE emp.salary > ALL (

SELECT m.salary

FROM Manager m

WHERE m.department = emp.department)

Functional Expressions
The query language includes several string and arithmetic functions which may be used in the
WHERE or HAVING clause of a query. The functions are listed in the following tables. In
Table 27–4, the start and length arguments are of type int. They designate positions in the
String argument. The first position in a string is designated by 1. In Table 27–5, the number
argument can be either an int, a float, or a double.

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008758

TABLE 27–4 String Expressions

Function Syntax Return Type

CONCAT(String, String) String

LENGTH(String) int

LOCATE(String, String [, start]) int

SUBSTRING(String, start, length) String

TRIM([[LEADING|TRAILING|BOTH] char) FROM] (String) String

LOWER(String) String

UPPER(String) String

The CONCAT function concatenates two strings into one string.

The LENGTH function returns the length of a string in characters as an integer.

The LOCATE function returns the position of a given string within a string. It returns the first
position at which the string was found as an integer. The first argument is the string to be
located. The second argument is the string to be searched. The optional third argument is an
integer that represents the starting string position. By default, LOCATE starts at the beginning of
the string. The starting position of a string is 1. If the string cannot be located, LOCATE returns 0.

The SUBSTRING function returns a string that is a substring of the first argument based on the
starting position and length.

The TRIM function trims the specified character from the beginning and/or end of a string. If no
character is specified, TRIM removes spaces or blanks from the string. If the optional LEADING
specification is used, TRIM removes only the leading characters from the string. If the optional
TRAILING specification is used, TRIM removes only the trailing characters from the string. The
default is BOTH, which removes the leading and trailing characters from the string.

The LOWER and UPPER functions convert a string to lower or upper case, respectively.

TABLE 27–5 Arithmetic Expressions

Function Syntax Return Type

ABS(number) int, float, or double

MOD(int, int) int

SQRT(double) double

SIZE(Collection) int

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 759

The ABS function takes a numeric expression and returns a number of the same type as the
argument.

The MOD function returns the remainder of the first argument divided by the second.

The SQRT function returns the square root of a number.

The SIZE function returns an integer of the number of elements in the given collection.

NULL Values
If the target of a reference is not in the persistent store, then the target is NULL. For conditional
expressions containing NULL, the query language uses the semantics defined by SQL92. Briefly,
these semantics are as follows:

■ If a comparison or arithmetic operation has an unknown value, it yields a NULL value.
■ Two NULL values are not equal. Comparing two NULL values yields an unknown value.
■ The IS NULL test converts a NULL persistent field or a single-valued relationship field to TRUE.

The IS NOT NULL test converts them to FALSE.
■ Boolean operators and conditional tests use the three-valued logic defined by Table 27–6

and Table 27–7. (In these tables, T stands for TRUE, F for FALSE, and U for unknown.)

TABLE 27–6 ANDOperator Logic

AND T F U

T T F U

F F F F

U U F U

TABLE 27–7 OROperator Logic

OR T F U

T T T T

F T F U

U T U U

Equality Semantics
In the query language, only values of the same type can be compared. However, this rule has one
exception: Exact and approximate numeric values can be compared. In such a comparison, the
required type conversion adheres to the rules of Java numeric promotion.

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008760

The query language treats compared values as if they were Java types and not as if they
represented types in the underlying data store. For example, if a persistent field could be either
an integer or a NULL, then it must be designated as an Integer object and not as an int

primitive. This designation is required because a Java object can be NULL but a primitive cannot.

Two strings are equal only if they contain the same sequence of characters. Trailing blanks are
significant; for example, the strings ’abc’ and ’abc ’ are not equal.

Two entities of the same abstract schema type are equal only if their primary keys have the same
value. Table 27–8 shows the operator logic of a negation, and Table 27–9 shows the truth values
of conditional tests.

TABLE 27–8 NOTOperator Logic

NOT Value Value

T F

F T

U U

TABLE 27–9 Conditional Test

Conditional Test T F U

Expression IS TRUE T F F

Expression IS FALSE F T F

Expression is unknown F F T

SELECTClause
The SELECT clause defines the types of the objects or values returned by the query.

Return Types
The return type of the SELECT clause is defined by the result types of the select expressions
contained within it. If multiple expressions are used, the result of the query is an Object[], and
the elements in the array correspond to the order of the expressions in the SELECT clause, and in
type to the result types of each expression.

A SELECT clause cannot specify a collection-valued expression. For example, the SELECT clause
p.teams is invalid because teams is a collection. However, the clause in the following query is
valid because the t is a single element of the teams collection:

SELECT t

FROM Player p, IN (p.teams) t

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 761

The following query is an example of a query with multiple expressions in the select clause:

SELECT c.name, c.country.name

FROM customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

It returns a list of Object[] elements where the first array element is a string denoting the
customer name and the second array element is a string denoting the name of the customer’s
country.

Aggregate Functions in the SELECTClause

The result of a query may be the result of an aggregate function, listed in Table 27–10.

TABLE 27–10 Aggregate Functions in Select Statements

Name Return Type Description

AVG Double Returns the mean average of the fields.

COUNT Long Returns the total number of results.

MAX the type of the field Returns the highest value in the result
set.

MIN the type of the field Returns the lowest value in the result
set.

SUM Long (for integral fields)Double (for floating
point fields)BigInteger (for BigInteger
fields)BigDecimal (for BigDecimal fields)

Returns the sum of all the values in the
result set.

For select method queries with an aggregate function (AVG, COUNT, MAX, MIN, or SUM) in the
SELECT clause, the following rules apply:

■ For the AVG, MAX, MIN, and SUM functions, the functions return null if there are no values to
which the function can be applied.

■ For the COUNT function, if there are no values to which the function can be applied, COUNT
returns 0.

The following example returns the average order quantity:

SELECT AVG(o.quantity)

FROM Order o

The following example returns the total cost of the items ordered by Roxane Coss:

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008762

SELECT SUM(l.price)

FROM Order o JOIN o.lineItems l JOIN o.customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

The following example returns the total number of orders:

SELECT COUNT(o)

FROM Order o

The following example returns the total number of items in Hal Incandenza’s order that have
prices:

SELECT COUNT(l.price)

FROM Order o JOIN o.lineItems l JOIN o.customer c

WHERE c.lastname = ’Incandenza’ AND c.firstname = ’Hal’

The DISTINCTKeyword
The DISTINCT keyword eliminates duplicate return values. If a query returns a
java.util.Collection, which allows duplicates, then you must specify the DISTINCT keyword
to eliminate duplicates.

Constructor Expressions
Constructor expressions allow you to return Java instances that store a query result element
instead of an Object[].

The following query creates a CustomerDetail instance per Customer matching the WHERE
clause. A CustomerDetail stores the customer name and customer’s country name. So the
query returns a List of CustomerDetail instances:

SELECT NEW com.xyz.CustomerDetail(c.name, c.country.name)

FROM customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

ORDER BY Clause
As its name suggests, the ORDER BY clause orders the values or objects returned by the query.

If the ORDER BY clause contains multiple elements, the left-to-right sequence of the elements
determines the high-to-low precedence.

The ASC keyword specifies ascending order (the default), and the DESC keyword indicates
descending order.

Full Query Language Syntax

Chapter 27 • The Java Persistence Query Language 763

When using the ORDER BY clause, the SELECT clause must return an orderable set of objects or
values. You cannot order the values or objects for values or objects not returned by the SELECT
clause. For example, the following query is valid because the ORDER BY clause uses the objects
returned by the SELECT clause:

SELECT o

FROM Customer c JOIN c.orders o JOIN c.address a

WHERE a.state = ’CA’
ORDER BY o.quantity, o.totalcost

The following example is not valid because the ORDER BY clause uses a value not returned by the
SELECT clause:

SELECT p.product_name

FROM Order o, IN(o.lineItems) l JOIN o.customer c

WHERE c.lastname = ’Faehmel’ AND c.firstname = ’Robert’
ORDER BY o.quantity

The GROUP BY Clause
The GROUP BY clause allows you to group values according to a set of properties.

The following query groups the customers by their country and returns the number of
customers per country:

SELECT c.country, COUNT(c)

FROM Customer c GROUP BY c.country

The HAVINGClause
The HAVING clause is used with the GROUP BY clause to further restrict the returned result of a
query.

The following query groups orders by the status of their customer and returns the customer
status plus the average totalPrice for all orders where the corresponding customers has the
same status. In addition, it considers only customers with status 1, 2, or 3, so orders of other
customers are not taken into account:

SELECT c.status, AVG(o.totalPrice)

FROM Order o JOIN o.customer c

GROUP BY c.status HAVING c.status IN (1, 2, 3)

Full Query Language Syntax

The Java EE 5 Tutorial • October 2008764

Services
Part Six explores services.

P A R T V I

765

766

Introduction to Security in the Java EE Platform

This and subsequent chapters discuss how to address security requirements in Java EE, web,
and web services applications. Every enterprise that has sensitive resources that can be accessed
by many users, or resources that traverse unprotected, open, networks, such as the Internet,
needs to be protected.

This chapter introduces basic security concepts and security implementation mechanisms.
More information on these concepts and mechanisms can be found in the Security chapter of
the Java EE 5 specification. This document is available for download online at
http://www.jcp.org/en/jsr/detail?id=244.

Other chapters in this tutorial that address security requirements include the following:

■ Chapter 29, “Securing Java EE Applications,” discusses adding security to Java EE
components such as enterprise beans and application clients.

■ Chapter 30, “Securing Web Applications,” discusses and provides examples for adding
security to web components such as servlets and JSP pages.

Some of the material in this chapter assumes that you understand basic security concepts. To
learn more about these concepts, you should explore the Java SE security web site before you
begin this chapter. The URL for this site is
http://java.sun.com/javase/6/docs/technotes/guides/security/.

This tutorial assumes deployment onto the Application Server and provides some information
regarding configuration of the Application Server. The best source for information regarding
configuration of the Application Server, however, is the Sun Java System Application Server 9.1
Administration Guide. The best source for development tips specific to the Application Server is
the Sun Java System Application Server 9.1 Developer’s Guide. The best source for tips on
deploying applications to the Application Server is the Sun Java System Application Server 9.1
Application Deployment Guide.

28C H A P T E R 2 8

767

http://www.jcp.org/en/jsr/detail?id=244
http://java.sun.com/javase/6/docs/technotes/guides/security/
http://docs.sun.com/doc/819-3671
http://docs.sun.com/doc/819-3671
http://docs.sun.com/doc/819-3672
http://docs.sun.com/doc/819-3673
http://docs.sun.com/doc/819-3673

Overview of Java EE Security
Java EE, web, and web services applications are made up of components that can be deployed
into different containers. These components are used to build a multitier enterprise application.
Security for components is provided by their containers. A container provides two kinds of
security: declarative and programmatic security.

■ Declarative security expresses an application component’s security requirements using
deployment descriptors. Deployment descriptors are external to an application, and include
information that specifies how security roles and access requirements are mapped into
environment-specific security roles, users, and policies. For more information about
deployment descriptors, read “Using Deployment Descriptors for Declarative Security” on
page 776.
Annotations (also called metadata) are used to specify information about security within a
class file. When the application is deployed, this information can either be used by or
overridden by the application deployment descriptor. Annotations save your from having to
write declarative information inside XML descriptors. Instead, you just put annotations on
the code and the required information gets generated. For more information about
annotations, read “Using Annotations” on page 777.

■ Programmatic security is embedded in an application and is used to make security decisions.
Programmatic security is useful when declarative security alone is not sufficient to express
the security model of an application. For more information about programmatic security,
read “Using Programmatic Security” on page 778.

A Simple Security Example
The security behavior of a Java EE environment may be better understood by examining what
happens in a simple application with a web client, a JSP user interface, and enterprise bean
business logic.

In the following example, which is taken from JSR-244, the Java EE 5 Specification
(http://www.jcp.org/en/jsr/detail?id=244), the web client relies on the web server to act
as its authentication proxy by collecting user authentication data from the client and using it to
establish an authenticated session.

Step 1: Initial Request
In the first step of this example, the web client requests the main application URL. This action is
shown in Figure 28–1.

Overview of Java EE Security

The Java EE 5 Tutorial • October 2008768

http://www.jcp.org/en/jsr/detail?id=244
http://www.jcp.org/en/jsr/detail?id=244

Since the client has not yet authenticated itself to the application environment, the server
responsible for delivering the web portion of the application (hereafter referred to as web server)
detects this and invokes the appropriate authentication mechanism for this resource. For more
information on these mechanisms, read “Security Implementation Mechanisms” on page 773.

Step 2: Initial Authentication
The web server returns a form that the web client uses to collect authentication data (for
example, user name and password) from the user. The web client forwards the authentication
data to the web server, where it is validated by the web server, as shown in Figure 28–2.

The validation mechanism may be local to a server, or it may leverage the underlying security
services. On the basis of the validation, the web server sets a credential for the user.

Step 3: URL Authorization
The credential is used for future determinations of whether the user is authorized to access
restricted resources it may request. The web server consults the security policy (derived from
the deployment descriptor) associated with the web resource to determine the security roles
that are permitted access to the resource. The web container then tests the user’s credential
against each role to determine if it can map the user to the role. Figure 28–3 shows this process.

Web Client Web Server

Request access
to protected

resource

FIGURE 28–1 Initial Request

Web Client
Form

Authentication
data

Web Server

credential

FIGURE 28–2 Initial Authentication

Overview of Java EE Security

Chapter 28 • Introduction to Security in the Java EE Platform 769

The web server’s evaluation stops with an “is authorized” outcome when the web server is able
to map the user to a role. A “not authorized” outcome is reached if the web server is unable to
map the user to any of the permitted roles.

Step 4: Fulfilling the Original Request
If the user is authorized, the web server returns the result of the original URL request, as shown
in Figure 28–4.

In our example, the response URL of a JSP page is returned, enabling the user to post form data
that needs to be handled by the business logic component of the application. Read Chapter 30,
“Securing Web Applications,” for more information on protecting web applications.

Step 5: Invoking Enterprise Bean Business Methods
The JSP page performs the remote method call to the enterprise bean, using the user’s credential
to establish a secure association between the JSP page and the enterprise bean (as shown in
Figure 28–5). The association is implemented as two related security contexts, one in the web
server and one in the EJB container.

Web Client

Web Server

credential JSP/servlet
Object

Request access
to protected

resource

Session
Context

A
uthorization

FIGURE 28–3 URL Authorization

Web Client

Result
of request

Post to
business logic

Web Server

credential JSP/servlet

Session
Context

FIGURE 28–4 Fulfilling the Original Request

Overview of Java EE Security

The Java EE 5 Tutorial • October 2008770

The EJB container is responsible for enforcing access control on the enterprise bean method. It
consults the security policy (derived from the deployment descriptor) associated with the
enterprise bean to determine the security roles that are permitted access to the method. For
each role, the EJB container uses the security context associated with the call to determine if it
can map the caller to the role.

The container’s evaluation stops with an “is authorized” outcome when the container is able to
map the caller’s credential to a role. A “not authorized” outcome is reached if the container is
unable to map the caller to any of the permitted roles. A “not authorized” result causes an
exception to be thrown by the container, and propagated back to the calling JSP page.

If the call is authorized, the container dispatches control to the enterprise bean method. The
result of the bean’s execution of the call is returned to the JSP, and ultimately to the user by the
web server and the web client.

Read Chapter 29, “Securing Java EE Applications,” for more information on protecting web
applications.

Security Functions
A properly implemented security mechanism will provide the following functionality:

■ Prevent unauthorized access to application functions and business or personal data
■ Hold system users accountable for operations they perform (non-repudiation)
■ Protect a system from service interruptions and other breaches that affect quality of service

Web Client

Web Server

credential JSP/servlet
Object

Session
Context

Security
Context

EJB Container

Security
Context

Credential used to
establish security

association

A
uthorization

EJB
Remote

call

FIGURE 28–5 Invoking an Enterprise Bean Business Method

Overview of Java EE Security

Chapter 28 • Introduction to Security in the Java EE Platform 771

Ideally, properly implemented security mechanisms will also provide the following
functionality:

■ Easy to administer
■ Transparent to system users
■ Interoperable across application and enterprise boundaries

Characteristics of Application Security
Java EE applications consist of components that can contain both protected and unprotected
resources. Often, you need to protect resources to ensure that only authorized users have access.
Authorization provides controlled access to protected resources. Authorization is based on
identification and authentication. Identification is a process that enables recognition of an entity
by a system, and authentication is a process that verifies the identity of a user, device, or other
entity in a computer system, usually as a prerequisite to allowing access to resources in a system.

Authorization and authentication are not required for an entity to access unprotected
resources. Accessing a resource without authentication is referred to as unauthenticated or
anonymous access.

These and several other well-defined characteristics of application security that, when properly
addressed, help to minimize the security threats faced by an enterprise, include the following:

■ Authentication: The means by which communicating entities (for example, client and
server) prove to one another that they are acting on behalf of specific identities that are
authorized for access. This ensures that users are who they say they are.

■ Authorization, or Access Control: The means by which interactions with resources are
limited to collections of users or programs for the purpose of enforcing integrity,
confidentiality, or availability constraints. This ensures that users have permission to
perform operations or access data.

■ Data integrity: The means used to prove that information has not been modified by a third
party (some entity other than the source of the information). For example, a recipient of
data sent over an open network must be able to detect and discard messages that were
modified after they were sent. This ensures that only authorized users can modify data.

■ Confidentiality or Data Privacy: The means used to ensure that information is made
available only to users who are authorized to access it. This ensures that only authorized
users can view sensitive data.

■ Non-repudiation: The means used to prove that a user performed some action such that the
user cannot reasonably deny having done so. This ensures that transactions can be proven to
have happened.

■ Quality of Service (QoS): The means used to provide better service to selected network
traffic over various technologies.

Overview of Java EE Security

The Java EE 5 Tutorial • October 2008772

■ Auditing: The means used to capture a tamper-resistant record of security-related events
for the purpose of being able to evaluate the effectiveness of security policies and
mechanisms. To enable this, the system maintains a record of transactions and security
information.

Security Implementation Mechanisms
The characteristics of an application should be considered when deciding the layer and type of
security to be provided for applications. The following sections discuss the characteristics of the
common mechanisms that can be used to secure Java EE applications. Each of these
mechanisms can be used individually or with others to provide protection layers based on the
specific needs of your implementation.

Java SE Security Implementation Mechanisms
Java SE provides support for a variety of security features and mechanisms, including:

■ Java Authentication and Authorization Service (JAAS): JAAS is a set of APIs that enable
services to authenticate and enforce access controls upon users. JAAS provides a pluggable
and extensible framework for programmatic user authentication and authorization. JAAS is
a core Java SE API and is an underlying technology for Java EE security mechanisms.

■ Java Generic Security Services (Java GSS-API): Java GSS-API is a token-based API used to
securely exchange messages between communicating applications. The GSS-API offers
application programmers uniform access to security services atop a variety of underlying
security mechanisms, including Kerberos.

■ Java Cryptography Extension (JCE): JCE provides a framework and implementations for
encryption, key generation and key agreement, and Message Authentication Code (MAC)
algorithms. Support for encryption includes symmetric, asymmetric, block, and stream
ciphers. Block ciphers operate on groups of bytes while stream ciphers operate on one byte
at a time. The software also supports secure streams and sealed objects.

■ Java Secure Sockets Extension (JSSE): JSSE provides a framework and an implementation
for a Java version of the SSL and TLS protocols and includes functionality for data
encryption, server authentication, message integrity, and optional client authentication to
enable secure Internet communications.

■ Simple Authentication and Security Layer (SASL): SASL is an Internet standard (RFC
2222) that specifies a protocol for authentication and optional establishment of a security
layer between client and server applications. SASL defines how authentication data is to be
exchanged but does not itself specify the contents of that data. It is a framework into which
specific authentication mechanisms that specify the contents and semantics of the
authentication data can fit.

Security Implementation Mechanisms

Chapter 28 • Introduction to Security in the Java EE Platform 773

Java SE also provides a set of tools for managing keystores, certificates, and policy files;
generating and verifying JAR signatures; and obtaining, listing, and managing Kerberos tickets.

For more information on Java SE security, visit its web page at
http://java.sun.com/javase/6/docs/technotes/guides/security/.

Java EE Security Implementation Mechanisms
Java EE security services are provided by the component container and can be implemented
using declarative or programmatic techniques (container security is discussed more in
“Securing Containers” on page 776). Java EE security services provide a robust and easily
configured security mechanism for authenticating users and authorizing access to application
functions and associated data at many different layers. Java EE security services are separate
from the security mechanisms of the operating system.

Application-Layer Security
In Java EE, component containers are responsible for providing application-layer security.
Application-layer security provides security services for a specific application type tailored to
the needs of the application. At the application layer, application firewalls can be employed to
enhance application protection by protecting the communication stream and all associated
application resources from attacks.

Java EE security is easy to implement and configure, and can offer fine-grained access control to
application functions and data. However, as is inherent to security applied at the application
layer, security properties are not transferable to applications running in other environments
and only protect data while it is residing in the application environment. In the context of a
traditional application, this is not necessarily a problem, but when applied to a web services
application, where data often travels across several intermediaries, you would need to use the
Java EE security mechanisms along with transport-layer security and message-layer security for
a complete security solution.

The advantages of using application-layer security include the following:

■ Security is uniquely suited to the needs of the application.
■ Security is fine-grained, with application-specific settings.

The disadvantages of using application-layer security include the following:

■ The application is dependent on security attributes that are not transferable between
application types.

■ Support for multiple protocols makes this type of security vulnerable.
■ Data is close to or contained within the point of vulnerability.

For more information on providing security at the application layer, read “Securing
Containers” on page 776.

Security Implementation Mechanisms

The Java EE 5 Tutorial • October 2008774

http://java.sun.com/javase/6/docs/technotes/guides/security/

Transport-Layer Security
Transport-layer security is provided by the transport mechanisms used to transmit information
over the wire between clients and providers, thus transport-layer security relies on secure
HTTP transport (HTTPS) using Secure Sockets Layer (SSL). Transport security is a
point-to-point security mechanism that can be used for authentication, message integrity, and
confidentiality. When running over an SSL-protected session, the server and client can
authenticate one another and negotiate an encryption algorithm and cryptographic keys before
the application protocol transmits or receives its first byte of data. Security is “live” from the
time it leaves the consumer until it arrives at the provider, or vice versa, even across
intermediaries. The problem is that it is not protected once it gets to its destination. One
solution is to encrypt the message before sending.

Transport-layer security is performed in a series of phases, which are listed here:

■ The client and server agree on an appropriate algorithm.
■ A key is exchanged using public-key encryption and certificate-based authentication.
■ A symmetric cipher is used during the information exchange.

Digital certificates are necessary when running secure HTTP transport (HTTPS) using Secure
Sockets Layer (SSL). The HTTPS service of most web servers will not run unless a digital
certificate has been installed. Digital certificates have already been created for the Application
Server. If you are using a different server, use the procedure outlined in “Working with Digital
Certificates” on page 790 to set up a digital certificate that can be used by your web or
application server to enable SSL.

The advantages of using transport-layer security include the following:

■ Relatively simple, well understood, standard technology.
■ Applies to message body and attachments.

The disadvantages of using transport-layer security include the following:

■ Tightly-coupled with transport-layer protocol.
■ All or nothing approach to security. This implies that the security mechanism is unaware of

message contents, and as such, you cannot selectively apply security to portions of the
message as you can with message-layer security.

■ Protection is transient. The message is only protected while in transit. Protection is removed
automatically by the endpoint when it receives the message.

■ Not an end-to-end solution, simply point-to-point.

For more information on transport-layer security, read “Establishing a Secure Connection
Using SSL” on page 787.

Security Implementation Mechanisms

Chapter 28 • Introduction to Security in the Java EE Platform 775

Message-Layer Security
In message-layer security, security information is contained within the SOAP message and/or
SOAP message attachment, which allows security information to travel along with the message
or attachment. For example, a portion of the message may be signed by a sender and encrypted
for a particular receiver. When the message is sent from the initial sender, it may pass through
intermediate nodes before reaching its intended receiver. In this scenario, the encrypted
portions continue to be opaque to any intermediate nodes and can only be decrypted by the
intended receiver. For this reason, message-layer security is also sometimes referred to as
end-to-end security.

The advantages of message-layer security include the following:
■ Security stays with the message over all hops and after the message arrives at its destination.
■ Security can be selectively applied to different portions of a message (and to attachments if

using XWSS).
■ Message security can be used with intermediaries over multiple hops.
■ Message security is independent of the application environment or transport protocol.

The disadvantage of using message-layer security is that it is relatively complex and adds some
overhead to processing.

The Application Server supports message security. It uses Web Services Security (WSS) to
secure messages. Because this message security is specific to the Application Server and not a
part of the Java EE platform, this tutorial does not discuss using WSS to secure messages. See the
Sun Java System Application Server 9.1 Administration Guide and Sun Java System Application
Server 9.1 Developer’s Guide for more information.

Securing Containers
In Java EE, the component containers are responsible for providing application security. A
container provides two types of security: declarative and programmatic. The following sections
discuss these concepts in more detail.

Using Deployment Descriptors for Declarative
Security
Declarative security expresses an application component’s security requirements using
deployment descriptors. A deployment descriptor is an XML document with an .xml extension
that describes the deployment settings of an application, a module, or a component. Because
deployment descriptor information is declarative, it can be changed without the need to modify
the source code. At runtime, the Java EE server reads the deployment descriptor and acts upon
the application, module, or component accordingly.

Securing Containers

The Java EE 5 Tutorial • October 2008776

http://docs.sun.com/doc/819-3671
http://docs.sun.com/doc/819-3672
http://docs.sun.com/doc/819-3672

This tutorial does not document how to write the deployment descriptors from scratch, only
what configurations each example requires its deployment descriptors to define. For help with
writing deployment descriptors, you can view the provided deployment descriptors in a text
editor. Each example’s deployment descriptors are stored at the top layer of each example’s
directory. Another way to learn how to write deployment descriptors is to read the specification
in which the deployment descriptor elements are defined.

Deployment descriptors must provide certain structural information for each component if this
information has not been provided in annotations or is not to be defaulted.

Different types of components use different formats, or schema, for their deployment
descriptors. The security elements of deployment descriptors which are discussed in this
tutorial include the following:
■ Enterprise JavaBeans components use an EJB deployment descriptor that must be named

META-INF/ejb-jar.xml and must be contained in the EJB JAR file.
The schema for enterprise bean deployment descriptors is provided in the EJB 3.0
Specification (JSR-220), Chapter 18.5, Deployment Descriptor XML Schema, which can be
downloaded from http://jcp.org/en/jsr/detail?id=220.
Security elements for EJB deployment descriptors are discussed in this tutorial in the section
“Using Enterprise Bean Security Deployment Descriptor Elements” on page 818.

■ Web Services components use a jaxrpc-mapping-info deployment descriptor defined in
JSR 109. This deployment descriptor provides deployment-time mapping functionality
between Java and WSDL. In conjunction with JSR 181, JAX-WS 2.0 complements this
mapping functionality with development-time Java annotations that control mapping
between Java and WSDL.
The schema for web services deployment descriptors is provided in Web Services for Java
EE (JSR-109), section 7.1, Web Services Deployment Descriptor XML Schema, which can be
downloaded from http://jcp.org/en/jsr/detail?id=109.
Schema elements for web application deployment descriptors are discussed in this tutorial
in the section “Declaring Security Requirements in a Deployment Descriptor” on page 853.

■ Web components use a web application deployment descriptor named web.xml.
The schema for web component deployment descriptors is provided in the Java Servlet 2.5
Specification (JSR-154), section SRV.13, Deployment Descriptor, which can be downloaded
from http://jcp.org/en/jsr/detail?id=154.
Security elements for web application deployment descriptors are discussed in this tutorial
in the section “Declaring Security Requirements in a Deployment Descriptor” on page 853.

Using Annotations
Annotations enable a declarative style of programming, and so encompass both the declarative
and programmatic security concepts. Users can specify information about security within a

Securing Containers

Chapter 28 • Introduction to Security in the Java EE Platform 777

http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=109
http://jcp.org/en/jsr/detail?id=154

class file using annotations. When the application is deployed, this information is used by the
Application Server. Not all security information can be specified using annotations, however.
Some information must be specified in the application deployment descriptors.

Annotations let you avoid writing boilerplate code under many circumstances by enabling tools
to generate it from annotations in the source code. This leads to a declarative programming
style, where the programmer says what should be done and tools emit the code to do it. It also
eliminates the need for maintaining side files that must be kept up to date with changes in
source files. Instead the information can be maintained in the source file.

In this tutorial, specific annotations that can be used to specify security information within a
class file are described in the following sections:

■ “Declaring Security Requirements Using Annotations” on page 851
■ “Using Enterprise Bean Security Annotations” on page 817

The following are sources for more information on annotations:

■ JSR 175: A Metadata Facility for the Java Programming Language
■ JSR 181: Web Services Metadata for the Java Platform
■ JSR 250: Common Annotations for the Java Platform
■ The Java SE discussion of annotations

Links to this information are provided in “Further Information about Security” on page 797.

Using Programmatic Security
Programmatic security is embedded in an application and is used to make security decisions.
Programmatic security is useful when declarative security alone is not sufficient to express the
security model of an application. The API for programmatic security consists of two methods of
the EJBContext interface and two methods of the servlet HttpServletRequest interface. These
methods allow components to make business logic decisions based on the security role of the
caller or remote user.

Programmatic security is discussed in more detail in the following sections:

■ “Accessing an Enterprise Bean Caller’s Security Context” on page 801
■ “Working with Security Roles” on page 843

Securing Containers

The Java EE 5 Tutorial • October 2008778

Securing the Application Server
This tutorial describes deployment to the Application Server, which provides highly secure,
interoperable, and distributed component computing based on the Java EE security model. The
Application Server supports the Java EE 5 security model. You can configure the Application
Server for the following purposes:

■ Adding, deleting, or modifying authorized users. For more information on this topic, read
“Working with Realms, Users, Groups, and Roles” on page 779.

■ Configuring secure HTTP and IIOP listeners.
■ Configuring secure JMX connectors.
■ Adding, deleting, or modifying existing or custom realms.
■ Defining an interface for pluggable authorization providers using Java Authorization

Contract for Containers (JACC).

Java Authorization Contract for Containers (JACC) defines security contracts between the
Application Server and authorization policy modules. These contracts specify how the
authorization providers are installed, configured, and used in access decisions.

■ Using pluggable audit modules.
■ Setting and changing policy permissions for an application.

The following features are specific to the Application Server:

■ Message security
■ Single sign-on across all Application Server applications within a single security domain
■ Programmatic login

For more information about configuring the Application Server, read the Sun Java System
Application Server 9.1 Developer’s Guide and Sun Java System Application Server 9.1
Administration Guide.

Working with Realms, Users, Groups, and Roles
You often need to protect resources to ensure that only authorized users have access.
Authorization provides controlled access to protected resources. Authorization is based on
identification and authentication. Identification is a process that enables recognition of an entity
by a system, and authentication is a process that verifies the identity of a user, device, or other
entity in a computer system, usually as a prerequisite to allowing access to resources in a system.
These concepts are discussed in more detail in “Characteristics of Application Security” on
page 772.

Working with Realms, Users, Groups, and Roles

Chapter 28 • Introduction to Security in the Java EE Platform 779

http://docs.sun.com/doc/819-3672
http://docs.sun.com/doc/819-3672
http://docs.sun.com/doc/819-3671
http://docs.sun.com/doc/819-3671

This section discusses setting up users so that they can be correctly identified and either given
access to protected resources, or denied access if the user is not authorized to access the
protected resources. To authenticate a user, you need to follow these basic steps:

1. The Application Developer writes code to prompt the user for their user name and
password. The different methods of authentication are discussed in “Specifying an
Authentication Mechanism” on page 860.

2. The Application Developer communicates how to set up security for the deployed
application by use of a deployment descriptor. This step is discussed in “Setting Up Security
Roles” on page 784.

3. The Server Administrator sets up authorized users and groups on the Application Server.
This is discussed in “Managing Users and Groups on the Application Server” on page 783.

4. The Application Deployer maps the application’s security roles to users, groups, and
principals defined on the Application Server. This topic is discussed in “Mapping Roles to
Users and Groups” on page 786.

What Are Realms, Users, Groups, and Roles?
A realm is defined on a web or application server. It contains a collection of users, which may or
may not be assigned to a group, that are controlled by the same authentication policy.
Managing users on the Application Server is discussed in “Managing Users and Groups on the
Application Server” on page 783.

An application will often prompt a user for their user name and password before allowing
access to a protected resource. After the user has entered their user name and password, that
information is passed to the server, which either authenticates the user and sends the protected
resource, or does not authenticate the user, in which case access to the protected resource is
denied. This type of user authentication is discussed in “Specifying an Authentication
Mechanism” on page 860.

In some applications, authorized users are assigned to roles. In this situation, the role assigned
to the user in the application must be mapped to a group defined on the application server.
Figure 28–6 shows this. More information on mapping roles to users and groups can be found
in “Setting Up Security Roles” on page 784.

Working with Realms, Users, Groups, and Roles

The Java EE 5 Tutorial • October 2008780

The following sections provide more information on realms, users, groups, and roles.

What Is a Realm?
For a web application, a realm is a complete database of users and groups that identify valid users
of a web application (or a set of web applications) and are controlled by the same authentication
policy.

The Java EE server authentication service can govern users in multiple realms. In this release of
the Application Server, the file, admin-realm, and certificate realms come preconfigured
for the Application Server.

In the file realm, the server stores user credentials locally in a file named keyfile. You can use
the Admin Console to manage users in the file realm.

When using the file realm, the server authentication service verifies user identity by checking
the file realm. This realm is used for the authentication of all clients except for web browser
clients that use the HTTPS protocol and certificates.

User 1

User 2 User 3

User 1

User 2 User 3

Group 1

Application

Role 1

Role 2

Application

Role 1

Role 2

User 1

User 2 User 3

User 1

User 2 User 3

Group 1

Create users
and/or groups

Define roles
in application

Map roles to users
and/or groups

FIGURE 28–6 Mapping Roles to Users and Groups

Working with Realms, Users, Groups, and Roles

Chapter 28 • Introduction to Security in the Java EE Platform 781

In the certificate realm, the server stores user credentials in a certificate database. When
using the certificate realm, the server uses certificates with the HTTPS protocol to
authenticate web clients. To verify the identity of a user in the certificate realm, the
authentication service verifies an X.509 certificate. For step-by-step instructions for creating
this type of certificate, see “Working with Digital Certificates” on page 790. The common name
field of the X.509 certificate is used as the principal name.

The admin-realm is also a FileRealm and stores administrator user credentials locally in a file
named admin-keyfile. You can use the Admin Console to manage users in this realm in the
same way you manage users in the file realm. For more information, see “Managing Users and
Groups on the Application Server” on page 783.

What Is a User?
A user is an individual (or application program) identity that has been defined in the
Application Server. In a web application, a user can have a set of roles associated with that
identity, which entitles them to access all resources protected by those roles. Users can be
associated with a group.

A Java EE user is similar to an operating system user. Typically, both types of users represent
people. However, these two types of users are not the same. The Java EE server authentication
service has no knowledge of the user name and password you provide when you log on to the
operating system. The Java EE server authentication service is not connected to the security
mechanism of the operating system. The two security services manage users that belong to
different realms.

What Is a Group?
A group is a set of authenticated users, classified by common traits, defined in the Application
Server.

A Java EE user of the file realm can belong to an Application Server group. (A user in the
certificate realm cannot.) An Application Server group is a category of users classified by
common traits, such as job title or customer profile. For example, most customers of an
e-commerce application might belong to the CUSTOMER group, but the big spenders would
belong to the PREFERRED group. Categorizing users into groups makes it easier to control the
access of large numbers of users.

An Application Server group has a different scope from a role. An Application Server group is
designated for the entire Application Server, whereas a role is associated only with a specific
application in the Application Server.

What Is a Role?
A role is an abstract name for the permission to access a particular set of resources in an
application. A role can be compared to a key that can open a lock. Many people might have a
copy of the key. The lock doesn’t care who you are, only that you have the right key.

Working with Realms, Users, Groups, and Roles

The Java EE 5 Tutorial • October 2008782

Some Other Terminology
The following terminology is also used to describe the security requirements of the Java EE
platform:

■ Principal: A principal is an entity that can be authenticated by an authentication protocol in
a security service that is deployed in an enterprise. A principal is identified using a principal
name and authenticated using authentication data.

■ Security policy domain (also known as security domain or realm): A security policy
domain is a scope over which a common security policy is defined and enforced by the
security administrator of the security service.

■ Security attributes: A set of security attributes is associated with every principal. The
security attributes have many uses, for example, access to protected resources and auditing
of users. Security attributes can be associated with a principal by an authentication protocol.

■ Credential: A credential contains or references information (security attributes) used to
authenticate a principal for Java EE product services. A principal acquires a credential upon
authentication, or from another principal that allows its credential to be used.

Managing Users and Groups on the Application Server
Managing users on the Application Server is discussed in more detail in the Sun Java System
Application Server 9.1 Administration Guide.

This tutorial provides steps for managing users that will need to be completed to work through
the tutorial examples.

Adding Users to the Application Server
To add users to the Application Server, follow these steps:

1. Start the Application Server if you haven’t already done so. Information on starting the
Application Server is available in “Starting and Stopping the Application Server” on page 69.

2. Start the Admin Console if you haven’t already done so. You can start the Admin Console by
starting a web browser and entering the URL http://localhost:4848/asadmin. If you
changed the default Admin port during installation, enter the correct port number in place
of 4848.

3. To log in to the Admin Console, enter the user name and password of a user in the
admin-realm who belongs to the asadmin group. The name and password entered during
installation will work, as will any users added to this realm and group subsequent to
installation.

4. Expand the Configuration node in the Admin Console tree.
5. Expand the Security node in the Admin Console tree.
6. Expand the Realms node.

Working with Realms, Users, Groups, and Roles

Chapter 28 • Introduction to Security in the Java EE Platform 783

http://docs.sun.com/doc/819-3671
http://docs.sun.com/doc/819-3671

■ Select the file realm to add users you want to enable to access applications running in
this realm. (For the example security applications, select the file realm.)

■ Select the admin-realm to add users you want to enable as system administrators of the
Application Server.

■ You cannot enter users into the certificate realm using the Admin Console. You can
only add certificates to the certificate realm. For information on adding (importing)
certificates to the certificate realm, read “Adding Users to the Certificate Realm” on
page 784.

7. Click the Manage Users button.
8. Click New to add a new user to the realm.
9. Enter the correct information into the User ID, Password, and Group(s) fields.

■ If you are adding a user to the file realm, enter the name to identify the user, a password
to allow the user access to the realm, and a group to which this user belongs. For more
information on these properties, read “Working with Realms, Users, Groups, and Roles”
on page 779.
For the example security applications, enter a user with any name and password you like,
but make sure that the user is assigned to the group of user.

■ If you are adding a user to the admin-realm, enter the name to identify the user, a
password to allow the user access to the Application Server, and enter asadmin in the
Group field.

10. Click OK to add this user to the list of users in the realm.
11. Click Logout when you have completed this task.

Adding Users to the Certificate Realm
In the certificate realm, user identity is set up in the Application Server security context and
populated with user data obtained from cryptographically-verified client certificates. For
step-by-step instructions for creating this type of certificate, see “Working with Digital
Certificates” on page 790.

Setting Up Security Roles
When you design an enterprise bean or web component, you should always think about the
kinds of users who will access the component. For example, a web application for a human
resources department might have a different request URL for someone who has been assigned
the role of DEPT_ADMIN than for someone who has been assigned the role of DIRECTOR. The
DEPT_ADMIN role may let you view employee data, but the DIRECTOR role enables you to modify
employee data, including salary data. Each of these security roles is an abstract logical grouping
of users that is defined by the person who assembles the application. When an application is
deployed, the deployer will map the roles to security identities in the operational environment,
as shown in Figure 28–6.

Working with Realms, Users, Groups, and Roles

The Java EE 5 Tutorial • October 2008784

For applications, you define security roles in the Java EE deployment descriptor file
application.xml, and the corresponding role mappings in the Application Server deployment
descriptor file sun-application.xml. For individually deployed web or EJB modules, you
define roles in the Java EE deployment descriptor files web.xml or ejb-jar.xml and the
corresponding role mappings in the Application Server deployment descriptor files
sun-web.xml or sun-ejb-jar.xml.

The following is an example of a security constraint from a web.xml application deployment
descriptor file where the role of DEPT-ADMIN is authorized for methods that review employee
data and the role of DIRECTOR is authorized for methods that change employee data.

<security-constraint>

<web-resource-collection>

<web-resource-name>view dept data</web-resource-name>

<url-pattern>/hr/employee/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>DEPT_ADMIN</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<security-constraint>

<web-resource-collection>

<web-resource-name>change dept data</web-resource-name>

<url-pattern>/hr/employee/*</url-pattern>

<http-method>GET</http-method>

<http-method>PUT</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>DIRECTOR</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

The web.xml application deployment descriptor is described in more detail in “Declaring
Security Requirements in a Deployment Descriptor” on page 853.

After users have provided their login information, and the application has declared what roles
are authorized to access protected parts of an application, the next step is to map the security
role to the name of a user, or principal. This step is discussed in the following section.

Working with Realms, Users, Groups, and Roles

Chapter 28 • Introduction to Security in the Java EE Platform 785

Mapping Roles to Users and Groups
When you are developing a Java EE application, you don’t need to know what categories of
users have been defined for the realm in which the application will be run. In the Java EE
platform, the security architecture provides a mechanism for mapping the roles defined in the
application to the users or groups defined in the runtime realm. To map a role name permitted
by the application or module to principals (users) and groups defined on the server, use the
security-role-mapping element in the runtime deployment descriptor
(sun-application.xml, sun-web.xml, or sun-ejb-jar.xml) file. The entry needs to declare a
mapping between a security role used in the application and one or more groups or principals
defined for the applicable realm of the Application Server. An example for the sun-web.xml file
is shown below:

<sun-web-app>

<security-role-mapping>

<role-name>DIRECTOR</role-name>

<principal-name>mcneely</principal-name>

</security-role-mapping>

<security-role-mapping>

<role-name>MANAGER</role-name>

<group-name>manager</group-name>

</security-role-mapping>

</sun-web-app>

The role name can be mapped to either a specific principal (user), a group, or both. The
principal or group names referenced must be valid principals or groups in the current default
realm of the Application Server. The role-name in this example must exactly match the
role-name in the security-role element of the corresponding web.xml file or the role name
defined in the @DeclareRoles or @RolesAllowed annotations.

Sometimes the role names used in the application are the same as the group names defined on
the Application Server. Under these circumstances, you can enable a default principal-to-role
mapping on the Application Server using the Admin Console. From the Admin Console, select
Configuration, then Security, then check the enable box beside Default Principal to Role
Mapping. If you need more information about using the Admin Console, see “Adding Users to
the Application Server” on page 783.

Working with Realms, Users, Groups, and Roles

The Java EE 5 Tutorial • October 2008786

Establishing a Secure Connection Using SSL
Secure Socket Layer (SSL) technology is security that is implemented at the transport layer (see
“Transport-Layer Security” on page 775, for more information about transport layer security).
SSL allows web browsers and web servers to communicate over a secure connection. In this
secure connection, the data that is being sent is encrypted before being sent and then is
decrypted upon receipt and before processing. Both the browser and the server encrypt all
traffic before sending any data. SSL addresses the following important security considerations.

■ Authentication: During your initial attempt to communicate with a web server over a
secure connection, that server will present your web browser with a set of credentials in the
form of a server certificate. The purpose of the certificate is to verify that the site is who and
what it claims to be. In some cases, the server may request a certificate that the client is who
and what it claims to be (which is known as client authentication).

■ Confidentiality: When data is being passed between the client and the server on a network,
third parties can view and intercept this data. SSL responses are encrypted so that the data
cannot be deciphered by the third party and the data remains confidential.

■ Integrity: When data is being passed between the client and the server on a network, third
parties can view and intercept this data. SSL helps guarantee that the data will not be
modified in transit by that third party.

Installing and Configuring SSL Support
An SSL HTTPS connector is already enabled in the Application Server. For more information
on configuring SSL for the Application Server, refer to the Sun Java System Application
Server 9.1 Administration Guide.

If you are using a different application server or web server, an SSL HTTPS connector might or
might not be enabled. If you are using a server that needs its SSL connector to be configured,
consult the documentation for that server.

As a general rule, to enable SSL for a server, you must address the following issues:

■ There must be a Connector element for an SSL connector in the server deployment
descriptor.

■ There must be valid keystore and certificate files.
■ The location of the keystore file and its password must be specified in the server deployment

descriptor.

You can verify whether or not SSL is enabled by following the steps in “Verifying SSL Support”
on page 789.

Establishing a Secure Connection Using SSL

Chapter 28 • Introduction to Security in the Java EE Platform 787

http://docs.sun.com/doc/819-3671
http://docs.sun.com/doc/819-3671

Specifying a Secure Connection in Your Application
Deployment Descriptor
To specify a requirement that protected resources be received over a protected transport layer
connection (SSL), specify a user data constraint in the application deployment descriptor. The
following is an example of a web.xml application deployment descriptor that specifies that SSL
be used:

<security-constraint>

<web-resource-collection>

<web-resource-name>view dept data</web-resource-name>

<url-pattern>/hr/employee/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>DEPT_ADMIN</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

A user data constraint (<user-data-constraint> in the deployment descriptor) requires that
all constrained URL patterns and HTTP methods specified in the security constraint are
received over a protected transport layer connection such as HTTPS (HTTP over SSL). A user
data constraint specifies a transport guarantee (<transport-guarantee> in the deployment
descriptor). The choices for transport guarantee include CONFIDENTIAL, INTEGRAL, or NONE. If
you specify CONFIDENTIAL or INTEGRAL as a security constraint, that type of security constraint
applies to all requests that match the URL patterns in the web resource collection and not just to
the login dialog box.

The strength of the required protection is defined by the value of the transport guarantee.

■ Specify CONFIDENTIAL when the application requires that data be transmitted so as to
prevent other entities from observing the contents of the transmission.

■ Specify INTEGRAL when the application requires that the data be sent between client and
server in such a way that it cannot be changed in transit.

■ Specify NONE to indicate that the container must accept the constrained requests on any
connection, including an unprotected one.

The user data constraint is handy to use with basic and form-based user authentication. When
the login authentication method is set to BASIC or FORM, passwords are not protected, meaning
that passwords sent between a client and a server on an unprotected session can be viewed and
intercepted by third parties. Using a user data constraint with the user authentication

Establishing a Secure Connection Using SSL

The Java EE 5 Tutorial • October 2008788

mechanism can alleviate this concern. Configuring a user authentication mechanism is
described in “Specifying an Authentication Mechanism” on page 860.

Verifying SSL Support
For testing purposes, and to verify that SSL support has been correctly installed, load the default
introduction page with a URL that connects to the port defined in the server deployment
descriptor:

https://localhost:8181/

The https in this URL indicates that the browser should be using the SSL protocol. The
localhost in this example assumes that you are running the example on your local machine as
part of the development process. The 8181 in this example is the secure port that was specified
where the SSL connector was created. If you are using a different server or port, modify this
value accordingly.

The first time that you load this application, the New Site Certificate or Security Alert dialog box
displays. Select Next to move through the series of dialog boxes, and select Finish when you
reach the last dialog box. The certificates will display only the first time. When you accept the
certificates, subsequent hits to this site assume that you still trust the content.

Tips on Running SSL
The SSL protocol is designed to be as efficient as securely possible. However, encryption and
decryption are computationally expensive processes from a performance standpoint. It is not
strictly necessary to run an entire web application over SSL, and it is customary for a developer
to decide which pages require a secure connection and which do not. Pages that might require a
secure connection include login pages, personal information pages, shopping cart checkouts, or
any pages where credit card information could possibly be transmitted. Any page within an
application can be requested over a secure socket by simply prefixing the address with https:

instead of http:. Any pages that absolutely require a secure connection should check the
protocol type associated with the page request and take the appropriate action if https is not
specified.

Using name-based virtual hosts on a secured connection can be problematic. This is a design
limitation of the SSL protocol itself. The SSL handshake, where the client browser accepts the
server certificate, must occur before the HTTP request is accessed. As a result, the request
information containing the virtual host name cannot be determined before authentication, and
it is therefore not possible to assign multiple certificates to a single IP address. If all virtual hosts
on a single IP address need to authenticate against the same certificate, the addition of multiple
virtual hosts should not interfere with normal SSL operations on the server. Be aware, however,
that most client browsers will compare the server’s domain name against the domain name
listed in the certificate, if any (this is applicable primarily to official, CA-signed certificates). If

Establishing a Secure Connection Using SSL

Chapter 28 • Introduction to Security in the Java EE Platform 789

the domain names do not match, these browsers will display a warning to the client. In general,
only address-based virtual hosts are commonly used with SSL in a production environment.

Working with Digital Certificates
Digital certificates for the Application Server have already been generated and can be found in
the directory domain-dir/config/. These digital certificates are self-signed and are intended for
use in a development environment; they are not intended for production purposes. For
production purposes, generate your own certificates and have them signed by a CA.

The instructions in this section apply to the developer and cluster profiles of the Application
Server. In the enterprise profile, the certutil utility is used to create digital certificates. For
more information, see the Sun Java System Application Server 9.1 Administration Guide.

To use SSL, an application or web server must have an associated certificate for each external
interface, or IP address, that accepts secure connections. The theory behind this design is that a
server should provide some kind of reasonable assurance that its owner is who you think it is,
particularly before receiving any sensitive information. It may be useful to think of a certificate
as a “digital driver’s license” for an Internet address. It states with which company the site is
associated, along with some basic contact information about the site owner or administrator.

The digital certificate is cryptographically signed by its owner and is difficult for anyone else to
forge. For sites involved in e-commerce or in any other business transaction in which
authentication of identity is important, a certificate can be purchased from a well-known
certificate authority (CA) such as VeriSign or Thawte. If your server certificate is self-signed,
you must install it in the Application Server keystore file (keystore.jks). If your client
certificate is self-signed, you should install it in the Application Server truststore file
(cacerts.jks).

Sometimes authentication is not really a concern. For example, an administrator might simply
want to ensure that data being transmitted and received by the server is private and cannot be
snooped by anyone eavesdropping on the connection. In such cases, you can save the time and
expense involved in obtaining a CA certificate and simply use a self-signed certificate.

SSL uses public key cryptography, which is based on key pairs. Key pairs contain one public key
and one private key. If data is encrypted with one key, it can be decrypted only with the other
key of the pair. This property is fundamental to establishing trust and privacy in transactions.
For example, using SSL, the server computes a value and encrypts the value using its private key.
The encrypted value is called a digital signature. The client decrypts the encrypted value using
the server’s public key and compares the value to its own computed value. If the two values
match, the client can trust that the signature is authentic, because only the private key could
have been used to produce such a signature.

Digital certificates are used with the HTTPS protocol to authenticate web clients. The HTTPS
service of most web servers will not run unless a digital certificate has been installed. Use the

Establishing a Secure Connection Using SSL

The Java EE 5 Tutorial • October 2008790

http://docs.sun.com/doc/819-3671

procedure outlined in the next section, “Creating a Server Certificate” on page 791, to set up a
digital certificate that can be used by your application or web server to enable SSL.

One tool that can be used to set up a digital certificate is keytool, a key and certificate
management utility that ships with the Java SE SDK. It enables users to administer their own
public/private key pairs and associated certificates for use in self-authentication (where the user
authenticates himself or herself to other users or services) or data integrity and authentication
services, using digital signatures. It also allows users to cache the public keys (in the form of
certificates) of their communicating peers. For a better understanding of keytool and public
key cryptography, read the keytool documentation at
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html.

Creating a Server Certificate
A server certificate has already been created for the Application Server. The certificate can be
found in the domain-dir/config/ directory. The server certificate is in keystore.jks. The
cacerts.jks file contains all the trusted certificates, including client certificates.

If necessary, you can use keytool to generate certificates. The keytool utility stores the keys
and certificates in a file termed a keystore, a repository of certificates used for identifying a client
or a server. Typically, a keystore is a file that contains one client or one server’s identity. It
protects private keys by using a password.

If you don’t specify a directory when specifying the keystore file name, the keystores are created
in the directory from which the keytool command is run. This can be the directory where the
application resides, or it can be a directory common to many applications.

To create a server certificate, follow these steps:

1. Create the keystore.

2. Export the certificate from the keystore.

3. Sign the certificate.

4. Import the certificate into a truststore: a repository of certificates used for verifying the
certificates. A truststore typically contains more than one certificate.

Run keytool to generate the server keystore, keystore.jks. This step uses the alias
server-alias to generate a new public/private key pair and wrap the public key into a
self-signed certificate inside keystore.jks. The key pair is generated using an algorithm of type
RSA, with a default password of changeit. For more information on keytool options, see its
online help at
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html.

Establishing a Secure Connection Using SSL

Chapter 28 • Introduction to Security in the Java EE Platform 791

http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html

Note – RSA is public-key encryption technology developed by RSA Data Security, Inc. The
acronym stands for Rivest, Shamir, and Adelman, the inventors of the technology.

From the directory in which you want to create the keystore, run keytool with the following
parameters.

1. Generate the server certificate. (Type the keytool command all on one line.)

java-home\bin\keytool -genkey -alias server-alias-keyalg RSA -keypass changeit

-storepass changeit -keystore keystore.jks

When you press Enter, keytool prompts you to enter the server name, organizational unit,
organization, locality, state, and country code.

You must enter the server name in response to keytool’s first prompt, in which it asks for
first and last names. For testing purposes, this can be localhost.

When you run the example applications, the host specified in the keystore must match the
host identified in the javaee.server.name property specified in the file
tut-install/javaeetutorial5/examples/bp-project/build.properties.

2. Export the generated server certificate in keystore.jks into the file server.cer. (Type the
keytool all on one line.)

java-home\bin\keytool -export -alias server-alias -storepass changeit

-file server.cer -keystore keystore.jks

3. If you want to have the certificate signed by a CA, read “Signing Digital Certificates” on
page 793 for more information.

4. To create the truststore file cacerts.jks and add the server certificate to the truststore, run
keytool from the directory where you created the keystore and server certificate. Use the
following parameters:

java-home\bin\keytool -import -v -trustcacerts -alias server-alias -file server.cer

-keystore cacerts.jks -keypass changeit -storepass changeit

Information on the certificate, such as that shown next, will display.

% keytool -import -v -trustcacerts -alias server-alias -file server.cer

-keystore cacerts.jks -keypass changeit -storepass changeit

Owner: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara, ST=CA,

C=USIssuer: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara, ST=CA,

C=USSerial number: 3e932169Valid from: Tue Apr 08Certificate

fingerprints:MD5: 52:9F:49:68:ED:78:6F:39:87:F3:98:B3:6A:6B:0F:90 SHA1:

EE:2E:2A:A6:9E:03:9A:3A:1C:17:4A:28:5E:97:20:78:3F:

Trust this certificate? [no]:

Establishing a Secure Connection Using SSL

The Java EE 5 Tutorial • October 2008792

5. Enter yes, and then press the Enter or Return key. The following information displays:

Certificate was added to keystore[Saving cacerts.jks]

Signing Digital Certificates
After you’ve created a digital certificate, you will want to have it signed by its owner. After the
digital certificate has been cryptographically signed by its owner, it is difficult for anyone else to
forge. For sites involved in e-commerce or any other business transaction in which
authentication of identity is important, a certificate can be purchased from a well-known
certificate authority such as VeriSign or Thawte.

As mentioned earlier, if authentication is not really a concern, you can save the time and
expense involved in obtaining a CA certificate and simply use the self-signed certificate.

Obtaining a Digitally Signed Certificate

This example assumes that the keystore is named keystore.jks, the certificate file is
server.cer, and the CA file is cacerts.jks. To get your certificate digitally signed by a CA:

1. Generate a Certificate Signing Request (CSR).

keytool -certreq -alias server-alias -keyalg RSA -file csr-filename
-keystore cacerts.jks

2. Send the contents of the csr-filename for signing.
3. If you are using Verisign CA, go to http://digitalid.verisign.com/. Verisign will send

the signed certificate in email. Store this certificate in a file.

Using a Different Server Certificate with the Application Server
Follow the steps in “Creating a Server Certificate” on page 791, to create your own server
certificate, have it signed by a CA, and import the certificate into keystore.jks.

Make sure that when you create the certificate, you follow these rules:

■ When you create the server certificate, keytool prompts you to enter your first and last
name. In response to this prompt, you must enter the name of your server. For testing
purposes, this can be localhost.

■ The server/host specified in the keystore must match the host identified in the
javaee.server.name property specified in the
tut-install/javaeetutorial5/examples/bp-project/build.properties file for running
the example applications.

■ Your key/certificate password in keystore.jks should match the password of your
keystore, keystore.jks. This is a bug. If there is a mismatch, the Java SDK cannot read the
certificate and you get a “tampered” message.

Establishing a Secure Connection Using SSL

Chapter 28 • Introduction to Security in the Java EE Platform 793

http://digitalid.verisign.com/

■ If you want to replace the existing keystore.jks, you must either change your keystore’s
password to the default password (changeit) or change the default password to your
keystore’s password.

To specify that the Application Server should use the new keystore for authentication and
authorization decisions, you must set the JVM options for the Application Server so that they
recognize the new keystore. To use a different keystore than the one provided for development
purposes, follow these steps.

1. Start the Application Server if you haven’t already done so. Information on starting the
Application Server can be found in “Starting and Stopping the Application Server” on
page 69.

2. Start the Admin Console. Information on starting the Admin Console can be found in
“Starting the Admin Console” on page 70.

3. Select Application Server in the Admin Console tree.

4. Select the JVM Settings tab.

5. Select the JVM Options tab.

6. Change the following JVM options so that they point to the location and name of the new
keystore. There current settings are shown below:

-Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/config/keystore.jks

-Djavax.net.ssl.trustStore=${com.sun.aas.instanceRoot}/config/cacerts.jks

7. If you’ve changed the keystore password from its default value, you need to add the
password option as well:

-Djavax.net.ssl.keyStorePassword=your-new-password

8. Log out of the Admin Console and restart the Application Server.

Miscellaneous Commands for Certificates
To check the contents of a keystore that contains a certificate with an alias server-alias, use
this command:

keytool -list -keystore keystore.jks -alias server-alias -v

To check the contents of the cacerts file, use this command:

keytool -list -keystore cacerts.jks

Establishing a Secure Connection Using SSL

The Java EE 5 Tutorial • October 2008794

Enabling Mutual Authentication over SSL
This section discusses setting up client-side authentication. When both server-side and
client-side authentication are enabled, it is called mutual, or two-way, authentication. In client
authentication, clients are required to submit certificates that are issued by a certificate
authority that you choose to accept.

There are at least two ways to enable mutual authentication over SSL:
■ The preferred method is to set the method of authentication in the web.xml application

deployment descriptor to CLIENT-CERT. This enforces mutual authentication by modifying
the deployment descriptor of the given application. By enabling client authentication in this
way, client authentication is enabled only for a specific resource controlled by the security
constraint, and the check is only performed when the application requires client
authentication.

■ A less commonly used method is to set the clientAuth property in the certificate realm
to true if you want the SSL stack to require a valid certificate chain from the client before
accepting a connection. A false value (which is the default) will not require a certificate
chain unless the client requests a resource protected by a security constraint that uses
CLIENT-CERT authentication. When you enable client authentication by setting the
clientAuth property to true, client authentication will be required for all the requests
going through the specified SSL port. If you turn clientAuth on, it is on all of the time,
which can severely degrade performance.

When client authentication is enabled in both of these ways, client authentication will be
performed twice.

Creating a Client Certificate for Mutual Authentication
If you have a certificate signed by a trusted Certificate Authority (CA) such as Verisign, and the
Application Server cacerts.jks file already contains a certificate verified by that CA, you do
not need to complete this step. You only need to install your certificate in the Application Server
certificate file when your certificate is self-signed.

From the directory where you want to create the client certificate, run keytool as outlined here.
When you press Enter, keytool prompts you to enter the server name, organizational unit,
organization, locality, state, and country code.

You must enter the server name in response to keytool’s first prompt, in which it asks for first
and last names. For testing purposes, this can be localhost. The host specified in the keystore
must match the host identified in the javee.server.host variable specified in your
tut-install/javaeetutorial5/examples/bp-project/build.properties file. If this example
is to verify mutual authentication and you receive a runtime error stating that the HTTPS host
name is wrong, re-create the client certificate, being sure to use the same host name that you will
use when running the example. For example, if your machine name is duke, then enter duke as
the certificate CN or when prompted for first and last names. When accessing the application,

Establishing a Secure Connection Using SSL

Chapter 28 • Introduction to Security in the Java EE Platform 795

enter a URL that points to the same location (for example,
https://duke:8181/mutualauth/hello). This is necessary because during SSL handshake, the
server verifies the client certificate by comparing the certificate name and the host name from
which it originates.

To create a keystore named client_keystore.jks that contains a client certificate named
client.cer, follow these steps:

1. Create a backup copy of the server truststore file. To do this,
a. Change to the directory containing the server’s keystore and truststore files,

as-install\domains\domain1\config.
b. Copy cacerts.jks to cacerts.backup.jks.
c. Copy keystore.jks to keystore.backup.jks.

Do not put client certificates in the cacerts.jks file. Any certificate you add to the
cacerts file effectively means it can be a trusted root for any and all certificate chains.
After you have completed development, delete the development version of the cacerts
file and replace it with the original copy.

2. Generate the client certificate. Enter the following command from the directory where you
want to generate the client certificate:

java-home\bin\keytool -genkey -alias client-alias -keyalg RSA -keypass changeit

-storepass changeit -keystore client_keystore.jks

3. Export the generated client certificate into the file client.cer.

java-home\bin\keytool -export -alias client-alias -storepass changeit

-file client.cer -keystore client_keystore.jks

4. Add the certificate to the truststore file domain-dir/config/cacerts.jks. Run keytool

from the directory where you created the keystore and client certificate. Use the following
parameters:

java-home\bin\keytool -import -v -trustcacerts -alias client-alias

-file client.cer -keystore domain-dir/config/cacerts.jks -keypass changeit

-storepass changeit

The keytool utility returns a message like this one:

Owner: CN=localhost, OU=Java EE, O=Sun, L=Santa Clara, ST=CA, C=US

Issuer: CN=localhost, OU=Java EE, O=Sun, L=Santa Clara, ST=CA, C=US

Serial number: 3e39e66a

Valid from: Thu Jan 30 18:58:50 PST 2005 until: Wed Apr 3019:58:50 PDT 2005

Certificate fingerprints:

MD5: 5A:B0:4C:88:4E:F8:EF:E9:E5:8B:53:BD:D0:AA:8E:5A

SHA1:90:00:36:5B:E0:A7:A2:BD:67:DB:EA:37:B9:61:3E:26:B3:89:46:32

Trust this certificate? [no]: yes

Certificate was added to keystore

Establishing a Secure Connection Using SSL

The Java EE 5 Tutorial • October 2008796

5. Restart the Application Server.

Further Information about Security
For more information about security in Java EE applications, see:
■ Java EE 5 Specification:

http://jcp.org/en/jsr/detail?id=244

■ The Sun Java System Application Server 9.1 Developer’s Guide includes security information
for application developers.

■ The Sun Java System Application Server 9.1 Administration Guide includes information on
setting security settings for the Application Server.

■ The Sun Java System Application Server 9.1 Application Deployment Guide includes
information on security settings in the deployment descriptors specific to the Application
Server.

■ EJB 3.0 Specification (JSR-220):
http://jcp.org/en/jsr/detail?id=220

■ Web Services for Java EE (JSR-109):
http://jcp.org/en/jsr/detail?id=109

■ Java Platform, Standard Edition 6 security information:
http://java.sun.com/javase/6/docs/technotes/guides/security/

■ Java Servlet Specification, Version 2.5:
http://jcp.org/en/jsr/detail?id=154

■ JSR 175: A Metadata Facility for the Java Programming Language:
http://jcp.org/en/jsr/detail?id=175

■ JSR 181: Web Services Metadata for the Java Platform:
http://jcp.org/en/jsr/detail?id=181

■ JSR 250: Common Annotations for the Java Platform:
http://jcp.org/en/jsr/detail?id=250

■ The Java SE discussion of annotations:
http://java.sun.com/

javase/6/docs/technotes/guides/language/annotations.html

■ The API specification for Java Authorization Contract for Containers:
http://jcp.org/en/jsr/detail?id=115

■ Information on SSL specifications:
http://wp.netscape.com/eng/security

Further Information about Security

Chapter 28 • Introduction to Security in the Java EE Platform 797

http://jcp.org/en/jsr/detail?id=244
http://docs.sun.com/doc/819-3672
http://docs.sun.com/doc/819-3671
http://docs.sun.com/doc/819-3673
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=109
http://java.sun.com/javase/6/docs/technotes/guides/security/
http://jcp.org/en/jsr/detail?id=154
http://jcp.org/en/jsr/detail?id=175
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=250
http://java.sun.com/javase/6/docs/technotes/guides/language/annotations.html
http://java.sun.com/javase/6/docs/technotes/guides/language/annotations.html
http://jcp.org/en/jsr/detail?id=115
http://wp.netscape.com/eng/security

■ Chapter 24 of the CORBA/IIOP specification, Secure Interoperability:
http://www.omg.org/cgi-bin/doc?formal/02-06-60

■ Java Authentication and Authorization Service (JAAS) in Java Platform, Standard Edition:
http://java.sun.com/developer/technicalArticles/Security/jaasv2/index.html

■ Java Authentication and Authorization Service (JAAS) Reference Guide:
http://java.sun.com/

javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

■ Java Authentication and Authorization Service (JAAS): LoginModule Developer’s Guide:
http://java.sun.com/

javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Further Information about Security

The Java EE 5 Tutorial • October 2008798

http://www.omg.org/cgi-bin/doc?formal/02-06-60
http://java.sun.com/developer/technicalArticles/Security/jaasv2/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Securing Java EE Applications

Java EE applications are made up of components that can be deployed into different containers.
These components are used to build multitier enterprise applications. Security services are
provided by the component container and can be implemented using declarative or
programmatic techniques. Java EE security services provide a robust and easily configured
security mechanism for authenticating users and authorizing access to application functions
and associated data. Java EE security services are separate from the security mechanisms of the
operating system.

The ways to implement Java EE security services are discussed in a general way in “Securing
Containers” on page 776. This chapter provides more detail and a few examples that explore
these security services as they relate to Java EE components. Java EE security services can be
implemented in the following ways:

■ Metadata annotations (or simply, annotations) enable a declarative style of programming.
Users can specify information about security within a class file using annotations. When the
application is deployed, this information can either be used by or overridden by the
application deployment descriptor.

■ Declarative security expresses an application’s security structure, including security roles,
access control, and authentication requirements in a deployment descriptor, which is
external to the application.

Any values explicitly specified in the deployment descriptor override any values specified in
annotations.

■ Programmatic security is embedded in an application and is used to make security decisions.
Programmatic security is useful when declarative security alone is not sufficient to express
the security model of an application.

Some of the material in this chapter assumes that you have already read Chapter 28,
“Introduction to Security in the Java EE Platform.”

29C H A P T E R 2 9

799

This chapter includes the following topics:

■ “Securing Enterprise Beans” on page 800
■ “Enterprise Bean Example Applications” on page 822
■ “Securing Application Clients” on page 834
■ “Securing EIS Applications” on page 836

Chapter 30, “Securing Web Applications,” discusses security specific to web components such
as servlets and JSP pages.

Securing Enterprise Beans
Enterprise beans are the Java EE components that implement Enterprise JavaBeans (EJB)
technology. Enterprise beans run in the EJB container, a runtime environment within the
Application Server, as shown in Figure 29–1.

Web Browser

Web
Container

EJB
Container

Enterprise
Bean

Database

Client
Machine

Java EE
Server

Application
Client

Application Client
Container

Servlet
JSP
Page

Enterprise
Bean

FIGURE 29–1 Java EE Server and Containers

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008800

Although transparent to the application developer, the EJB container provides system-level
services such as transactions and security to its enterprise beans. These services enable you to
quickly build and deploy enterprise beans, which form the core of transactional Java EE
applications.

The following sections describe declarative and programmatic security mechanisms that can be
used to protect enterprise bean resources. The protected resources include methods of
enterprise beans that are called from application clients, web components, or other enterprise
beans. This section assumes that you have read Chapter 20, “Enterprise Beans,” and Chapter 21,
“Getting Started with Enterprise Beans,” before starting this section.

You can protect enterprise beans by doing the following:

■ “Accessing an Enterprise Bean Caller’s Security Context” on page 801
■ “Declaring Security Role Names Referenced from Enterprise Bean Code” on page 803
■ “Defining a Security View of Enterprise Beans” on page 806
■ “Using Enterprise Bean Security Annotations” on page 817
■ “Using Enterprise Bean Security Deployment Descriptor Elements” on page 818
■ “Configuring IOR Security” on page 819
■ “Deploying Secure Enterprise Beans” on page 821

Two example applications demonstrate adding security to enterprise beans. These example
applications are discussed in the following sections:

■ “Example: Securing an Enterprise Bean” on page 822
■ “Example: Using the isCallerInRole and getCallerPrincipal Methods” on page 828

You should also read JSR-220: Enterprise JavaBeans 3.0 for more information on this topic. This
document can be downloaded from http://jcp.org/en/jsr/detail?id=220. Chapter 16 of
this specification, Security Management, discusses security management for enterprise beans.

Accessing an Enterprise Bean Caller’s Security Context
In general, security management should be enforced by the container in a manner that is
transparent to the enterprise beans’ business methods. The security API described in this
section should be used only in the less frequent situations in which the enterprise bean business
methods need to access the security context information.

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 801

http://jcp.org/en/jsr/detail?id=220

The javax.ejb.EJBContext interface provides two methods that allow the bean provider to
access security information about the enterprise bean’s caller.

■ java.security.Principal getCallerPrincipal();

The purpose of the getCallerPrincipal method is to allow the enterprise bean methods to
obtain the current caller principal’s name. The methods might, for example, use the name as
a key to information in a database.

■ boolean isCallerInRole(String roleName);

The purpose of the isCallerInRole(String roleName) method is to test whether the
current caller has been assigned to a given security role. Security roles are defined by the
bean provider or the application assembler, and are assigned to principals or principals
groups that exist in the operational environment by the deployer.

The following code sample illustrates the use of the getCallerPrincipal() method:

@Stateless public class EmployeeServiceBean

implements EmployeeService{

@Resource SessionContext ctx;

@PersistenceContext EntityManager em;

public void changePhoneNumber(...) {

...

// obtain the caller principal.

callerPrincipal = ctx.getCallerPrincipal();

// obtain the caller principal’s name.

callerKey = callerPrincipal.getName();

// use callerKey as primary key to find EmployeeRecord

EmployeeRecord myEmployeeRecord =

em.findByPrimaryKey(EmployeeRecord.class, callerKey);

// update phone number

myEmployeeRecord.setPhoneNumber(...);

...

}

}

In the previous example, the enterprise bean obtains the principal name of the current caller
and uses it as the primary key to locate an EmployeeRecord entity. This example assumes that
application has been deployed such that the current caller principal contains the primary key
used for the identification of employees (for example, employee number).

The following code sample illustrates the use of the isCallerInRole(String roleName)
method:

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008802

@DeclareRoles("payroll")
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers

// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) {

throw new SecurityException(...);

}

...

}

...

}

An example application that uses the getCallerPrincipal and isCallerInRole methods is
described in “Example: Using the isCallerInRole and getCallerPrincipal Methods” on
page 828.

Declaring Security Role Names Referenced from
Enterprise Bean Code
You can declare security role names used in enterprise bean code using either the
@DeclareRoles annotation (preferred) or the security-role-ref elements of the deployment
descriptor. Declaring security role names in this way enables you to link these security role
names used in the code to the security roles defined for an assembled application. In the absence
of this linking step, any security role name used in the code will be assumed to correspond to a
security role of the same name in the assembled application.

A security role reference, including the name defined by the reference, is scoped to the
component whose bean class contains the @DeclareRoles annotation or whose deployment
descriptor element contains the security-role-ref deployment descriptor element.

You can also use the security-role-ref elements for those references that were declared in
annotations and you want to have linked to a security-role whose name differs from the
reference value. If a security role reference is not linked to a security role in this way, the
container must map the reference name to the security role of the same name. See “Linking
Security Role References to Security Roles” on page 807 for a description of how security role
references are linked to security roles.

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 803

For an example using each of these methods, read the following sections:

■ “Declaring Security Roles Using Annotations” on page 804
■ “Declaring Security Roles Using Deployment Descriptor Elements” on page 805

Declaring Security Roles Using Annotations
The @DeclareRoles annotation is specified on a bean class, where it serves to declare roles that
can be tested by calling isCallerInRole from within the methods of the annotated class.

You declare the security roles referenced in the code using the @DeclareRoles annotation.
When declaring the name of a role used as a parameter to the isCallerInRole(String
roleName) method, the declared name must be the same as the parameter value. You can
optionally provide a description of the named security roles in the description element of the
@DeclareRoles annotation.

The following code snippet demonstrates the use of the @DeclareRoles annotation. In this
example, the @DeclareRoles annotation indicates that the enterprise bean AardvarkPayroll

makes the security check using isCallerInRole("payroll") to verify that the caller is
authorized to change salary data. The security role reference is scoped to the session or entity
bean whose declaration contains the @DeclareRoles annotation.

@DeclareRoles("payroll")
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers

// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) {

throw new SecurityException(...);

}

...

}

...

}

The syntax for declaring more than one role is as shown in the following example:

@DeclareRoles({"Administrator", "Manager", "Employee"})

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008804

Declaring Security Roles Using Deployment Descriptor Elements

Note – Any values explicitly specified in the deployment descriptor override any values specified
in annotations. If a value for a method has not been specified in the deployment descriptor, and
a value has been specified for that method by means of the use of annotations, the value
specified in annotations will apply. The granularity of overriding is on the per-method basis.

If the @DeclareRoles annotation is not used, you can use the security-role-ref elements of
the deployment descriptor to declare the security roles referenced in the code, as follows:

■ Declare the name of the security role using the role-name element in the deployment
descriptor. The name must be the security role name that is used as a parameter to the
isCallerInRole(String roleName) method.

■ Optionally provide a description of the security role in the description element.

The following example illustrates how an enterprise bean’s references to security roles are
declared in the deployment descriptor. In this example, the deployment descriptor indicates
that the enterprise bean AardvarkPayroll makes the security check using
isCallerInRole("payroll") in its business method. The security role reference is scoped to
the session or entity bean whose declaration contains the security-role-ref element.

...

<enterprise-beans>

...

<session>

<ejb-name>AardvarkPayroll</ejb-name>

<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>

...

<security-role-ref>

<description>

This security role should be assigned to the

employees of the payroll department who are

allowed to update employees’ salaries.

</description>

<role-name>payroll</role-name>

</security-role-ref>

...

</session>

...

</enterprise-beans>

...

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 805

Defining a Security View of Enterprise Beans
You can define a security view of the enterprise beans contained in the ejb-jar file and pass this
information along to the deployer. When a security view is passed on to the deployer, the
deployer uses this information to define method permissions for security roles. If you don’t
define a security view, the deployer will have to determine what each business method does to
determine which users are authorized to call each method.

A security view consists of a set of security roles, a semantic grouping of permissions that a given
type of users of an application must have to successfully access the application. Security roles
are meant to be logical roles, representing a type of user. You can define method permissions for
each security role. A method permission is a permission to invoke a specified group of methods
of the enterprise beans’ business interface, home interface, component interface, and/or web
service endpoints. You can specify an authentication mechanism that will be used to verify the
identity of a user.

It is important to keep in mind that security roles are used to define the logical security view of
an application. They should not be confused with the user groups, users, principals, and other
concepts that exist in the Application Server.

The following sections discuss setting up security roles, authentication mechanisms, and
method permissions that define a security view:
■ “Defining Security Roles” on page 806
■ “Specifying an Authentication Mechanism” on page 808
■ “Specifying Method Permissions” on page 809

Defining Security Roles
Use the @DeclareRoles and @RolesAllowed annotations to define security roles using Java
language annotations. The set of security roles used by the application is the total of the security
roles defined by the security role names used in the @DeclareRoles and @RolesAllowed

annotations.

You can augment the set of security roles defined for the application by annotations using the
security-role deployment descriptor element to define security roles, where you use the
role-name element to define the name of the security role.

The following example illustrates how to define security roles in a deployment descriptor:

...

<assembly-descriptor>

<security-role>

<description>

This role includes the employees of the

enterprise who are allowed to access the

employee self-service application. This role

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008806

is allowed only to access his/her own

information.

</description>

<role-name>employee</role-name>

</security-role>

<security-role>

<description>

This role includes the employees of the human

resources department. The role is allowed to

view and update all employee records.

</description>

<role-name>hr-department</role-name>

</security-role>

<security-role>

<description>

This role includes the employees of the payroll

department. The role is allowed to view and

update the payroll entry for any employee.

</description>

<role-name>payroll-department</role-name>

</security-role>

<security-role>

<description>

This role should be assigned to the personnel

authorized to perform administrative functions

for the employee self-service application.

This role does not have direct access to

sensitive employee and payroll information.

</description>

<role-name>admin</role-name>

</security-role>

...

</assembly-descriptor>

Linking Security Role References to Security Roles

The security role references used in the components of the application are linked to the security
roles defined for the application. In the absence of any explicit linking, a security role reference
will be linked to a security role having the same name.

You can explicitly link all the security role references declared in the @DeclareRoles annotation
or security-role-ref elements for a component to the security roles defined by the use of
annotations (as discussed in “Defining Security Roles” on page 806) and/or in the
security-role elements.

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 807

You use the role-link element to link each security role reference to a security role. The value
of the role-link element must be the name of one of the security roles defined in a
security-role element, or by the @DeclareRoles or @RolesAllowed annotations (as discussed
in “Defining Security Roles” on page 806). You do not need to use the role-link element to
link security role references to security roles when the role-name used in the code is the same as
the name of the security-role to which you would be linking.

The following example illustrates how to link the security role reference name payroll to the
security role named payroll-department:

...

<enterprise-beans>

...

<session>

<ejb-name>AardvarkPayroll</ejb-name>

<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>

...

<security-role-ref>

<description>

This role should be assigned to the

employees of the payroll department.

Members of this role have access to

anyone’s payroll record.

The role has been linked to the

payroll-department role.

</description>

<role-name>payroll</role-name>

<role-link>payroll-department</role-link>

</security-role-ref>

...

</session>

...

</enterprise-beans>

...

Specifying an Authentication Mechanism
Authentications mechanisms are specified in the runtime deployment descriptor. When
annotations, such as the @RolesAllowed annotation, are used to protect methods in the
enterprise bean, you can configure the Interoperable Object Reference (IOR) to enable
authentication for an enterprise application. This is accomplished by adding the
<login-config>element to the runtime deployment descriptor, sun-ejb-jar.xml.

You can use the USERNAME-PASSWORD authentication method for an enterprise bean. You can
use either the BASIC or CLIENT-CERT authentication methods for web service endpoints.

For more information on specifying an authentication mechanism, read “Configuring IOR
Security” on page 819 or “Example: Securing an Enterprise Bean” on page 822.

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008808

Specifying Method Permissions
If you have defined security roles for the enterprise beans in the ejb-jar file, you can also
specify the methods of the business interface, home interface, component interface, and/or web
service endpoints that each security role is allowed to invoke.

You can use annotations and/or the deployment descriptor for this purpose. Refer to the
following sections for more information on specifying method permissions:
■ “Specifying Method Permissions Using Annotations” on page 809
■ “Specifying Method Permissions Using Deployment Descriptors” on page 810

Specifying Method Permissions Using Annotations

The method permissions for the methods of a bean class can be specified on the class, the
business methods of the class, or both. Method permissions can be specified on a method of the
bean class to override the method permissions value specified on the entire bean class. The
following annotations are used to specify method permissions:
■ @RolesAllowed("list-of-roles")

The value of the @RolesAllowed annotation is a list of security role names to be mapped to
the security roles that are permitted to execute the specified method or methods. Specifying
this annotation on the bean class means that it applies to all applicable business methods of
the class.

■ @PermitAll

The @PermitAll annotation specifies that all security roles are permitted to execute the
specified method or methods. Specifying this annotation on the bean class means that it
applies to all applicable business methods of the class.

■ @DenyAll

The @DenyAll annotation specifies that no security roles are permitted to execute the
specified method or methods.

The following example code illustrates the use of these annotations:

@RolesAllowed("admin")
public class SomeClass {

public void aMethod () {...}

public void bMethod () {...}

...

}

@Stateless public class MyBean implements A extends SomeClass {

@RolesAllowed("HR")
public void aMethod () {...}

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 809

public void cMethod () {...}

...

}

In this example, assuming aMethod, bMethod, and cMethod are methods of business interface A,
the method permissions values of methods aMethod and bMethod are @RolesAllowed("HR")
and @RolesAllowed("admin") respectively. The method permissions for method cMethod have
not been specified.

To clarify, the annotations are not inherited by the subclass per se, they apply to methods of the
superclass which are inherited by the subclass. Also, annotations do not apply to CMP entity
beans.

An example that uses annotations to specify method permissions is described in “Example:
Securing an Enterprise Bean” on page 822.

Specifying Method Permissions Using Deployment Descriptors

Note – Any values explicitly specified in the deployment descriptor override any values specified
in annotations. If a value for a method has not been specified in the deployment descriptor, and
a value has been specified for that method by means of the use of annotations, the value
specified in annotations will apply. The granularity of overriding is on the per-method basis.

You define the method permissions in the deployment descriptor using the
method-permission elements, as discussed below:

■ Each method-permission element includes a list of one or more security roles and a list of
one or more methods. All the listed security roles are allowed to invoke all the listed
methods. Each security role in the list is identified by the role-name element. Each method
(or set of methods) is identified by the method element.

■ The method permissions relation is defined as the union of all the method permissions
defined in the individual method-permission elements.

■ A security role or a method can appear in multiple method-permission elements.

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008810

Here is some other useful information about setting method permissions using deployment
descriptors:
■ You can specify that all roles are permitted to execute one or more specified methods,

which, in effect, indicates that the methods should not be checked for authorization prior to
invocation by the container. To specify that all roles are permitted, use the unchecked
element instead of a role name in a method permission.
If a method permission specifies both the unchecked element for a given method and one or
more security roles, all roles are permitted for the specified methods.

■ The exclude-list element can be used to indicate the set of methods that should not be
called. At deployment time, the deployer will know that no access is permitted to any
method contained in this list.
If a given method is specified in both the exclude-list element and in a method
permission, the deployer should exclude access to this method.

■ It is possible that some methods are not assigned to any security roles nor contained in the
exclude-list element. In this case, the deployer should assign method permissions for all
of the unspecified methods, either by assigning them to security roles, or by marking them
as unchecked. If the deployer does not assign method permissions to the unspecified
methods, those methods must be treated by the container as unchecked.

■ The method element uses the ejb-name, method-name, and method-params elements to
denote one or more methods of an enterprise bean’s business interface, home interface,
component interface, and/or web service endpoints.

There are three legal styles for composing the method element:
■ The first style is used for referring to all of the business interface, home interface,

component interface, and web service endpoints methods of a specified bean.

<method>

<ejb-name>EJB_NAME</ejb-name>

<method-name>*</method-name>

</method>

■ The second style is used for referring to a specified method of the business interface, home
interface, component interface, or web service endpoints methods of the specified enterprise
bean. If the enterprise bean contains multiple methods with the same overloaded name, the
element of this style refers to all of the methods with the overloaded name.

<method>

<ejb-name>EJB_NAME</ejb-name>

<method-name>METHOD</method-name>

</method>

■ The third style is used for referring to a specified method within a set of methods with an
overloaded name. The method must be defined in the business interface, home interface,
component interface, or web service endpoints methods of the specified enterprise bean. If

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 811

there are multiple methods with the same overloaded name, however, this style refers to all
of the overloaded methods. All of the parameters are the fully-qualified Java types, for
example, java.lang.String.

<method>

<ejb-name>EJB_NAME</ejb-name>

<method-name>METHOD</method-name>

<method-params>

<method-param>PARAMETER_1</method-param>

<method-param>PARAMETER_2</method-param>

</method-params>

</method>

The following example illustrates how security roles are assigned method permissions in the
deployment descriptor:

...

<method-permission>

<role-name>employee</role-name>

<method>

<ejb-name>EmployeeService</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<method-permission>

<role-name>employee</role-name>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>findByPrimaryKey</method-name>

</method>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>getEmployeeInfo</method-name>

</method>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>updateEmployeeInfo</method-name>

</method>

</method-permission>

<method-permission>

<role-name>payroll-department</role-name>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>findByPrimaryKey</method-name>

</method>

<method>

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008812

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>getEmployeeInfo</method-name>

</method>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>updateEmployeeInfo</method-name>

</method>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>updateSalary</method-name>

</method>

</method-permission>

<method-permission>

<role-name>admin</role-name>

<method>

<ejb-name>EmployeeServiceAdmin</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

...

Mapping Security Roles to Application Server Groups
The Application Server assigns users to principals or groups, rather than to security roles. When
you are developing a Java EE application, you don’t need to know what categories of users have
been defined for the realm in which the application will be run. In the Java EE platform, the
security architecture provides a mechanism for mapping the roles defined in the application to
the users or groups defined in the runtime realm.

To map a role name permitted by the application or module to principals (users) and groups
defined on the server, use the security-role-mapping element in the runtime deployment
descriptor (sun-application.xml, sun-web.xml, or sun-ejb-jar.xml) file. The entry needs to
declare a mapping between a security role used in the application and one or more groups or
principals defined for the applicable realm of the Application Server. An example for the
sun-application.xml file is shown below:

<sun-application>

<security-role-mapping>

<role-name>CEO</role-name>

<principal-name>jschwartz</principal-name>

</security-role-mapping>

<security-role-mapping>

<role-name>ADMIN</role-name>

<group-name>directors</group-name>

</security-role-mapping>

</sun-application>

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 813

The role name can be mapped to either a specific principal (user), a group, or both. The
principal or group names referenced must be valid principals or groups in the current default
realm of the Application Server. The role-name in this example must exactly match the
role-name in the security-role element of the corresponding web.xml file or the role name
defined in the @DeclareRoles or @RolesAllowed annotations.

Sometimes the role names used in the application are the same as the group names defined on
the Application Server. Under these circumstances, you can enable a default principal-to-role
mapping on the Application Server using the Admin Console. To enable the default
principal-to-role-mapping, follow these steps:

1. Start the Application Server, then the Admin Console.

2. Expand the Configuration node.

3. Select the Security node.

4. On the Security page, check the Enabled box beside Default Principal to Role Mapping.

For an enterprise application, you can specify the security role mapping at the application layer,
in sun-application.xml, or at the module layer, in sun-ejb-jar.xml. When specified at the
application layer, the role mapping applies to all contained modules and overrides same-named
role mappings at the module layer. The assembler is responsible for reconciling the
module-specific role mappings to yield one effective mapping for the application.

Both example applications demonstrate security role mapping. For more information, see
“Example: Securing an Enterprise Bean” on page 822 and “Example: Using the isCallerInRole
and getCallerPrincipal Methods” on page 828.

Propagating Security Identity
You can specify whether a caller’s security identity should be used for the execution of specified
methods of an enterprise bean, or whether a specific run-as identity should be used.

Figure 29–2 illustrates this concept.

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008814

In this illustration, an application client is making a call to an enterprise bean method in one
EJB container. This enterprise bean method, in turn, makes a call to an enterprise bean method
in another container. The security identity during the first call is the identity of the caller. The
security identity during the second call can be any of the following options:

■ By default, the identity of the caller of the intermediate component is propagated to the
target enterprise bean. This technique is used when the target container trusts the
intermediate container.

■ A specific identity is propagated to the target enterprise bean. This technique is used when
the target container expects access using a specific identity.

To propagate an identity to the target enterprise bean, configure a run-as identity for the
bean as discussed in “Configuring a Component’s Propagated Security Identity” on
page 816.

Establishing a run-as identity for an enterprise bean does not affect the identities of its
callers, which are the identities tested for permission to access the methods of the enterprise
bean. The run-as identity establishes the identity that the enterprise bean will use when it
makes calls.

The run-as identity applies to the enterprise bean as a whole, including all the methods of
the enterprise bean’s business interface, home interface, component interface, and web
service endpoint interfaces, the message listener methods of a message-driven bean, the
time-out callback method of an enterprise bean, and all internal methods of the bean that
might be called in turn.

Initiating
Client Intermediate Target

Application Client
or Web Client

EJB
or Web Container EJB Container

Java EE Security
Identity

Propagated
Security Identity

(Java EE)

FIGURE 29–2 Security Identity Propagation

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 815

Configuring a Component’s Propagated Security Identity

You can configure an enterprise bean’s run-as, or propagated, security identity using either of
the following:
■ The @RunAs annotation

The following example illustrates the definition of a run-as identity using annotations:

@RunAs("admin")
@Stateless public class EmployeeServiceBean

implements EmployeeService {

...

}

■ The role-name element of the run-as application deployment descriptor element (web.xml,
ejb-jar.xml)
The following example illustrates the definition of a run-as identity using deployment
descriptor elements:

...

<enterprise-beans>

...

<session>

<ejb-name>EmployeeService</ejb-name>

...

<security-identity>

<run-as>

<role-name>admin</role-name>

</run-as>

</security-identity>

...

</session>

...

</enterprise-beans>

...

Alternately, you can use the use-caller-identity element to indicate that you want to use the
identity of the original caller, as shown in the code below:

<security-identity>

<use-caller-identity />

</security-identity>

You must explicitly specify the run-as role name mapping to a given principal in sun-web.xml

or sun-ejb-jar.xml if the given roles associate to more than one user principal.

More detail about the elements contained in deployment descriptors is available in the Sun Java
System Application Server 9.1 Application Deployment Guide.

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008816

http://docs.sun.com/doc/819-3673
http://docs.sun.com/doc/819-3673

In either case, you will have to map the run-as role name to a given principal defined on the
Application Server if the given roles associate to more than one user principal. Mapping roles to
principals is described in “Mapping Security Roles to Application Server Groups” on page 813.

Trust between Containers

When an enterprise bean is designed so that either the original caller identity or a designated
identity is used to call a target bean, the target bean will receive the propagated identity only; it
will not receive any authentication data.

There is no way for the target container to authenticate the propagated security identity.
However, because the security identity is used in authorization checks (for example, method
permissions or with the isCallerInRole() method), it is vitally important that the security
identity be authentic. Because there is no authentication data available to authenticate the
propagated identity, the target must trust that the calling container has propagated an
authenticated security identity.

By default, the Application Server is configured to trust identities that are propagated from
different containers. Therefore, there are no special steps that you need to take to set up a trust
relationship.

Using Enterprise Bean Security Annotations
Annotations are used in code to relay information to the deployer about security and other
aspects of the application. Specifying this information in annotations or in the deployment
descriptor helps the deployer set up the appropriate security policy for the enterprise bean
application.

Any values explicitly specified in the deployment descriptor override any values specified in
annotations. If a value for a method has not been specified in the deployment descriptor, and a
value has been specified for that method by means of the use of annotations, the value specified
in annotations will apply. The granularity of overriding is on the per-method basis.

The following is a listing of annotations that address security, can be used in an enterprise bean,
and are discussed in this tutorial:

■ The @DeclareRoles annotation declares each security role referenced in the code. Use of
this annotation is discussed in “Declaring Security Roles Using Annotations” on page 804.

■ The @RolesAllowed, @PermitAll, and @DenyAll annotations are used to specify method
permissions. Use of these annotations is discussed in “Specifying Method Permissions
Using Annotations” on page 809.

■ The @RunAs metadata annotation is used to configure a component’s propagated security
identity. Use of this annotation is discussed in “Configuring a Component’s Propagated
Security Identity” on page 816.

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 817

Using Enterprise Bean Security Deployment
Descriptor Elements
Enterprise JavaBeans components use an EJB deployment descriptor that must be named
META-INF/ejb-jar.xml and must be contained in the EJB JAR file. The role of the deployment
descriptor is to relay information to the deployer about security and other aspects of the
application. Specifying this information in annotations or in the deployment descriptor helps
the deployer set up the appropriate security policy for the enterprise bean application. More
detail about the elements contained in deployment descriptors is available in the Sun Java
System Application Server 9.1 Application Deployment Guide.

Note – Using annotations is the recommended method for adding security to enterprise bean
applications.

Any values explicitly specified in the deployment descriptor override any values specified in
annotations. If a value for a method has not been specified in the deployment descriptor, and a
value has been specified for that method by means of the use of annotations, the value specified
in annotations will apply. The granularity of overriding is on the per-method basis.

The following is a listing of deployment descriptor elements that address security, can be used
in an enterprise bean, and are discussed in this tutorial:

■ The security-role-ref element declares each security role referenced in the code. Use of
this element is discussed in “Declaring Security Roles Using Deployment Descriptor
Elements” on page 805.

■ The security-role element defines broad categories of users, and is used to provide access
to protected methods. Use of this element is discussed in “Defining Security Roles” on
page 806.

■ The method-permission element is used to specify method permissions. Use of these
elements is discussed in “Specifying Method Permissions Using Deployment Descriptors”
on page 810.

■ The run-as element is used to configure a component’s propagated security identity. Use of
this element is discussed in “Configuring a Component’s Propagated Security Identity” on
page 816.

The schema for ejb-jar deployment descriptors can be found in section 18.5, Deployment
Descriptor XML Schema, in the EJB 3.0 Specification (JSR-220) at
http://jcp.org/en/jsr/detail?id=220.

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008818

http://docs.sun.com/doc/819-3673
http://docs.sun.com/doc/819-3673
http://jcp.org/en/jsr/detail?id=220

Configuring IOR Security
The EJB interoperability protocol is based on Internet Inter-ORB Protocol (IIOP/GIOP 1.2)
and the Common Secure Interoperability version 2 (CSIv2) CORBA Secure Interoperability
specification.

Enterprise beans that are deployed in one vendor’s server product are often accessed from Java
EE client components that are deployed in another vendor’s product. CSIv2, a
CORBA/IIOP-based standard interoperability protocol, addresses this situation by providing
authentication, protection of integrity and confidentiality, and principal propagation for
invocations on enterprise beans, where the invocations take place over an enterprise’s intranet.
CSIv2 configuration settings are specified in the Interoperable Object Reference (IOR) of the
target enterprise bean. IOR configurations are defined in Chapter 24 of the CORBA/IIOP
specification, Secure Interoperability. This chapter can be downloaded from
http://www.omg.org/cgi-bin/doc?formal/02-06-60.

The EJB interoperability protocol is defined in Chapter 14, Support for Distribution and
Interoperability, of the EJB specification, which can be downloaded from
http://jcp.org/en/jsr/detail?id=220.

Based on application requirements, IORs are configured in vendor-specific XML files, such as
sun-ejb-jar.xml, instead of in standard application deployment descriptor files, such as
ejb-jar.xml.

For a Java EE application, IOR configurations are specified in Sun-specific xml files, for
example, sun-ejb-jar_2_1-1.dtd. The ior-security-config element describes the security
configuration information for the IOR. A description of some of the major subelements is
provided below.
■ transport-config

This is the root element for security between the endpoints. It contains the following
elements:
■ integrity: This element specifies whether the target supports integrity-protected

messages for transport. The values are NONE, SUPPORTED, or REQUIRED.
■ confidentiality: This element specifies whether the target supports privacy-protected

messages (SSL) for transport. The values are NONE, SUPPORTED, or REQUIRED.
■ establish-trust-in-target: This element specifies whether or not the target

component is capable of authenticating to a client for transport. It is used for mutual
authentication (to validate the server’s identity). The values are NONE, SUPPORTED, or
REQUIRED.

■ establish-trust-in-client: This element specifies whether or not the target
component is capable of authenticating a client for transport (target asks the client to
authenticate itself). The values are NONE, SUPPORTED, or REQUIRED.

■ as-context

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 819

http://www.omg.org/cgi-bin/doc?formal/02-06-60
http://jcp.org/en/jsr/detail?id=220

This is the element that describes the authentication mechanism (CSIv2 authentication
service) that will be used to authenticate the client. If specified, it will be the
username-password mechanism.
In the Duke’s Bank example, the as-context setting is used to require client authentication
(with user name and password) when access to protected methods in the
AccountControllerBean and CustomerControllerBean components is attempted.
The as-context element contains the following elements:
■ required: This element specifies whether the authentication method specified is

required to be used for client authentication. Setting this field to true indicates that the
authentication method specified is required. Setting this field to false indicates that the
method authentication is not required. The element value is either true or false.

■ auth-method: This element specifies the authentication method. The only supported
value is USERNAME_PASSWORD.

■ realm: This element specifies the realm in which the user is authenticated. Must be a
valid realm that is registered in a server configuration.

■ sas-context

This element is related to the CSIv2 security attribute service. It describes the sas-context
fields.
In the Duke’s Bank example, the sas-context setting is set to Supported for the
AccountBean, CustomerBean, and TxBean components, indicating that these target
components will accept propagated caller identities.
The sas-context element contains the caller-propagation subelement. This element
indicates if the target will accept propagated caller identities. The values are NONE or
SUPPORTED.

The following is an example that defines security for an IOR:

<sun-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

<ejb>

<ejb-name>HelloWorld</ejb-name>

<jndi-name>HelloWorld</jndi-name>

<ior-security-config>

<transport-config>

<integrity>NONE</integrity>

<confidentiality>NONE</confidentiality>

<establish-trust-in-target>

NONE

</establish-trust-in-target>

<establish-trust-in-client>

NONE

</establish-trust-in-client>

Securing Enterprise Beans

The Java EE 5 Tutorial • October 2008820

</transport-config>

<as-context>

<auth-method>USERNAME_PASSWORD</auth-method>

<realm>default</realm>

<required>true</required>

</as-context>

<sas-context>

<caller-propagation>NONE</caller-propagation>

</sas-context>

</ior-security-config>

<webservice-endpoint>

<port-component-name>HelloIF</port-component-name>

<endpoint-address-uri>

service/HelloWorld

</endpoint-address-uri>

<login-config>

<auth-method>BASIC</auth-method>

</login-config>

</webservice-endpoint>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Deploying Secure Enterprise Beans
The deployer is responsible for ensuring that an assembled application is secure after it has been
deployed in the target operational environment. If a security view (security annotations and/or
a deployment descriptor) has been provided to the deployer, the security view is mapped to the
mechanisms and policies used by the security domain in the target operational environment,
which in this case is the Application Server. If no security view is provided, the deployer must
set up the appropriate security policy for the enterprise bean application.

Deployment information is specific to a web or application server. Please read the Sun Java
System Application Server 9.1 Application Deployment Guide for more information on
deploying enterprise beans.

Accepting Unauthenticated Users
Web applications accept unauthenticated web clients and allow these clients to make calls to the
EJB container. The EJB specification requires a security credential for accessing EJB methods.
Typically, the credential will be that of a generic unauthenticated user. The way you specify this
credential is implementation-specific.

Securing Enterprise Beans

Chapter 29 • Securing Java EE Applications 821

http://docs.sun.com/doc/819-3673
http://docs.sun.com/doc/819-3673

In the Application Server, you must specify the name and password that an unauthenticated
user will use to log in by modifying the Application Server using the Admin Console:

1. Start the Application Server, then the Admin Console.
2. Expand the Configuration node.
3. Select the Security node.
4. On the Security page, set the Default Principal and Default Principal Password values.

Accessing Unprotected Enterprise Beans
If the deployer has granted full access to a method, any user or group can invoke the method.
Conversely, the deployer can deny access to a method.

To modify which role can be used in applications to grant authorization to anyone, specify a
value for Anonymous Role. To set the Anonymous Role field, follow these steps:

1. Start the Application Server, then the Admin Console.
2. Expand the Configuration node.
3. Select the Security node.
4. On the Security page, specify the Anonymous Role value.

Enterprise Bean Example Applications
The following example applications demonstrate adding security to enterprise beans
applications:
■ “Example: Securing an Enterprise Bean” on page 822 demonstrates adding basic login

authentication to an enterprise bean application.
■ “Example: Using the isCallerInRole and getCallerPrincipal Methods” on page 828

demonstrates the use of the getCallerPrincipal() and isCallerInRole(String role)

methods.
■ “Discussion: Securing the Duke’s Bank Example” on page 833 provides a brief discussion of

how the Duke’s Bank example provides security in that application.

Example: Securing an Enterprise Bean
This section discusses how to configure an enterprise bean for username-password
authentication. When a bean that is constrained in this way is requested, the server requests a
user name and password from the client and verifies that the user name and password are valid
by comparing them against a database of authorized users on the Application Server.

If the topic of authentication is new to you, please refer to the section titled “Specifying an
Authentication Mechanism” on page 860.

Enterprise Bean Example Applications

The Java EE 5 Tutorial • October 2008822

For this tutorial, you will add the security elements to an enterprise bean; add security elements
to the deployment descriptors; build, package, and deploy the application; and then build and
run the client application.

The completed version of this example can be found at
tut-install/javaeetutorial5/examples/ejb/cart-secure/. This example was developed by
starting with the unsecured enterprise bean application, cart, which is found in the directory
tut-install/javaeetutorial5/examples/ejb/cart/ and is discussed in “The cart Example”
on page 659. You build on this example by adding the necessary elements to secure the
application using username-password authentication.

In general, the following steps are necessary to add username-password authentication to an
enterprise bean. In the example application included with this tutorial, many of these steps have
been completed for you and are listed here simply to show what needs to be done should you
wish to create a similar application.

1. Create an application like the one in “The cart Example” on page 659. The example in this
tutorial starts with this example and demonstrates adding basic authentication of the client
to this application. The example application discussed in this section can be found at
tut-install/javaeetutorial5/examples/ejb/cart-secure/.

2. If you have not already done so, complete the steps in “Building the Examples” on page 71 to
configure your system properly for running the tutorial applications.

3. If you have not already done so, add a user to the file realm and specify user for the group
of this new user. Write down the user name and password so that you can use them for
testing this application in a later step. Refer to the section “Managing Users and Groups on
the Application Server” on page 783 for instructions on completing this step.

4. Modify the source code for the enterprise bean, CartBean.java, to specify which roles are
authorized to access which protected methods. This step is discussed in “Annotating the
Bean” on page 823.

5. Modify the runtime deployment descriptor, sun-ejb-jar.xml, to map the role used in this
application (CartUser) to a group defined on the Application Server (user) and to add
security elements that specify that username-password authentication is to be performed.
This step is discussed in “Setting Runtime Properties” on page 825.

6. Build, package, and deploy the enterprise bean, then build and run the client application by
following the steps in “Building, Deploying, and Running the Secure Cart Example Using
NetBeans IDE” on page 826 or “Building, Deploying, and Running the Secure Cart Example
Using Ant” on page 827.

Annotating the Bean
The source code for the original cart application was modified as shown in the following code
snippet (modifications in bold, method details removed to save space). The resulting file can be
found in the following location:

Enterprise Bean Example Applications

Chapter 29 • Securing Java EE Applications 823

tut-install/javaeetutorial5/examples/ejb/cart-secure/cart-secure-ejb/src/java/cart/secure/
ejb/CartBean.java

The code snippet is as follows:

package com.sun.tutorial.javaee.ejb;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.Remove;

import javax.ejb.Stateful;

import javax.annotation.security.RolesAllowed;

@Stateful()

public class CartBean implements Cart {

String customerName;

String customerId;

List<String> contents;

public void initialize(String person) throws BookException {

...

}

public void initialize(String person, String id) throws BookException {

... }

@RolesAllowed("CartUser")

public void addBook(String title) {

contents.add(title);

}

@RolesAllowed("CartUser")

public void removeBook(String title) throws BookException {

... }

}

@RolesAllowed("CartUser")

public List<String> getContents() {

return contents;

}

@Remove()

public void remove() {

contents = null;

}

}

The @RolesAllowed annotation is specified on methods for which you want to restrict access. In
this example, only users in the role of CartUser will be allowed to add and remove books from

Enterprise Bean Example Applications

The Java EE 5 Tutorial • October 2008824

the cart, and to list the contents of the cart. An @RolesAllowed annotation implicitly declares a
role that will be referenced in the application; therefore, no @DeclareRoles annotation is
required.

Setting Runtime Properties
The role of CartUser has been defined for this application, but there is no group of CartUser
defined for the Application Server. To map the role that is defined for the application
(CartUser) to a group that is defined on the Application Server (user), add a
<security-role-mapping> element to the runtime deployment descriptor, sun-ejb-jar.xml,
as shown below. In the original example, there was no need for this deployment descriptor, so it
has been added for this example.

To enable username-password authentication for the application, add security elements to the
runtime deployment descriptor, sun-ejb-jar.xml. The security element that needs to be
added to the deployment descriptor is the <ior-security-config> element. The deployment
descriptor is located in
tut-install/javaeetutorial5/examples/ejb/cart-secure/cart-secure-ejb/src/conf/
sun-ejb-jar.xml.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC

"-//Sun Microsystems, Inc.//DTD Application Server 9.0 EJB 3.0//EN"
"http://www.sun.com/software/appserver/dtds/sun-ejb-jar_3_0-0.dtd">
<sun-ejb-jar>

<security-role-mapping>

<role-name>CartUser</role-name>

<group-name>user</group-name>

</security-role-mapping>

<enterprise-beans>

<unique-id>0</unique-id>

<ejb>

<ejb-name>CartBean</ejb-name>

<jndi-name>jacc_mr_CartBean</jndi-name>

<pass-by-reference>false</pass-by-reference>

<ior-security-config>

<transport-config>

<integrity>supported</integrity>

<confidentiality>supported</confidentiality>

<establish-trust-in-target>supported</establish-trust-in-target>

<establish-trust-in-client>supported</establish-trust-in-client>

</transport-config>

<as-context>

<auth-method>username_password</auth-method>

<realm>default</realm>

<required>true</required>

</as-context>

Enterprise Bean Example Applications

Chapter 29 • Securing Java EE Applications 825

<sas-context>

<caller-propagation>supported</caller-propagation>

</sas-context>

</ior-security-config>

<is-read-only-bean>false</is-read-only-bean>

<refresh-period-in-seconds>-1</refresh-period-in-seconds>

<gen-classes/>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

For more information on this topic, read “Specifying an Authentication Mechanism” on
page 808 and “Configuring IOR Security” on page 819.

Building, Deploying, and Running the Secure Cart Example Using
NetBeans IDE
Follow these instructions to build, deploy, and run the cart-secure example in your
Application Server instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/ejb/.
3. Select the cart-secure folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. In the Projects tab, right-click the cart-secure project and select Clean and Build.
7. In the Projects tab, right-click the cart-secure project and select Undeploy and Deploy.

This step builds and packages the application into cart-secure.ear, located in
tut-install/javaeetutorial5/examples/ejb/cart-secure/dist/, and deploys this ear file
to your Application Server instance.

8. To run secure cart’s application client, select Run→Run Main Project. You will be prompted
for your username and password.

9. Enter the username and password of a user that has been entered into the database of users
for the file realm and has been assigned to the group of user.

If the username and password you enter are authorized, you will see the output of the
application client in the Output pane:

...

Retrieving book title from cart: Infinite Jest

Retrieving book title from cart: Bel Canto

Retrieving book title from cart: Kafka on the Shore

Removing "Gravity’s Rainbow" from cart.

Caught a BookException: "Gravity’s Rainbow" not in cart.

Enterprise Bean Example Applications

The Java EE 5 Tutorial • October 2008826

Java Result: 1

run-cart-secure-app-client:

Building, Deploying, and Running the Secure Cart Example Using Ant
To build, deploy, and run the secure EJB example using the Ant tool, follow these steps:

1. If you have not already done so, specify properties specific to your installation in the
tut-install/javaeetutorial5/examples/bp-project/build.properties file and the
tut-install/javaeetutorial5/examples/common/admin-password.txt file. See “Building
the Examples” on page 71 for information on which properties need to be set in which files.

2. If you have not already done so, add a user to the file realm and specify user for the group
of this new user. Refer to the section “Managing Users and Groups on the Application
Server” on page 783 for instructions on completing this step.

3. From a terminal window or command prompt, go to the
tut-install/javaeetutorial5/examples/ejb/cart-secure/ directory.

4. Build, package, and deploy the enterprise application, and build and run the client, by
entering the following at the terminal window or command prompt in the
ejb/cart-secure/ directory:

ant all

Note – This step assumes that you have the executable for ant in your path; if not, you will
need to provide the fully qualified path to the ant executable. This command runs the ant
target named all in the build.xml file.

5. A Login for User dialog displays. Enter a user name and password that correspond to a user
set up on the Application Server with a group of user. Click OK.

If the user name and password are authenticated, the client displays the following output:

run:

[echo] Running appclient for Cart.

appclient-command-common:

[exec] Infinite Jest

[exec] Bel Canto

[exec] Kafka on the Shore

[exec] Caught a BookException: "Gravity’s Rainbow" not in cart.

If the username and password are not authenticated, the client displays the following error:

run:

[echo] Running appclient for Cart.

Enterprise Bean Example Applications

Chapter 29 • Securing Java EE Applications 827

appclient-command-common:

[exec] Caught an unexpected exception!

[exec] javax.ejb.EJBException: nested exception is: java.rmi.AccessException:

CORBA NO_PERMISSION 9998 Maybe; nested exception is:

[exec] org.omg.CORBA.NO_PERMISSION:

----------BEGIN server-side stack trace----------

[exec] org.omg.CORBA.NO_PERMISSION: vmcid: 0x2000 minor code: 1806

If you see this response, verify the user name and password of the user that you entered in the
login dialog, make sure that user is assigned to the group user, and rerun the client application.

Example: Using the isCallerInRole and
getCallerPrincipalMethods
This example demonstrates how to use the getCallerPrincipal() and
isCallerInRole(String role) methods with an enterprise bean. This example starts with a
very simple EJB application, converter, and modifies the methods of the ConverterBean so
that currency conversion will only occur when the requester is in the role of BeanUser.

For this tutorial, you will add the security elements to an enterprise bean; add the security
elements to the deployment descriptor; build, package, and deploy the application; and then
build and run the client application. The completed version of this example can be found at
tut-install/javaeetutorial5/examples/ejb/converter-secure. This example was developed
by starting with the unsecured enterprise bean application, converter, which is discussed in
Chapter 21, “Getting Started with Enterprise Beans,” and is found in the directory
tut-install/javaeetutorial5/examples/ejb/converter/. This section builds on this example
by adding the necessary elements to secure the application using the getCallerPrincipal()
and isCallerInRole(String role) methods, which are discussed in more detail in “Accessing
an Enterprise Bean Caller’s Security Context” on page 801.

In general, the following steps are necessary when using the getCallerPrincipal() and
isCallerInRole(String role) methods with an enterprise bean. In the example application
included with this tutorial, many of these steps have been completed for you and are listed here
simply to show what needs to be done should you wish to create a similar application.

1. Create a simple enterprise bean application, such as the converter example. See Chapter 21,
“Getting Started with Enterprise Beans,” for more information on creating and
understanding this example. This section of the tutorial starts with this unsecured
application and demonstrates how to access an enterprise bean caller’s security context. The
completed example application discussed in this section can be found at
tut-install/javaeetutorial5/examples/ejb/converter-secure/.

2. If you have not already done so, follow the steps in “Building the Examples” on page 71 to set
properties specific to your installation.

Enterprise Bean Example Applications

The Java EE 5 Tutorial • October 2008828

3. If you have not already done so, set up a user on the Application Server in the file realm.
Make sure that the user is included in the group named user. For information on adding a
user to the file realm, read “Managing Users and Groups on the Application Server” on
page 783.

4. Modify ConverterBean to add the getCallerPrincipal() and isCallerInRole(String

role) methods. For this example, callers that are in the role of BeanUser will be able to
calculate the currency conversion. Callers not in the role of BeanUser will see a value of zero
for the conversion amount. Modifying the ConverterBean code is discussed in “Modifying
ConverterBean” on page 829.

5. Modify the sun-ejb-jar.xml file to specify a secure connection, username-password login,
and security role mapping. Modifying the sun-ejb-jar.xml file is discussed in “Modifying
Runtime Properties for the Secure Converter Example” on page 830.

6. Build, package, deploy, and run the application. These steps are discussed in “Building,
Deploying, and Running the Secure Converter Example Using NetBeans IDE” on page 832
and “Building, Deploying, and Running the Secure Converter Example Using Ant” on
page 832.

7. If necessary, refer to the tips in “Troubleshooting the Secure Converter Application” on
page 833 for tips on errors you might encounter and some possible solutions.

Modifying ConverterBean

The source code for the original converter application was modified as shown in the following
code snippet (modifications in bold) to add the if..else clause that tests if the caller is in the
role of BeanUser. If the user is in the correct role, the currency conversion is computed and
displayed. If the user is not in the correct role, the computation is not performed, and the
application displays the result as 0. The code example can be found in the following file:

tut-install/javaeetutorial5/examples/ejb/converter-secure/converter-secure-ejb/src/java/
converter/secure/ejb/ConverterBean.java

The code snippet is as follows:

package converter.secure.ejb;

import java.math.BigDecimal;

import javax.ejb.*;

import java.security.Principal;

import javax.annotation.Resource;

import javax.ejb.SessionContext;

import javax.annotation.security.DeclareRoles;

import javax.annotation.security.RolesAllowed;

@Stateless()

@DeclareRoles("BeanUser")

public class ConverterBean implements converter.secure.ejb.Converter {

@Resource SessionContext ctx;

Enterprise Bean Example Applications

Chapter 29 • Securing Java EE Applications 829

private BigDecimal yenRate = new BigDecimal("115.3100");
private BigDecimal euroRate = new BigDecimal("0.0071");

@RolesAllowed("BeanUser")

public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = new BigDecimal("0.0");

Principal callerPrincipal = ctx.getCallerPrincipal();

if (ctx.isCallerInRole("BeanUser")) {

result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}else{

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

@RolesAllowed("BeanUser")

public BigDecimal yenToEuro(BigDecimal yen) {

BigDecimal result = new BigDecimal("0.0");

Principal callerPrincipal = ctx.getCallerPrincipal();

if (ctx.isCallerInRole("BeanUser")) {

result = yen.multiply(euroRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}else{

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

}

Modifying Runtime Properties for the Secure Converter Example
Secure connections, username-password login, and the mapping of application roles to
Application Server groups and principals are specified in the runtime deployment descriptor
file sun-ejb-jar.xml. The original converter application that did not include any security
mechanisms did not have a need for this file: it has been added specifically for this application.

To map the role of BeanUser that is defined for this application to the group with the name of
user in the file realm of the Application Server, specify the security-role-mapping element as
shown below. Make sure that the role-name and group-name elements are specified exactly as
they are used (the mapping is case-sensitive).

To specify username-password login and a secure connection, use the ior-security-config
element. The IOR security elements are described in more detail in “Configuring IOR Security”
on page 819.

The following sun-ejb-jar.xml file demonstrates how to specify a secure connection,
username-password login, and security role mapping. The completed version of this file can be
found in
tut-install/javaeetutorial5/examples/ejb/converter-secure/converter-secure-ejb/
src/conf/sun-ejb-jar.xml.

Enterprise Bean Example Applications

The Java EE 5 Tutorial • October 2008830

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC

"-//Sun Microsystems, Inc.//DTD Application Server 9.0 EJB 3.0//EN"
"http://www.sun.com/software/appserver/dtds/sun-ejb-jar_3_0-0.dtd">
<sun-ejb-jar>

<security-role-mapping>

<role-name>BeanUser</role-name>

<group-name>user</group-name>

</security-role-mapping>

<enterprise-beans>

<unique-id>0</unique-id>

<ejb>

<ejb-name>ConverterBean</ejb-name>

<jndi-name>ConverterBean</jndi-name>

<pass-by-reference>false</pass-by-reference>

<ior-security-config>

<transport-config>

<integrity>supported</integrity>

<confidentiality>supported</confidentiality>

<establish-trust-in-target>

supported

</establish-trust-in-target>

<establish-trust-in-client>

supported

</establish-trust-in-client>

</transport-config>

<as-context>

<auth-method>username_password</auth-method>

<realm>file</realm>

<required>true</required>

</as-context>

<sas-context>

<caller-propagation>

supported

</caller-propagation>

</sas-context>

</ior-security-config>

<is-read-only-bean>false</is-read-only-bean>

<refresh-period-in-seconds>

-1

</refresh-period-in-seconds>

<gen-classes/>

</ejb>

</enterprise-beans>

</sun-ejb-jar

Enterprise Bean Example Applications

Chapter 29 • Securing Java EE Applications 831

Building, Deploying, and Running the Secure Converter Example Using
NetBeans IDE
Follow these instructions to build, package, and deploy the converter-secure example to your
Application Server instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/ejb/.
3. Select the converter-secure folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. In the Projects tab, right-click the converter-secure project and select Clean and Build.
7. In the Projects tab, right-click the converter-secure project and select Undeploy and

Deploy.
This step builds and packages the application into converter-secure.ear, located in
tut-install/javaeetutorial5/examples/ejb/converter-secure/dist/, and deploys this
ear file to your Application Server instance.

8. To run the secure converter’s application client, select Run→Run Main Project. You will be
prompted for your username and password.

9. Enter the username and password of a user that has been entered into the database of users
for the file realm and has been assigned to the group of user.
If the username and password you enter are authorized, you will see the output of the
application client in the Output pane:

[exec] $100.00 is 11531.00 Yen.

[exec] 11531.00 Yen is 81.88 Euro.

Building, Deploying, and Running the Secure Converter Example Using
Ant
To build the secure converter enterprise beans and client, package and deploy the enterprise
application, and run the client application, follow these steps:

1. Set up your system for running the tutorial examples if you haven’t done so already by
following the instructions in “Building the Examples” on page 71.

2. From a terminal window or command prompt, go to the
tut-install/javaeetutorial5/examples/ejb/converter-secure/ directory.

3. Build, package, deploy, and run the enterprise application and application client by entering
the following at the terminal window or command prompt in the ejb/converter-secure/
directory:

ant all

Enterprise Bean Example Applications

The Java EE 5 Tutorial • October 2008832

Note – This step assumes that you have the executable for ant in your path; if not, you will
need to provide the fully qualified path to the ant executable. This command runs the ant
target named all in the build.xml file.

The running application will look like this:

appclient-command-common:

At this point, a system login dialog will display. Enter the user name and password that
correspond to a user in the group user on the Application Server. If the user name and password
are authenticated, the following text displays in the terminal window or command prompt:

appclient-command-common:

[exec] $100.00 is 11531.00 Yen.

[exec] 11531.00 Yen is 81.88 Euro.

Troubleshooting the Secure Converter Application
Problem: The application displays zero values after authentication, as shown here:

appclient-command-common:

[exec] $100.00 is 0.00 Yen.

[exec] 0.00 Yen is 0.00 Euro.

Solution: Verify that the user name and password that you entered for authentication match a
user name and password in the Application Server, and that this user is assigned to the group
named user. User names and passwords are case-sensitive. Read “Adding Users to the
Application Server” on page 783 for more information on adding users to the file realm of the
Application Server.

Discussion: Securing the Duke’s Bank Example
The Duke’s Bank application is an online banking application. Duke’s Bank has two clients: an
application client used by administrators to manage customers and accounts, and a web client
used by customers to access account histories and perform transactions. The clients access the
customer, account, and transaction information maintained in a database through enterprise
beans. The Duke’s Bank application demonstrates the way that many of the component
technologies presented in this tutorial (enterprise beans, application clients, and web
components) are applied to provide a simple but functional application.

To secure the Duke’s Bank example, the following security mechanisms are used:
■ Defining security roles
■ Specifying form-based user authentication for the web client in a security constraint

Enterprise Bean Example Applications

Chapter 29 • Securing Java EE Applications 833

■ Adding authorized users and groups to the appropriate Application Server realm
■ Specifying method permissions for enterprise beans
■ Configuring Interoperable Object References (IOR)

Read Chapter 37, “The Duke’s Bank Application,” for more information on securing the Duke’s
Bank example.

Securing Application Clients
The Java EE authentication requirements for application clients are the same as for other Java
EE components, and the same authentication techniques can be used as for other Java EE
application components.

No authentication is necessary when accessing unprotected web resources. When accessing
protected web resources, the usual varieties of authentication can be used, namely HTTP basic
authentication, SSL client authentication, or HTTP login form authentication. These
authentication methods are discussed in “Specifying an Authentication Mechanism” on
page 860.

Authentication is required when accessing protected enterprise beans. The authentication
mechanisms for enterprise beans are discussed in “Securing Enterprise Beans” on page 800.
Lazy authentication can be used.

An application client makes use of an authentication service provided by the application client
container for authenticating its users. The container’s service can be integrated with the native
platform’s authentication system, so that a single sign-on capability is employed. The container
can authenticate the user when the application is started, or it can use lazy authentication,
authenticating the user when a protected resource is accessed.

An application client can provide a class to gather authentication data. If so, the
javax.security.auth.callback.CallbackHandler interface must be implemented, and the
class name must be specified in its deployment descriptor. The application’s callback handler
must fully support Callback objects specified in the javax.security.auth.callback package.
Gathering authentication data in this way is discussed in the next section, “Using Login
Modules” on page 834.

Using Login Modules
An application client can use the Java Authentication and Authorization Service (JAAS) to
create login modules for authentication. A JAAS-based application implements the
javax.security.auth.callback.CallbackHandler interface so that it can interact with users
to enter specific authentication data, such as user names or passwords, or to display error and
warning messages.

Securing Application Clients

The Java EE 5 Tutorial • October 2008834

Applications implement the CallbackHandler interface and pass it to the login context, which
forwards it directly to the underlying login modules. A login module uses the callback handler
both to gather input (such as a password or smart card PIN) from users and to supply
information (such as status information) to users. Because the application specifies the callback
handler, an underlying login module can remain independent of the various ways that
applications interact with users.

For example, the implementation of a callback handler for a GUI application might display a
window to solicit user input. Or the implementation of a callback handler for a command-line
tool might simply prompt the user for input directly from the command line.

The login module passes an array of appropriate callbacks to the callback handler’s handle
method (for example, a NameCallback for the user name and a PasswordCallback for the
password); the callback handler performs the requested user interaction and sets appropriate
values in the callbacks. For example, to process a NameCallback, the CallbackHandler might
prompt for a name, retrieve the value from the user, and call the setName method of the
NameCallback to store the name.

For more information on using JAAS for login modules for authentication, refer to the
following sources:

■ Java Authentication and Authorization Service (JAAS) in Java Platform, Standard Edition
■ Java Authentication and Authorization Service (JAAS) Reference Guide
■ Java Authentication and Authorization Service (JAAS): LoginModule Developer’s Guide

Links to this information are provided in “Further Information about Security” on page 797.

Using Programmatic Login
Programmatic login enables the client code to supply user credentials. If you are using an EJB
client, you can use the com.sun.appserv.security.ProgrammaticLogin class with their
convenient login and logout methods.

Because programmatic login is specific to a server, information on programmatic login is not
included in this document, but is included in the Sun Java System Application Server 9.1
Developer’s Guide.

Securing Application Clients

Chapter 29 • Securing Java EE Applications 835

http://docs.sun.com/doc/819-3672
http://docs.sun.com/doc/819-3672

Securing EIS Applications
In EIS applications, components request a connection to an EIS resource. As part of this
connection, the EIS can require a sign-on for the requester to access the resource. The
application component provider has two choices for the design of the EIS sign-on:

■ In the container-managed sign-on approach, the application component lets the container
take the responsibility of configuring and managing the EIS sign-on. The container
determines the user name and password for establishing a connection to an EIS instance.
For more information, read “Container-Managed Sign-On” on page 836.

■ In the component-managed sign-on approach, the application component code manages
EIS sign-on by including code that performs the sign-on process to an EIS. For more
information, read “Component-Managed Sign-On” on page 836.

You can also configure security for resource adapters. Read “Configuring Resource Adapter
Security” on page 837 for more information.

Container-Managed Sign-On
In container-managed sign-on, an application component does not have to pass any sign-on
security information to the getConnection() method. The security information is supplied by
the container, as shown in the following example.

// Business method in an application component

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(

"java:comp/env/eis/MainframeCxFactory");
// Invoke factory to obtain a connection. The security

// information is not passed in the getConnection method

javax.resource.cci.Connection cx = cxf.getConnection();

...

Component-Managed Sign-On
In component-managed sign-on, an application component is responsible for passing the
needed sign-on security information to the resource to the getConnection method. For
example, security information might be a user name and password, as shown here:

// Method in an application component

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory

Securing EIS Applications

The Java EE 5 Tutorial • October 2008836

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(

"java:comp/env/eis/MainframeCxFactory");

// Get a new ConnectionSpec

com.myeis.ConnectionSpecImpl properties = //..

// Invoke factory to obtain a connection

properties.setUserName("...");
properties.setPassword("...");
javax.resource.cci.Connection cx =

cxf.getConnection(properties);

...

Configuring Resource Adapter Security
A resource adapter is a system-level software component that typically implements network
connectivity to an external resource manager. A resource adapter can extend the functionality
of the Java EE platform either by implementing one of the Java EE standard service APIs (such
as a JDBC driver), or by defining and implementing a resource adapter for a connector to an
external application system. Resource adapters can also provide services that are entirely local,
perhaps interacting with native resources. Resource adapters interface with the Java EE
platform through the Java EE service provider interfaces (Java EE SPI). A resource adapter that
uses the Java EE SPIs to attach to the Java EE platform will be able to work with all Java EE
products.

To configure the security settings for a resource adapter, you need to edit the ra.xml file. Here is
an example of the part of an ra.xml file that configures the following security properties for a
resource adapter:

<authentication-mechanism>

<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>

<credential-interface>

javax.resource.spi.security.PasswordCredential

</credential-interface>

</authentication-mechanism>

<reauthentication-support>false</reauthentication-support>

Securing EIS Applications

Chapter 29 • Securing Java EE Applications 837

You can find out more about the options for configuring resource adapter security by reviewing
as-install/lib/dtds/connector_1_0.dtd. You can configure the following elements in the
resource adapter deployment descriptor file:

■ Authentication mechanisms

Use the authentication-mechanism element to specify an authentication mechanism
supported by the resource adapter. This support is for the resource adapter and not for the
underlying EIS instance.

There are two supported mechanism types:
■ BasicPassword: This mechanism supports the interface

javax.resource.spi.security.PasswordCredential.
■ Kerbv5: This mechanism supports the interface

javax.resource.spi.security.GenericCredential. The Application Server does not
currently support this mechanism type.

■ Reauthentication support

Use the reauthentication-support element to specify whether the resource adapter
implementation supports re-authentication of existing Managed-Connection instances.
Options are true or false.

■ Security permissions

Use the security-permission element to specify a security permission that is required by
the resource adapter code. Support for security permissions is optional and is not supported
in the current release of the Application Server. You can, however, manually update the
server.policy file to add the relevant permissions for the resource adapter, as described in
the Developing and Deploying Applications section of the Sun Java System Application
Server 9.1 Developer’s Guide.

The security permissions listed in the deployment descriptor are ones that are different from
those required by the default permission set as specified in the connector specification.

Refer to the following URL for more information on Sun’s implementation of the security
permission specification: http://java.sun.com/
javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax.

In addition to specifying resource adapter security in the ra.xml file, you can create a security
map for a connector connection pool to map an application principal or a user group to a back
end EIS principal. The security map is usually used in situations where one or more EIS back
end principals are used to execute operations (on the EIS) initiated by various principals or user
groups in the application. You can find out more about security maps in the Configuring
Security chapter section of the Sun Java System Application Server 9.1 Administration Guide.

Securing EIS Applications

The Java EE 5 Tutorial • October 2008838

http://docs.sun.com/doc/819-3672
http://docs.sun.com/doc/819-3672
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://docs.sun.com/doc/819-3671

Mapping an Application Principal to EIS Principals
When using the Application Server, you can use security maps to map the caller identity of the
application (principal or user group) to a suitable EIS principal in container-managed
transaction-based scenarios. When an application principal initiates a request to an EIS, the
Application Server first checks for an exact principal using the security map defined for the
connector connection pool to determine the mapped back end EIS principal. If there is no exact
match, then the Application Server uses the wild card character specification, if any, to
determine the mapped back-end EIS principal. Security maps are used when an application
user needs to execute EIS operations that require to be executed as a specific identity in the EIS.

To work with security maps, use the Admin Console. From the Admin Console, follow these
steps to get to the security maps page:

1. Expand the Resources node.
2. Expand the Connectors node.
3. Select the Connector Connection Pools node.
4. Select a Connector Connection Pool by selecting its name from the list of current pools, or

create a new connector connection pool by selecting New from the list of current pools.
5. Select the Security Maps page.

Securing EIS Applications

Chapter 29 • Securing Java EE Applications 839

840

Securing Web Applications

Web applications contain resources that can be accessed by many users. These resources often
traverse unprotected, open networks, such as the Internet. In such an environment, a
substantial number of web applications will require some type of security.

The ways to implement security for Java EE applications are discussed in a general way in
“Securing Containers” on page 776. This chapter provides more detail and a few examples that
explore these security services as they relate to web components.

Java EE security services can be implemented for web applications in the following ways:

■ Metadata annotations (or simply, annotations) are used to specify information about
security within a class file. When the application is deployed, this information can either be
used by or overridden by the application deployment descriptor.

■ Declarative security expresses an application’s security structure, including security roles,
access control, and authentication requirements in a deployment descriptor, which is
external to the application.
Any values explicitly specified in the deployment descriptor override any values specified in
annotations.

■ Programmatic security is embedded in an application and is used to make security decisions.
Programmatic security is useful when declarative security alone is not sufficient to express
the security model of an application.

Some of the material in this chapter assumes that you have already read Chapter 28,
“Introduction to Security in the Java EE Platform.” This chapter also assumes that you are
familiar with the web technologies discussed in Chapter 3, “Getting Started with Web
Applications,” Chapter 5, “JavaServer Pages Technology,” and Chapter 10, “JavaServer Faces
Technology.”

30C H A P T E R 3 0

841

Overview of Web Application Security
In the Java EE platform, web components provide the dynamic extension capabilities for a web
server. Web components are either Java servlets, JSP pages, JSF pages, or web service endpoints.
The interaction between a web client and a web application is illustrated in Figure 30–1.

Web components are supported by the services of a runtime platform called a web container. A
web container provides services such as request dispatching, security, concurrency, and
life-cycle management.

Certain aspects of web application security can be configured when the application is installed,
or deployed, to the web container. Annotations and/or deployment descriptors are used to relay
information to the deployer about security and other aspects of the application. Specifying this
information in annotations or in the deployment descriptor helps the deployer set up the
appropriate security policy for the web application. Any values explicitly specified in the
deployment descriptor override any values specified in annotations. This chapter provides
more information on configuring security for web applications.

For secure transport, most web applications use the HTTPS protocol. For more information on
using the HTTPS protocol, read “Establishing a Secure Connection Using SSL” on page 787.

Web
Client

HttpServlet
Request

HttpServlet
Response

Web Server

HTTP
Request

HTTP
Response

1

Web
ComponentsWeb
ComponentsWeb
Components

Web
ComponentsWeb
ComponentsJavaBeans
Components

2

3

4

5

4

6

FIGURE 30–1 Java Web Application Request Handling

Overview of Web Application Security

The Java EE 5 Tutorial • October 2008842

Working with Security Roles
If you read “Working with Realms, Users, Groups, and Roles” on page 779, you will remember
the following definitions:

■ In applications, roles are defined using annotations or in application deployment
descriptors such as web.xml, ejb-jar.xml, and application.xml.
A role is an abstract name for the permission to access a particular set of resources in an
application. For more information, read “What Is a Role?” on page 782.
For more information on defining roles, see “Declaring Security Roles” on page 843.

■ On the Application Server, the following options are configured using the Admin Console:
■ A realm is a complete database of users and groups that identify valid users of a web

application (or a set of web applications) and are controlled by the same authentication
policy. For more information, read “What Is a Realm?” on page 781.

■ A user is an individual (or application program) identity that has been defined in the
Application Server. On the Application Server, a user generally has a user name, a
password, and, optionally, a list of groups to which this user has been assigned. For more
information, read “What Is a User?” on page 782.

■ A group is a set of authenticated users, classified by common traits, defined in the
Application Server. For more information, read “What Is a Group?” on page 782.

■ A principal is an entity that can be authenticated by an authentication protocol in a
security service that is deployed in an enterprise.
For more information on configuring users on the Application Server, read “Managing
Users and Groups on the Application Server” on page 783.

■ During deployment, the deployer takes the information provided in the application
deployment descriptor and maps the roles specified for the application to users and groups
defined on the server using the Application Server deployment descriptors sun-web.xml,
sun-ejb-jar.xml, or sun-application.xml.
For more information, read “Mapping Security Roles to Application Server Groups” on
page 846.

Declaring Security Roles
You can declare security role names used in web applications using either the @DeclareRoles
annotation (preferred) or the security-role-ref elements of the deployment descriptor.
Declaring security role names in this way enables you to link the security role names used in the
code to the security roles defined for an assembled application. In the absence of this linking
step, any security role name used in the code will be assumed to correspond to a security role of
the same name in the assembled application.

Working with Security Roles

Chapter 30 • Securing Web Applications 843

A security role reference, including the name defined by the reference, is scoped to the
component whose class contains the @DeclareRoles annotation or whose deployment
descriptor element contains the security-role-ref deployment descriptor element.

You can also use the security-role-ref elements for those references that were declared in
annotations and you want to have linked to a security-role whose name differs from the
reference value. If a security role reference is not linked to a security role in this way, the
container must map the reference name to the security role of the same name. See “Declaring
and Linking Role References” on page 848 for a description of how security role references are
linked to security roles.

For an example using each of these methods, read the following sections:

■ “Specifying Security Roles Using Annotations” on page 844
■ “Specifying Security Roles Using Deployment Descriptor Elements” on page 845

Specifying Security Roles Using Annotations
Annotations are the best way to define security roles on a class or a method. The
@DeclareRoles annotation is used to define the security roles that comprise the security model
of the application. This annotation is specified on a class, and it typically would be used to
define roles that could be tested (for example, by calling isUserInRole) from within the
methods of the annotated class.

Following is an example of how this annotation would be used. In this example, employee is the
only security role specified, but the value of this parameter can include a list of security roles
specified by the application.

@DeclareRoles("employee")
public class CalculatorServlet {

//...

}

Specifying @DeclareRoles("employee") is equivalent to defining the following in the web.xml:

<security-role>

<role-name>employee</role-name>

</security-role>

This annotation is not used to link application roles to other roles. When such linking is
necessary, it is accomplished by defining an appropriate security-role-ref in the associated
deployment descriptor, as described in “Declaring and Linking Role References” on page 848.

When a call is made to isUserInRole from the annotated class, the caller identity associated
with the invocation of the class is tested for membership in the role with the same name as the
argument to isUserInRole. If a security-role-ref has been defined for the argument
role-name, the caller is tested for membership in the role mapped to the role-name.

Working with Security Roles

The Java EE 5 Tutorial • October 2008844

Specifying Security Roles Using Deployment Descriptor Elements
The following snippet of a deployment descriptor is taken from the simple sample application.
This snippet includes all of the elements needed to specify security roles using deployment
descriptors:

<servlet>

...

<security-role-ref>

<role-name>MGR</role-name>

<!-- role name used in code -->

<role-link>employee</role-link>

</security-role-ref>

</servlet>

<security-constraint>

<web-resource-collection>

<web-resource-name>Protected Area</web-resource-name>

<url-pattern>/jsp/security/protected/*</url-pattern>

<http-method>PUT</http-method>

<http-method>DELETE</http-method>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>role1</role-name>

<role-name>employee</role-name>

</auth-constraint>

</security-constraint>

<!-- Security roles referenced by this web application -->

<security-role>

<role-name>role1</role-name>

</security-role>

<security-role>

<role-name>employee</role-name>

</security-role>

In this example, the security-role element lists all of the security roles used in the application:
role1 and employee. This enables the deployer to map all of the roles defined in the application
to users and groups defined on the Application Server.

The auth-constraint element specifies the roles (role1, employee) that can access HTTP
methods (PUT, DELETE, GET, POST) located in the directory specified by the url-pattern element
(/jsp/security/protected/*). You could also have used the @DeclareRoles annotation in
the source code to accomplish this task.

The security-role-ref element is used when an application uses the
HttpServletRequest.isUserInRole(String role) method. The value of the role-name

Working with Security Roles

Chapter 30 • Securing Web Applications 845

element must be the String used as the parameter to the
HttpServletRequest.isUserInRole(String role) method. The role-link must contain the
name of one of the security roles defined in the security-role elements. The container uses
the mapping of security-role-ref to security-role when determining the return value of
the call.

Mapping Security Roles to Application Server Groups
To map security roles to application server principals and groups, use the
security-role-mapping element in the runtime deployment descriptor (DD). The runtime
deployment descriptor is an XML file that contains information such as the context root of the
web application and the mapping of the portable names of an application’s resources to the
Application Server’s resources. The Application Server web application runtime DD is located
in /WEB-INF/ along with the web application DD. Runtime deployment descriptors are named
sun-web.xml, sun-application.xml, or sun-ejb-jar.xml.

The following example demonstrates how to do this mapping:

<sun-web-app>

<security-role-mapping>

<role-name>CEO</role-name>

<principal-name>smcneely</principal-name>

</security-role-mapping>

<security-role-mapping>

<role-name>Admin</role-name>

<group-name>director</group-name>

</security-role-mapping>

...

</sun-web-app>

A role can be mapped to specific principals, specific groups, or both. The principal or group
names must be valid principals or groups in the current default realm. The role-name element
must match the role-name in the security-role element of the corresponding application
deployment descriptor (web.xml, ejb-jar.xml) or the role name defined in the @DeclareRoles
annotation.

Sometimes the role names used in the application are the same as the group names defined on
the Application Server. Under these circumstances, you can use the Admin Console to define a
default principal to role mapping that apply to the entire Application Server instance. From the
Admin Console, select Configuration, then Security, then check the enable box beside Default
Principal to Role Mapping. For more information, read the Sun Java System Application
Server 9.1 Developer’s Guide or Sun Java System Application Server 9.1 Administration Guide.

Working with Security Roles

The Java EE 5 Tutorial • October 2008846

http://docs.sun.com/doc/819-3672
http://docs.sun.com/doc/819-3672
http://docs.sun.com/doc/819-3671

Checking Caller Identity Programmatically
In general, security management should be enforced by the container in a manner that is
transparent to the web component. The security API described in this section should be used
only in the less frequent situations in which the web component methods need to access the
security context information.
■ The HttpServletRequest interface provides the following methods that enable you to

access security information about the component’s caller:getRemoteUser: Determines the
user name with which the client authenticated. If no user has been authenticated, this
method returns null.

■ isUserInRole: Determines whether a remote user is in a specific security role. If no user has
been authenticated, this method returns false. This method expects a String user
role-name parameter.
You can use either the @DeclareRoles annotation or the <security-role-ref> element
with a <role-name> sub-element in the deployment descriptor to pass the role name to this
method. Using security role references is discussed in “Declaring and Linking Role
References” on page 848.

■ getUserPrincipal: Determines the principal name of the current user and returns a
java.security.Principal object. If no user has been authenticated, this method returns
null.

Your application can make business logic decisions based on the information obtained using
these APIs.

The following is a code snippet from an index.jsp file that uses these methods to access
security information about the component’s caller.

<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>

<fmt:setBundle basename="LocalStrings"/>

<html>

<head>

<title><fmt:message key="index.jsp.title"/>/title>
</head>

<body bgcolor="white">

<fmt:message key="index.jsp.remoteuser"/>
<%= request.getRemoteUser() %>

<%

if (request.getUserPrincipal() != null) {

%>

<fmt:message key="index.jsp.principal"/>

<%= request.getUserPrincipal().getName() %>

Checking Caller Identity Programmatically

Chapter 30 • Securing Web Applications 847

<%

} else {

%>

<fmt:message key="index.jsp.noprincipal"/>
<%

}

%>

<%

String role = request.getParameter("role");
if (role == null)

role = "";
if (role.length() > 0) {

if (request.isUserInRole(role)) {

%>

<fmt:message key="index.jsp.granted"/> <%= role %>

<%

} else {

%>

<fmt:message key="index.jsp.notgranted"/> <%= role %>

<%

}

}

%>

<fmt:message key="index.jsp.tocheck"/>
<form method="GET">
<input type="text" name="role" value="<%= role %>">
</form>

</body>

</html>

Declaring and Linking Role References
A security role is an application-specific logical grouping of users, classified by common traits
such as customer profile or job title. When an application is deployed, these roles are mapped to
security identities, such as principals (identities assigned to users as a result of authentication)
or groups, in the runtime environment. Based on this mapping, a user with a certain security
role has associated access rights to a web application.

The value passed to the isUserInRole method is a String representing the role name of the
user. A security role reference defines a mapping between the name of a role that is called from a
web component using isUserInRole(String role) and the name of a security role that has
been defined for the application. If a <security-role-ref> element is not declared in a
deployment descriptor, and the isUserInRole method is called, the container defaults to

Checking Caller Identity Programmatically

The Java EE 5 Tutorial • October 2008848

checking the provided role name against the list of all security roles defined for the web
application. Using the default method instead of using the <security-role-ref> element
limits your flexibility to change role names in an application without also recompiling the
servlet making the call.

For example, during application assembly, the assembler creates security roles for the
application and associates these roles with available security mechanisms. The assembler then
resolves the security role references in individual servlets and JSP pages by linking them to roles
defined for the application. For example, the assembler could map the security role reference
cust to the security role with the role name bankCustomer using the <security-role-ref>
element of the deployment descriptor.

Declaring Roles Using Annotations
The preferred method of declaring roles referenced in an application is to use the
@DeclareRoles annotation. The following code sample provides an example that specifies that
the roles of j2ee and guest will be used in the application, and verifies that the user is in the role
of j2ee before printing out Hello World.

import java.io.IOException;

import java.io.PrintWriter;

import javax.annotation.security.DeclareRoles;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@DeclareRoles({"j2ee", "guest"})

public class Servlet extends HttpServlet {

public void service(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

resp.setContentType("text/html");
PrintWriter out = resp.getWriter();

out.println("<HTML><HEAD><TITLE>Servlet Output</TITLE>

</HEAD><BODY>");
if (req.isUserInRole("j2ee") && !req.isUserInRole("guest")) {

out.println("Hello World");
} else {

out.println("Invalid roles");
}

out.println("</BODY></HTML>");
}

}

Checking Caller Identity Programmatically

Chapter 30 • Securing Web Applications 849

Declaring Roles Using Deployment Descriptor Elements
An example of declaring roles referenced in an application using deployment descriptor
elements is shown in the following web.xml deployment descriptor snippet:

<servlet>

...

<security-role-ref>

<role-name>cust</role-name>

<role-link>bankCustomer</role-link>

</security-role-ref>

...

</servlet>

When you use the isUserInRole(String role) method, the String role is mapped to the role
name defined in the <role-name> element nested within the <security-role-ref> element.
The <role-link> element in the web.xml deployment descriptor must match a <role-name>
defined in the <security-role> element of the web.xml deployment descriptor, as shown here:

<security-role>

<role-name>bankCustomer</role-name>

</security-role>

Defining Security Requirements for Web Applications
Web applications are created by application developers who give, sell, or otherwise transfer the
application to an application deployer for installation into a runtime environment. Application
developers communicate how the security is to be set up for the deployed application
declaratively by use of the deployment descriptor mechanism or programmatically by use of
annotations. When this information is passed on to the deployer, the deployer uses this
information to define method permissions for security roles, set up user authentication, and
whether or not to use HTTPS for transport. If you don’t define security requirements, the
deployer will have to determine the security requirements independently.

If you specify a value in an annotation, and then explicitly specify the same value in the
deployment descriptor, the value in the deployment descriptor overrides any values specified in
annotations. If a value for a servlet has not been specified in the deployment descriptor, and a
value has been specified for that servlet by means of the use of annotations, the value specified in
annotations will apply. The granularity of overriding is on the per-servlet basis.

The web application deployment descriptor may contain an attribute of metadata-complete
on the web-app element. The metadata-complete attribute defines whether the web application
deployment descriptor is complete, or whether the class files of the JAR file should be examined
for annotations that specify deployment information. When the metadata-complete attribute
is not specified, or is set to false, the deployment descriptors examine the class files of

Defining Security Requirements for Web Applications

The Java EE 5 Tutorial • October 2008850

applications for annotations that specify deployment information. When the
metadata-complete attribute is set to true, the deployment descriptor ignores any servlet
annotations present in the class files of the application. Thus, deployers can use deployment
descriptors to customize or override the values specified in annotations.

Many elements for security in a web application deployment descriptor cannot, as yet, be
specified as annotations, therefore, for securing web applications, deployment descriptors are a
necessity. However, where possible, annotations are the recommended method for securing
web components.

The following sections discuss the use of annotations and deployment descriptor elements to
secure web applications:

■ “Declaring Security Requirements Using Annotations” on page 851
■ “Declaring Security Requirements in a Deployment Descriptor” on page 853

Declaring Security Requirements Using Annotations
The Java Metadata Specification (JSR-175), which is part of J2SE 5.0 and greater, provides a
means of specifying configuration data in Java code. Metadata in Java code is more commonly
referred to in this document as annotations. In Java EE, annotations are used to declare
dependencies on external resources and configuration data in Java code without the need to
define that data in a configuration file. Several common annotations are specific to specifying
security in any Java application. These common annotations are specified in JSR-175, A
Metadata Facility for the Java Programming Language
(http://www.jcp.org/en/jsr/detail?id=175), and JSR-250, Common Annotations for the
Java Platform (http://www.jcp.org/en/jsr/detail?id=250). Annotations specific to web
components are specified in the Java Servlet 2.5 Specification
(http://www.jcp.org/en/jsr/detail?id=154).

In servlets, you can use the annotations discussed in the following sections to secure a web
application:

■ “Using the @DeclareRoles Annotation” on page 851
■ “Using the @RunAs Annotation” on page 852

Using the @DeclareRolesAnnotation
This annotation is used to define the security roles that comprise the security model of the
application. This annotation is specified on a class, and it typically would be used to define roles
that could be tested (for example, by calling isUserInRole) from within the methods of the
annotated class.

Following is an example of how this annotation would be used. In this example, BusinessAdmin
is the only security role specified, but the value of this parameter can include a list of security
roles specified by the application.

Defining Security Requirements for Web Applications

Chapter 30 • Securing Web Applications 851

http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=250
http://www.jcp.org/en/jsr/detail?id=250
http://www.jcp.org/en/jsr/detail?id=154
http://www.jcp.org/en/jsr/detail?id=154

@DeclareRoles("BusinessAdmin")
public class CalculatorServlet {

//...

}

Specifying @DeclareRoles("BusinessAdmin") is equivalent to defining the following in
web.xml:

<web-app>

<security-role>

<role-name>BusinessAdmin</role-name>

</security-role>

</web-app>

The syntax for declaring more than one role is as shown in the following example:

@DeclareRoles({"Administrator", "Manager", "Employee"})

This annotation is not used to link application roles to other roles. When such linking is
necessary, it is accomplished by defining an appropriate security-role-ref in the associated
deployment descriptor, as described in “Declaring and Linking Role References” on page 848.

When a call is made to isUserInRole from the annotated class, the caller identity associated
with the invocation of the class is tested for membership in the role with the same name as the
argument to isUserInRole. If a security-role-ref has been defined for the argument
role-name, the caller is tested for membership in the role mapped to the role-name.

For further details on the @DeclareRoles annotation, refer to JSR–250, Common Annotations
for the Java Platform (http://www.jcp.org/en/jsr/detail?id=250), and “Using Enterprise
Bean Security Annotations” on page 817 in this tutorial.

Using the @RunAsAnnotation
The @RunAs annotation defines the role of the application during execution in a Java EE
container. It can be specified on a class, allowing developers to execute an application under a
particular role. The role must map to the user/group information in the container’s security
realm. The value element in the annotation is the name of a security role of the application
during execution in a Java EE container. The use of the @RunAs annotation is discussed in more
detail in “Propagating Security Identity” on page 814.

The following is an example that uses the @RunAs annotation:

@RunAs("Admin")
public class CalculatorServlet {

@EJB private ShoppingCart myCart;

public void doGet(HttpServletRequest, req, HttpServletResponse res) {

//....

Defining Security Requirements for Web Applications

The Java EE 5 Tutorial • October 2008852

http://www.jcp.org/en/jsr/detail?id=250
http://www.jcp.org/en/jsr/detail?id=250

myCart.getTotal();

//....

}

}

//....

}

The @RunAs annotation is equivalent to the run-as element in the deployment descriptor.

Declaring Security Requirements in a Deployment
Descriptor
Web applications are created by application developers who give, sell, or otherwise transfer the
application to an application deployer for installation into a runtime environment. Application
developers communicate how the security is to be set up for the deployed application
declaratively by use of the deployment descriptor mechanism. A deployment descriptor enables
an application’s security structure, including roles, access control, and authentication
requirements, to be expressed in a form external to the application.

A web application is defined using a standard Java EE web.xml deployment descriptor. A
deployment descriptor is an XML schema document that conveys elements and configuration
information for web applications. The deployment descriptor must indicate which version of
the web application schema (2.4 or 2.5) it is using, and the elements specified within the
deployment descriptor must comply with the rules for processing that version of the
deployment descriptor. Version 2.5 of the Java Servlet Specification, which can be downloaded
at SRV.13, Deployment Descriptor (http://jcp.org/en/jsr/detail?id=154), contains more
information regarding the structure of deployment descriptors.

The following code is an example of the elements in a deployment descriptor that apply
specifically to declaring security for web applications or for resources within web applications.
This example comes from section SRV.13.5.2, An Example of Security, from the Java Servlet
Specification 2.5.

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd"
version="2.5">

<display-name>A Secure Application</display-name>

<!-- SERVLET -->

<servlet>

<servlet-name>catalog</servlet-name>

<servlet-class>com.mycorp.CatalogServlet</servlet-class>

Defining Security Requirements for Web Applications

Chapter 30 • Securing Web Applications 853

http://jcp.org/en/jsr/detail?id=154

<init-param>

<param-name>catalog</param-name>

<param-value>Spring</param-value>

</init-param>

<security-role-ref>

<role-name>MGR</role-name>

<!-- role name used in code -->

<role-link>manager</role-link>

</security-role-ref>

</servlet>

<!-- SECURITY ROLE -->

<security-role>

<role-name>manager</role-name>

</security-role>

<servlet-mapping>

<servlet-name>catalog</servlet-name>

<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>

<!-- SECURITY CONSTRAINT -->

<security-constraint>

<web-resource-collection>

<web-resource-name>CartInfo</web-resource-name>

<url-pattern>/catalog/cart/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>manager</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<!-- LOGIN CONFIGURATION-->

<login-config>

<auth-method>BASIC</auth-method>

</login-config>

</web-app>

Defining Security Requirements for Web Applications

The Java EE 5 Tutorial • October 2008854

As shown in the preceding example, the <web-app> element is the root element for web
applications. The <web-app> element contains the following elements that are used for
specifying security for a web application:

■ <security-role-ref>

The security role reference element contains the declaration of a security role reference in the
web application’s code. The declaration consists of an optional description, the security role
name used in the code, and an optional link to a security role.
The security role name specified here is the security role name used in the code. The value of
the role-name element must be the String used as the parameter to the
HttpServletRequest.isUserInRole(String role) method. The container uses the
mapping of security-role-ref to security-role when determining the return value of
the call.
The security role link specified here contains the value of the name of the security role that
the user may be mapped into. The role-link element is used to link a security role
reference to a defined security role. The role-link element must contain the name of one of
the security roles defined in the security-role elements.
For more information about security roles, read “Working with Security Roles” on page 843.

■ <security-role>

A security role is an abstract name for the permission to access a particular set of resources in
an application. A security role can be compared to a key that can open a lock. Many people
might have a copy of the key. The lock doesn’t care who you are, only that you have the right
key.
The security-role element is used with the security-role-ref element to map roles
defined in code to roles defined for the web application. For more information about
security roles, read “Working with Security Roles” on page 843.

■ <security-constraint>

A security constraint is used to define the access privileges to a collection of resources using
their URL mapping. Read “Specifying Security Constraints” on page 856 for more detail on
this element. The following elements can be part of a security constraint:
■ <web-resource-collection> element: Web resource collections describe a URL pattern

and HTTP method pair that identify resources that need to be protected.
■ <auth-constraint> element: Authorization constraints indicate which users in specified

roles are permitted access to this resource collection. The role name specified here must
either correspond to the role name of one of the <security-role> elements defined for
this web application, or be the specially reserved role name *, which is a compact syntax
for indicating all roles in the web application. Role names are case sensitive. The roles
defined for the application must be mapped to users and groups defined on the server.
For more information about security roles, read “Working with Security Roles” on
page 843.

Defining Security Requirements for Web Applications

Chapter 30 • Securing Web Applications 855

■ <user-data-constraint> element: User data constraints specify network security
requirements, in particular, this constraint specifies how data communicated between
the client and the container should be protected. If a user transport guarantee of
INTEGRAL or CONFIDENTIAL is declared, all user name and password information
will be sent over a secure connection using HTTP over SSL (HTTPS). Network security
requirements are discussed in “Specifying a Secure Connection” on page 859.

■ <login-config>

The login configuration element is used to specify the user authentication method to be used
for access to web content, the realm in which the user will be authenticated, and, in the case
of form-based login, additional attributes. When specified, the user must be authenticated
before access to any resource that is constrained by a security constraint will be granted. The
types of user authentication methods that are supported include basic, form-based, digest,
and client certificate. Read “Specifying an Authentication Mechanism” on page 860 for more
detail on this element.

Some of the elements of web application security must be addressed in server configuration files
rather than in the deployment descriptor for the web application. Configuring security on the
Application Server is discussed in the following sections and books:
■ “Securing the Application Server” on page 779
■ “Managing Users and Groups on the Application Server” on page 783
■ “Installing and Configuring SSL Support” on page 787
■ “Deploying Secure Enterprise Beans” on page 821
■ Sun Java System Application Server 9.1 Administration Guide
■ Sun Java System Application Server 9.1 Developer’s Guide

The following sections provide more information on deployment descriptor security elements:
■ “Specifying Security Constraints” on page 856
■ “Working with Security Roles” on page 843
■ “Specifying a Secure Connection” on page 859
■ “Specifying an Authentication Mechanism” on page 860

Specifying Security Constraints
Security constraints are a declarative way to define the protection of web content. A security
constraint is used to define access privileges to a collection of resources using their URL
mapping. Security constraints are defined in a deployment descriptor. The following example
shows a typical security constraint, including all of the elements of which it consists:

<security-constraint>

<display-name>ExampleSecurityConstraint</display-name>

<web-resource-collection>

<web-resource-name>

ExampleWRCollection

</web-resource-name>

Defining Security Requirements for Web Applications

The Java EE 5 Tutorial • October 2008856

http://docs.sun.com/doc/819-3671
http://docs.sun.com/doc/819-3672

<url-pattern>/example</url-pattern>

<http-method>POST</http-method>

<http-method>GET</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>exampleRole</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

As shown in the example, a security constraint (<security-constraint> in deployment
descriptor) consists of the following elements:
■ Web resource collection (web-resource-collection)

A web resource collection is a list of URL patterns (the part of a URL after the host name and
port which you want to constrain) and HTTP operations (the methods within the files that
match the URL pattern which you want to constrain (for example, POST, GET)) that describe
a set of resources to be protected.

■ Authorization constraint (auth-constraint)
An authorization constraint establishes a requirement for authentication and names the
roles authorized to access the URL patterns and HTTP methods declared by this security
constraint. If there is no authorization constraint, the container must accept the request
without requiring user authentication. If there is an authorization constraint, but no roles
are specified within it, the container will not allow access to constrained requests under any
circumstances. The wildcard character * can be used to specify all role names defined in the
deployment descriptor. Security roles are discussed in “Working with Security Roles” on
page 843.

■ User data constraint (user-data-constraint)
A user data constraint establishes a requirement that the constrained requests be received
over a protected transport layer connection. This guarantees how the data will be
transported between client and server. The choices for type of transport guarantee include
NONE, INTEGRAL, and CONFIDENTIAL. If no user data constraint applies to a request, the
container must accept the request when received over any connection, including an
unprotected one. These options are discussed in “Specifying a Secure Connection” on
page 859.

Security constraints work only on the original request URI and not on calls made throug a
RequestDispatcher (which include <jsp:include> and <jsp:forward>). Inside the
application, it is assumed that the application itself has complete access to all resources and
would not forward a user request unless it had decided that the requesting user also had access.

Many applications feature unprotected web content, which any caller can access without
authentication. In the web tier, you provide unrestricted access simply by not configuring a

Defining Security Requirements for Web Applications

Chapter 30 • Securing Web Applications 857

security constraint for that particular request URI. It is common to have some unprotected
resources and some protected resources. In this case, you will define security constraints and a
login method, but they will not be used to control access to the unprotected resources. Users
won’t be asked to log in until the first time they enter a protected request URI.

The Java Servlet specification defines the request URI as the part of a URL after the host name
and port. For example, let’s say you have an e-commerce site with a browsable catalog that you
would want anyone to be able to access, and a shopping cart area for customers only. You could
set up the paths for your web application so that the pattern /cart/* is protected but nothing
else is protected. Assuming that the application is installed at context path /myapp, the following
are true:

■ http://localhost:8080/myapp/index.jsp is not protected.
■ http://localhost:8080/myapp/cart/index.jsp is protected.

A user will not be prompted to log in until the first time that user accesses a resource in the
cart/ subdirectory.

Specifying Separate Security Constraints for Different Resources

You can create a separate security constraint for different resources within your application. For
example, you could allow users with the role of PARTNER access to the POST method of all
resources with the URL pattern /acme/wholesale/*, and allow users with the role of CLIENT
access to the POST method of all resources with the URL pattern /acme/retail/*. An example
of a deployment descriptor that would demonstrate this functionality is the following:

// SECURITY CONSTRAINT #1

<security-constraint>

<web-resource-collection>

<web-resource-name>wholesale</web-resource-name>

<url-pattern>/acme/wholesale/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>PARTNER</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

// SECURITY CONSTRAINT #2

<security-constraint>

<web-resource-collection>

<web-resource-name>retail</web-resource-name>

<url-pattern>/acme/retail/*</url-pattern>

Defining Security Requirements for Web Applications

The Java EE 5 Tutorial • October 2008858

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>CLIENT</role-name>

</auth-constraint>

</security-constraint>

When the same url-pattern and http-method occur in multiple security constraints, the
constraints on the pattern and method are defined by combining the individual constraints,
which could result in unintentional denial of access. Section 12.7.2 of the Java Servlet 2.5
Specification (downloadable from http://jcp.org/en/jsr/detail?id=154) gives an example
that illustrates the combination of constraints and how the declarations will be interpreted.

Specifying a Secure Connection
A user data constraint (<user-data-constraint> in the deployment descriptor) requires that
all constrained URL patterns and HTTP methods specified in the security constraint are
received over a protected transport layer connection such as HTTPS (HTTP over SSL). A user
data constraint specifies a transport guarantee (<transport-guarantee> in the deployment
descriptor). The choices for transport guarantee include CONFIDENTIAL, INTEGRAL, or NONE. If
you specify CONFIDENTIAL or INTEGRAL as a security constraint, that type of security constraint
applies to all requests that match the URL patterns in the web resource collection and not just to
the login dialog box. The following security constraint includes a transport guarantee:

<security-constraint>

<web-resource-collection>

<web-resource-name>wholesale</web-resource-name>

<url-pattern>/acme/wholesale/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>PARTNER</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

The strength of the required protection is defined by the value of the transport guarantee.
Specify CONFIDENTIAL when the application requires that data be transmitted so as to prevent
other entities from observing the contents of the transmission. Specify INTEGRAL when the
application requires that the data be sent between client and server in such a way that it cannot
be changed in transit. Specify NONE to indicate that the container must accept the constrained
requests on any connection, including an unprotected one.

Defining Security Requirements for Web Applications

Chapter 30 • Securing Web Applications 859

http://jcp.org/en/jsr/detail?id=154

The user data constraint is handy to use in conjunction with basic and form-based user
authentication. When the login authentication method is set to BASIC or FORM, passwords are
not protected, meaning that passwords sent between a client and a server on an unprotected
session can be viewed and intercepted by third parties. Using a user data constraint with the
user authentication mechanism can alleviate this concern. Configuring a user authentication
mechanism is described in “Specifying an Authentication Mechanism” on page 860.

To guarantee that data is transported over a secure connection, ensure that SSL support is
configured for your server. If your server is the Sun Java System Application Server, SSL support
is already configured. If you are using another server, consult the documentation for that server
for information on setting up SSL support. More information on configuring SSL support on
the Application Server can be found in “Establishing a Secure Connection Using SSL” on
page 787 and in the Sun Java System Application Server 9.1 Administration Guide.

Note – Good Security Practice: If you are using sessions, after you switch to SSL you should
never accept any further requests for that session that are non-SSL. For example, a shopping site
might not use SSL until the checkout page, and then it might switch to using SSL to accept your
card number. After switching to SSL, you should stop listening to non-SSL requests for this
session. The reason for this practice is that the session ID itself was not encrypted on the earlier
communications. This is not so bad when you’re only doing your shopping, but after the credit
card information is stored in the session, you don’t want a bad guy trying to fake the purchase
transaction against your credit card. This practice could be easily implemented using a filter.

Specifying an Authentication Mechanism
To specify an authentication mechanism for your web application, declare a login-config
element in the application deployment descriptor. The login-config element is used to
configure the authentication method and realm name that should be used for this application,
and the attributes that are needed by the form login mechanism when form-based login is
selected. The sub-element auth-method configures the authentication mechanism for the web
application. The element content must be either BASIC, DIGEST, FORM, CLIENT-CERT, or a
vendor-specific authentication scheme. The realm-name element indicates the realm name to
use for the authentication scheme chosen for the web application. The form-login-config
element specifies the login and error pages that should be used when FORM based login is
specified.

The authentication mechanism you choose specifies how the user is prompted to login. If the
<login-config> element is present, and the <auth-method> element contains a value other
than NONE, the user must be authenticated before it can access any resource that is constrained
by the use of a security-constraint element in the same deployment descriptor (read
“Specifying Security Constraints” on page 856 for more information on security constraints). If
you do not specify an authentication mechanism, the user will not be authenticated.

Defining Security Requirements for Web Applications

The Java EE 5 Tutorial • October 2008860

http://docs.sun.com/doc/819-3671

When you try to access a web resource that is constrained by a security-constraint element,
the web container activates the authentication mechanism that has been configured for that
resource. To specify an authentication method, place the <auth-method> element between
<login-config> elements in the deployment descriptor, like this:

<login-config>

<auth-method>BASIC</auth-method>

</login-config>

An example of a deployment descriptor that constrains all web resources for this application (in
italics below) and requires HTTP basic authentication when you try to access that resource (in
bold below) is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
<display-name>basicauth</display-name>

<servlet>

<display-name>index</display-name>

<servlet-name>index</servlet-name>

<jsp-file>/index.jsp</jsp-file>

</servlet>

<security-role>

<role-name>loginUser</role-name>

</security-role>

<security-constraint>

<display-name>SecurityConstraint1</display-name>

<web-resource-collection>

<web-resource-name>WRCollection</web-resource-name>

<url-pattern>/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>loginUser</role-name>

</auth-constraint>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

</login-config>

</web-app>

Before you can authenticate a user, you must have a database of user names, passwords, and
roles configured on your web or application server. For information on setting up the user
database, refer to “Managing Users and Groups on the Application Server” on page 783 and the
Sun Java System Application Server 9.1 Administration Guide.

Defining Security Requirements for Web Applications

Chapter 30 • Securing Web Applications 861

http://docs.sun.com/doc/819-3671

The authentication mechanisms are discussed further in the following sections:
■ “HTTP Basic Authentication” on page 862
■ “Form-Based Authentication” on page 863
■ “HTTPS Client Authentication” on page 865
■ “Digest Authentication” on page 868

HTTP Basic Authentication
HTTP Basic Authentication requires that the server request a user name and password from the
web client and verify that the user name and password are valid by comparing them against a
database of authorized users. When basic authentication is declared, the following actions
occur:

1. A client requests access to a protected resource.
2. The web server returns a dialog box that requests the user name and password.
3. The client submits the user name and password to the server.
4. The server authenticates the user in the specified realm and, if successful, returns the

requested resource.

Figure 30–2 shows what happens when you specify HTTP basic authentication.

The following example shows how to specify basic authentication in your deployment
descriptor:

<login-config>

<auth-method>BASIC</auth-method>

</login-config>

ServerClient 2
Requests username:password

3
Sends username:password

4
Returns requested resource

1
Requests a protected resource

FIGURE 30–2 HTTP Basic Authentication

Defining Security Requirements for Web Applications

The Java EE 5 Tutorial • October 2008862

HTTP basic authentication is not a secure authentication mechanism. Basic authentication
sends user names and passwords over the Internet as text that is Base64 encoded, and the target
server is not authenticated. This form of authentication can expose user names and passwords.
If someone can intercept the transmission, the user name and password information can easily
be decoded. However, when a secure transport mechanism, such as SSL, or security at the
network level, such as the IPSEC protocol or VPN strategies, is used in conjunction with basic
authentication, some of these concerns can be alleviated.

“Example: Basic Authentication with JAX-WS” on page 888 is an example application that uses
HTTP basic authentication in a JAX-WS service. “Example: Using Form-Based Authentication
with a JSP Page” on page 870 can be easily modified to demonstrate basic authentication. To do
so, replace the text between the <login-config> elements with those shown in this section.

Form-Based Authentication
Form-based authentication allows the developer to control the look and feel of the login
authentication screens by customizing the login screen and error pages that an HTTP browser
presents to the end user. When form-based authentication is declared, the following actions
occur:

1. A client requests access to a protected resource.

2. If the client is unauthenticated, the server redirects the client to a login page.

3. The client submits the login form to the server.

4. The server attempts to authenticate the user.

a. If authentication succeeds, the authenticated user’s principal is checked to ensure it is in
a role that is authorized to access the resource. If the user is authorized, the server
redirects the client to the resource using the stored URL path.

b. If authentication fails, the client is forwarded or redirected to an error page.

Figure 30–3 shows what happens when you specify form-based authentication.

Defining Security Requirements for Web Applications

Chapter 30 • Securing Web Applications 863

The following example shows how to declare form-based authentication in your deployment
descriptor:

<login-config>

<auth-method>FORM</auth-method>

<realm-name>file</realm-name>

<form-login-config>

<form-login-page>/logon.jsp</form-login-page>

<form-error-page>/logonError.jsp</form-error-page>

</form-login-config>

</login-config>

The login and error page locations are specified relative to the location of the deployment
descriptor. Examples of login and error pages are shown in “Creating the Login Form and the
Error Page” on page 871.

Form-based authentication is not particularly secure. In form-based authentication, the content
of the user dialog box is sent as plain text, and the target server is not authenticated. This form
of authentication can expose your user names and passwords unless all connections are over
SSL. If someone can intercept the transmission, the user name and password information can
easily be decoded. However, when a secure transport mechanism, such as SSL, or security at the
network level, such as the IPSEC protocol or VPN strategies, is used in conjunction with
form-based authentication, some of these concerns can be alleviated.

The section “Example: Using Form-Based Authentication with a JSP Page” on page 870 is an
example application that uses form-based authentication.

ServerClient

2
Redirected to

login page
3

Form submitted

1
Requests protected resource

j_security_check

?

login.jsp

4
Redirected to source

error.jsp

Success

Error page returned
Failure

FIGURE 30–3 Form-Based Authentication

Defining Security Requirements for Web Applications

The Java EE 5 Tutorial • October 2008864

Using Login Forms

When creating a form-based login, be sure to maintain sessions using cookies or SSL session
information.

As shown in “Form-Based Authentication” on page 863, for authentication to proceed
appropriately, the action of the login form must always be j_security_check. This restriction
is made so that the login form will work no matter which resource it is for, and to avoid
requiring the server to specify the action field of the outbound form. The following code snippet
shows how the form should be coded into the HTML page:

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">
</form>

HTTPS Client Authentication
HTTPS Client Authentication requires the client to possess a Public Key Certificate (PKC). If
you specify client authentication, the web server will authenticate the client using the client’s
public key certificate.

HTTPS Client Authentication is a more secure method of authentication than either basic or
form-based authentication. It uses HTTP over SSL (HTTPS), in which the server authenticates
the client using the client’s Public Key Certificate (PKC). Secure Sockets Layer (SSL) technology
provides data encryption, server authentication, message integrity, and optional client
authentication for a TCP/IP connection. You can think of a public key certificate as the digital
equivalent of a passport. It is issued by a trusted organization, which is called a certificate
authority (CA), and provides identification for the bearer.

Before using HTTP Client Authentication, you must make sure that the following actions have
been completed:

■ Make sure that SSL support is configured for your server. If your server is the Sun Java
System Application Server 9.1, SSL support is already configured. If you are using another
server, consult the documentation for that server for information on setting up SSL support.
More information on configuring SSL support on the application server can be found in
“Establishing a Secure Connection Using SSL” on page 787 and the Sun Java System
Application Server 9.1 Administration Guide.

■ Make sure the client has a valid Public Key Certificate. For more information on creating
and using public key certificates, read “Working with Digital Certificates” on page 790.

The following example shows how to declare HTTPS client authentication in your deployment
descriptor:

Defining Security Requirements for Web Applications

Chapter 30 • Securing Web Applications 865

http://docs.sun.com/doc/819-3671
http://docs.sun.com/doc/819-3671

<login-config>

<auth-method>CLIENT-CERT</auth-method>

</login-config>

Mutual Authentication

With mutual authentication, the server and the client authenticate one another. There are two
types of mutual authentication:

■ Certificate-based mutual authentication (see Figure 30–4)
■ User name- and password-based mutual authentication (see Figure 30–5)

When using certificate-based mutual authentication, the following actions occur:

1. A client requests access to a protected resource.

2. The web server presents its certificate to the client.

3. The client verifies the server’s certificate.

4. If successful, the client sends its certificate to the server.

5. The server verifies the client’s credentials.

6. If successful, the server grants access to the protected resource requested by the client.

Figure 30–4 shows what occurs during certificate-based mutual authentication.

Defining Security Requirements for Web Applications

The Java EE 5 Tutorial • October 2008866

In user name- and password-based mutual authentication, the following actions occur:

1. A client requests access to a protected resource.

2. The web server presents its certificate to the client.

3. The client verifies the server’s certificate.

4. If successful, the client sends its user name and password to the server, which verifies the
client’s credentials.

5. If the verification is successful, the server grants access to the protected resource requested
by the client.

Figure 30–5 shows what occurs during user name- and password-based mutual authentication.

ServerClient

server.keystore

server.cert

3

Verifies
certificate

1
Requests protected resource

2
Presents certificate

4
Presents certificate

6
Accesses protected resource

client.keystore

client.cert

trustStore

server.cert

client.cert

5

Verifies
certificate

6

FIGURE 30–4 Certificate-Based Mutual Authentication

Defining Security Requirements for Web Applications

Chapter 30 • Securing Web Applications 867

Digest Authentication
Like HTTP basic authentication, HTTP Digest Authentication authenticates a user based on a
user name and a password. However, the authentication is performed by transmitting the
password in an encrypted form which is much more secure than the simple Base64 encoding
used by basic authentication. Digest authentication is not currently in widespread use, and is
not implemented in the Application Server, therefore, there is no further discussion of it in this
document.

ServerClient

trustStore

server.cert

server.keystore

server.cert
3

Verifies
certificate

1
Requests protected resource

2
Presents certificate

4
Sends username:password

5
Accesses protected resource

FIGURE 30–5 User Name- and Password-Based Mutual Authentication

Defining Security Requirements for Web Applications

The Java EE 5 Tutorial • October 2008868

Examples: Securing Web Applications
There are several ways in which you can secure web applications. These include the following
options:

■ You can define a user authentication method for an application in its deployment
descriptor. Authentication verifies the identity of a user, device, or other entity in a
computer system, usually as a prerequisite to allowing access to resources in a system. When
a user authentication method is specified for an application, the web container activates the
specified authentication mechanism when you attempt to access a protected resource.
The options for user authentication methods are discussed in “Specifying an Authentication
Mechanism” on page 860. All of the example security applications use a user authentication
method.

■ You can define a transport guarantee for an application in its deployment descriptor. Use
this method to run over an SSL-protected session and ensure that all message content is
protected for confidentiality or integrity. The options for transport guarantees are discussed
in “Specifying a Secure Connection” on page 859.
When running over an SSL-protected session, the server and client can authenticate one
another and negotiate an encryption algorithm and cryptographic keys before the
application protocol transmits or receives its first byte of data.
SSL technology allows web browsers and web servers to communicate over a secure
connection. In this secure connection, the data is encrypted before being sent, and then is
decrypted upon receipt and before processing. Both the browser and the server encrypt all
traffic before sending any data. For more information, see “Establishing a Secure
Connection Using SSL” on page 787.
Digital certificates are necessary when running HTTP over SSL (HTTPS). The HTTPS
service of most web servers will not run unless a digital certificate has been installed. Digital
certificates have already been created for the Application Server.

The following examples use annotations, programmatic security, and/or declarative security to
demonstrate adding security to existing web applications:

■ “Example: Using Form-Based Authentication with a JSP Page” on page 870
■ “Example: Basic Authentication with a Servlet” on page 879
■ “Example: Basic Authentication with JAX-WS” on page 888
■ “Discussion: Securing the Duke’s Bank Example” on page 833

The following examples demonstrate adding basic authentication to an EJB endpoint or
enterprise bean:

■ “Example: Securing an Enterprise Bean” on page 822
■ “Example: Using the isCallerInRole and getCallerPrincipal Methods” on page 828
■ “Discussion: Securing the Duke’s Bank Example” on page 833

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 869

Example: Using Form-Based Authentication with a JSP
Page
This example discusses how to use form-based authentication with a basic JSP page. With
form-based authentication, you can customize the login screen and error pages that are
presented to the web client for authentication of their user name and password. When a user
submits their name and password, the server determines if the user name and password are
those of an authorized user and, if authorized, sends the requested web resource. If the topic of
authentication is new to you, please refer to the section “Specifying an Authentication
Mechanism” on page 860.

In general, the following steps are necessary for adding form-based authentication to an
unsecured JSP page, such as the one described in “Web Modules” on page 81. In the example
application included with this tutorial, many of these steps have been completed for you and are
listed here simply to show what needs to be done should you wish to create a similar
application. The completed version of this example application can be found in the directory
tut-install/javaeetutorial5/examples/web/hello1_formauth/.

The following steps describe how to set up your system for running the example applications,
describe the sample application, and provide the steps for compiling, packaging, deploying, and
testing the example application.

1. If you have not already done so, set up your system so that the Ant tool and/or NetBeans
IDE will run properly. To do this, follow the instructions in “Building the Examples” on
page 71. This step is necessary to set the properties that are specific to your installation of the
Application Server and Java EE 5 Tutorial.

2. If you have not already done so, add an authorized user to the Application Server. For this
example, add users to the file realm of the Application Server and assign the user to the
group user. This topic is discussed more in “Adding Authorized Roles and Users” on
page 874.

3. Create a web module as described in “Web Modules” on page 81. The subsequent steps
discuss adding security to this basic application. The resulting application is found in the
directory tut-install/javaeetutorial5/examples/web/hello1_formauth/.

4. Create the login form and login error form pages. Files for the example application can be
viewed at tut-install/javaeetutorial5/examples/web/hello1_formauth/web. These
pages are discussed in “Creating the Login Form and the Error Page” on page 871.

5. Create a web.xml deployment descriptor and add the appropriate security elements (the
application on which this section is based did not originally require a deployment
descriptor.) The deployment descriptor for the example application can be viewed at
tut-install/javaeetutorial5/examples/hello1_formauth/web/WEB-INF. The security
elements for the web.xml deployment descriptor are described in “Specifying a Security
Constraint” on page 872.

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008870

6. Map the role name defined for this resource (loginUser) to a group of users defined on the
Application Server. For more information on how to do this, read “Mapping Application
Roles to Application Server Groups” on page 875.

7. Build, package, deploy, and run the web application by following the steps in “Building,
Packaging, and Deploying the Form-Based Authentication Example Using NetBeans IDE”
on page 876 or “Building, Packaging, and Deploying the Form-Based Authentication
Example Using Ant” on page 876.

8. Test the web client, following the steps in “Testing the Form-Based Authentication Web
Client” on page 877.

Creating a Web Client for Form-Based Authentication
The web client in this example is a standard JSP page, and annotations are not used in JSP pages
because JSP pages are compiled as they are presented to the browser. Therefore, none of the
code that adds form-based authentication to the example is included in the web client. The code
for the JSP page used in this example, hello1_formauth/web/index.jsp, is exactly the same as
the code used for the unsecured JSP page from the example application at
tut-install/javaeetutorial5/examples/web/hello1/web/index.jsp.

The information that adds form-based authentication to this example is specified in the
deployment descriptor. This information is discussed in “Specifying a Security Constraint” on
page 872.

Creating the Login Form and the Error Page
When using form-based login mechanisms, you must specify a page that contains the form you
want to use to obtain the user name and password, as well as which page to display if login
authentication fails. This section discusses the login form and the error page used in this
example. The section “Specifying a Security Constraint” on page 872 shows how you specify
these pages in the deployment descriptor.

The login page can be an HTML page, a JSP page, or a servlet, and it must return an HTML page
containing a form that conforms to specific naming conventions (see the Java Servlet 2.5
specification for more information on these requirements). To do this, include the elements
that accept user name and password information between <form></form> tags in your login
page. The content of an HTML page, JSP page, or servlet for a login page should be coded as
follows:

<form method=post action="j_security_check" >

<input type="text" name= "j_username" >

<input type="password" name= "j_password" >

</form>

The full code for the login page used in this example can be found at
tut-install/javaeetutorial5/examples/web/hello1_formauth/web/logon.jsp. An example
of the running login form page is shown later in Figure 30–6. Here is the code for this page:

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 871

<html>

<head>

<title>Login Page</title>

</head>

<h2>Hello, please log in:</h2>

<form action="j_security_check" method=post>

<p>Please Enter Your User Name:

<input type="text" name="j_username" size="25">

<p><p>Please Enter Your Password:

<input type="password" size="15" name="j_password">

<p><p>

<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>

</html>

The login error page is displayed if the user enters a user name and password combination that
is not authorized to access the protected URI. For this example, the login error page can be
found at
tut-install/javaeetutorial5/examples/web/hello1_formauth/web/logonError.jsp. For
this example, the login error page explains the reason for receiving the error page and provides a
link that will allow the user to try again. Here is the code for this page:

<html>

<head>

<title>Login Error</title>

</head>

<body>

<c:url var="url" value="/index.jsp"/>
<h2>Invalid user name or password.</h2>

<p>Please enter a user name or password that is authorized to access this

application. For this application, this means a user that has been created in the

<code>file</code> realm and has been assigned to the group of

<code>user</code>. Click here to Try Again</p>

</body>

</html>

Specifying a Security Constraint
This example takes a very simple JSP page-based web application and adds form-based security
to this application. The JSP page is exactly the same as the JSP page used in the example
described in “Web Modules” on page 81. All security for this example is declared in the
deployment descriptor for the application. A security constraint is defined in the deployment
descriptor that tells the server to send a login form to collect user data, verify that the user is
authorized to access the application, and, if so, display the JSP page to the user.

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008872

If this client were a web service endpoint and not a JSP page, you could use annotations to
declare security roles and to specify which roles were allowed access to which methods.
However, there is no resource injection in JSP pages, so you cannot use annotations and must
use the equivalent deployment descriptor elements.

Deployment descriptor elements are described in “Declaring Security Requirements in a
Deployment Descriptor” on page 853.

The following sample code shows the deployment descriptor used in this example of
form-based login authentication, which can be found in
tut-install/javaeetutorial5/examples/web/hello1_formauth/web/WEB-INF/web.xml.

<!-- FORM-BASED LOGIN AUTHENTICATION EXAMPLE -->

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<display-name>hello1_formauth</display-name>

<servlet>

<display-name>index</display-name>

<servlet-name>index</servlet-name>

<jsp-file>/index.jsp</jsp-file>

</servlet>

<security-constraint>

<display-name>SecurityConstraint</display-name>

<web-resource-collection>

<web-resource-name>WRCollection</web-resource-name>

<url-pattern>/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>loginUser</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

<login-config>

<auth-method>FORM</auth-method>

<form-login-config>

<form-login-page>/logon.jsp</form-login-page>

<form-error-page>/logonError.jsp</form-error-page>

</form-login-config>

</login-config>

<security-role>

<role-name>loginUser</role-name>

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 873

</security-role>

</web-app>

More description of the elements that declare security in a deployment descriptor can be found
in “Specifying Security Constraints” on page 856.

Protecting Passwords with SSL
Passwords are not protected for confidentiality with HTTP basic or form-based authentication,
meaning that passwords sent between a client and a server on an unprotected session can be
viewed and intercepted by third parties. To overcome this limitation, you can run these
authentication protocols over an SSL-protected session and ensure that all message content is
protected for confidentiality.

A <transport-guarantee> element indicates whether or not the protected resources should
travel over protected transport. For simplicity, this example does not require protected
transport, but in a real world application, you would want to set this value to CONFIDENTIAL to
ensure that the user name and password are not observed during transmission. When running
on protected transport, you can run the application over the secure SSL protocol, https, and
specify the secure port where your SSL connector is created (the default for the Application
Server is 8181). If you do not specify the HTTPS protocol, the server will automatically redirect
the application to the secure port.

Adding Authorized Roles and Users
To authenticate a user and allow that user access to protected resources on the Application
Server, you must link the roles defined in the application to the users defined for the Application
Server.

■ An application may define security roles, which are a logical grouping of users, classified by
common traits such as customer profile or job title.

■ The Application Server has multiple realms, each of which generally includes a database of
authorized users, their passwords, and one or more logical groups to which the each user
belongs.

When an application is deployed, the application-specific security roles are mapped to security
identities in the runtime environment, such as principals (identities assigned to users as a result
of authentication) or groups. Based on this mapping, a user who has been assigned a certain
security role has associated access rights to a web application deployed onto a server.

As shown in the deployment descriptor for this example application, the security constraint
specifies that users assigned to the role of loginUser are authorized to access any of the files in
the hello1_formauth application. In this example, when a resource that is constrained by this
same security constraint is accessed, for example, hello1_formauth/web/index.jsp, the
Application Server sends the login form, receives the login information, and checks to see if the
user is in a group that has been mapped to the role of loginUser. If the user name and password
are those of an authorized user, access to the resource is granted to the requester.

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008874

To set up users for this example application, follow these steps:

1. Using the Admin Console, create a user in the file realm of the Application Server and
assign that user to the group user. Make sure to note the user name and password that you
enter in this step so that you can use it for testing the application later (these fields are
case-sensitive). If you need help with the steps required to accomplish this task, read
“Managing Users and Groups on the Application Server” on page 783 for more information.

2. Map the application security role of loginUser to the group of user that has been
configured on the Application Server. For more information on how to do this mapping,
read “Mapping Application Roles to Application Server Groups” on page 875.

Mapping Application Roles to Application Server Groups
Map the role of loginUser defined in the application to the group of user defined on the
Application Server by adding a security-role-mapping element to the sun-web.xml runtime
deployment descriptor file. To deploy a WAR on the Application Server, the WAR file must
contain a runtime deployment descriptor. The runtime deployment descriptor is an XML file
that contains information such as the context root of the web application and the mapping of
the portable names of an application’s resources to the Application Server’s resources.

The runtime deployment descriptor for this example,
tut-install/javaeetutorial5/examples/web/hello1_formauth/web/WEB-INF/sun-web.xml,
looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Application Server 9.0 Servlet 2.5//EN"
"http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app>

<context-root>/hello1_formauth

</context-root>

<security-role-mapping>

<role-name>loginUser</role-name>

<group-name>user</group-name>

</security-role-mapping>

</sun-web-app>

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 875

Building, Packaging, and Deploying the Form-Based Authentication
Example Using NetBeans IDE
To build, package, and deploy this application using NetBeans IDE, follow these steps:

1. Follow the instructions in “Building the Examples” on page 71 if you have not already done
so. This step is necessary to provide the Ant targets with the location of your tutorial and
Application Server installations.

2. Add users to the file realm of the Application Server as described in “Adding Authorized
Roles and Users” on page 874 if you have not already done so.

3. Open the project in NetBeans IDE by selecting File→Open Project.
4. Browse to the tut-install/javaeetutorial5/examples/web/hello1_formauth/ directory.
5. Make sure that Open as Main Project is selected.
6. Select Open Project.
7. If you are prompted to regenerate the build-impl.xml file, select the Regenerate button.
8. Right-click hello1_formauth in the Projects pane, then select Clean and Build.
9. Right-click hello1_formauth in the Projects pane, then select Undeploy and Deploy.
10. Follow the steps in “Testing the Form-Based Authentication Web Client” on page 877.

Building, Packaging, and Deploying the Form-Based Authentication
Example Using Ant
To build, package, and deploy this application using the Ant tool, follow these steps:

1. Follow the instructions in “Building the Examples” on page 71 if you have not already done
so. This step is necessary to provide the Ant targets with the location of your tutorial and
Application Server installations.

2. Add users to the file realm of the Application Server as described in “Adding Authorized
Roles and Users” on page 874 if you have not already done so.

3. From a terminal window or command prompt, change to the
tut-install/javaeetutorial5/examples/web/hello1_formauth/ directory.

4. Enter the following command at the terminal window or command prompt:

ant

This target will spawn any necessary compilations, copy files to the
tut-install/javaeetutorial5/examples/web/hello1_formauth/build/ directory, create
the WAR file, and copy it to the
tut-installjavaeetutorial5/examples/web/hello1_formauth/dist/ directory.

5. Deploy the WAR named hello1_formauth.war onto the Application Server using Ant by
entering the following command at the terminal window or command prompt:

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008876

ant deploy

6. Follow the steps in “Testing the Form-Based Authentication Web Client” on page 877.

Testing the Form-Based Authentication Web Client
To run the web client, follow these steps:

1. Open a web browser.
2. Enter the following URL in your web browser:

http://localhost:8080/hello1_formauth

Note – If you set the transport guarantee to CONFIDENTIAL as discussed in “Protecting
Passwords with SSL” on page 874, you must load the application in a web browser using
https for the protocol, the HTTPS port that you specified during installation for the port
(by default this port is 8181), and the context name for the application you wish to run. For
the form-based authentication example, you could run the example using the following
URL: https://localhost:8181/hello1_formauth.

The login form displays in the browser, as shown in Figure 30–6.
3. Enter a user name and password combination that corresponds to a user that has already

been created in the file realm of the Application Server and has been assigned to the group
of user, as discussed in “Adding Authorized Roles and Users” on page 874.

4. Click the Submit button. Form-based authentication is case-sensitive for both the user name
and password, so enter the user name and password exactly as defined for the Application
Server.
If you entered My_Name as the name and My_Pwd for the password, the server returns the
requested resource if all of the following conditions are met:
■ There is a user defined for the Application Server with the user name of My_Name.
■ The user with the user name of My_Name has a password of My_Pwd defined for the

Application Server.
■ The user My_Name with the password My_Pwd is assigned to the group of user on the

Application Server.
■ The role of loginUser, as defined for the application, is mapped to the group of user, as

defined for the Application Server.
When these conditions are met, and the server has authenticated the user, the
application will display as shown in Figure 30–7.

5. Enter your name and click the Submit button. Because you have already been authorized,
the name you enter in this step does not have any limitations. You have unlimited access to
the application now.

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 877

The application responds by saying “Hello” to you, as shown in Figure 30–8.

FIGURE 30–6 Form-Based Login Page

FIGURE 30–7 Running Web Application

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008878

Note – For repetitive testing of this example, you may need to close and reopen your browser.
You should also run the ant clean and ant undeploy commands to ensure a fresh build if
using the Ant tool, or select Clean and Build then Undeploy and Deploy if using NetBeans IDE.

Example: Basic Authentication with a Servlet
This example discusses how to use basic authentication with a servlet. With basic
authentication of a servlet, the web browser presents a standard login dialog that is not
customizable. When a user submits their name and password, the server determines if the user
name and password are those of an authorized user and sends the requested web resource if the
user is authorized to view it. If the topic of authentication is new to you, please refer to the
section “Specifying an Authentication Mechanism” on page 860.

In general, the following steps are necessary for adding basic authentication to an unsecured
servlet, such as the one described in “Web Modules” on page 81. In the example application
included with this tutorial, many of these steps have been completed for you and are listed here
simply to show what needs to be done should you wish to create a similar application. The
completed version of this example application can be found in the directory
tut-install/javaeetutorial5/examples/web/hello2_basicauth/.

FIGURE 30–8 The Running Form-Based Authentication Example

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 879

The following steps describe how to set up your system for running the example applications,
describe the sample application, and provide the steps for compiling, packaging, deploying, and
testing the example application.

1. If you have not already done so, set up your system so that the Ant tool and/or NetBeans
IDE will run properly. To do this, follow the instructions in “Building the Examples” on
page 71. This step is necessary to set the properties that are specific to your installation of the
Application Server and Java EE 5 Tutorial.

2. If you have not already done so, add an authorized user to the Application Server. For this
example, add users to the file realm of the Application Server and assign the user to the
group user. This topic is discussed more in “Adding Authorized Roles and Users” on
page 883.

3. Create a web module as described in “Web Modules” on page 81 for the servlet example,
hello2. The subsequent steps discuss adding security to this basic application. The files for
this example application are in
tut-install/javaeetutorial5/examples/web/hello2_basicauth/.

4. Declare the roles that will be used in this application. For this example, this is done by
adding the @DeclareRoles annotation to GreetingServlet.java. This code is shown in
“Declaring Security Roles” on page 880.

5. Add the appropriate security elements to the web.xml deployment descriptor. The
deployment descriptor for the example application can be viewed at
tut-install/javaeetutorial5/examples/web/hello2_basicauth/web/WEB-INF/web.xml.
The security elements are described in “Specifying the Security Constraint” on page 881.

6. Map the role name defined for this resource (helloUser) to a group of users defined on the
Application Server. For more information on how to do this, read “Mapping Application
Roles to Application Server Groups” on page 883.

7. Build, package, and deploy the web application by following the steps in “Building,
Packaging, and Deploying the Servlet Basic Authentication Example Using NetBeans IDE”
on page 884 or “Building, Packaging, and Deploying the Servlet Basic Authentication
Example Using Ant” on page 884.

8. Run the web application by following the steps described in “Running the Basic
Authentication Servlet” on page 885.

9. If you have any problems running this example, refer to the troubleshooting tips in
“Troubleshooting the Basic Authentication Example” on page 887.

Declaring Security Roles
There are two annotations that can be used with servlets: @DeclareRoles and @RunAs. In this
example, the @DeclareRoles annotation is used to specify which roles are referenced in this
example.

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008880

The following section of the
tut-install/javaeetutorial5/examples/web/hello2_basicauth/src/servlets/
GreetingServlet.java file contains the code necessary to declare that the role of helloUser is
used in this application:

package servlets;

import java.io.*;

import java.util.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.annotation.security.DeclareRoles;

/**

* This is a simple example of an HTTP Servlet that can only be accessed

* by an authenticated user. It responds to the GET

* method of the HTTP protocol.

*/

@DeclareRoles("helloUser")

public class GreetingServlet extends HttpServlet {

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

You could also declare security roles using the <security-role> element in the deployment
descriptor. If you prefer to declare security roles this way, read “Declaring Roles Using
Deployment Descriptor Elements” on page 850.

Specifying the Security Constraint
This example takes a very simple servlet-based web application and adds basic authentication to
this application. The servlet is basically the same as the servlet used in the example described in
“Web Modules” on page 81, with the exception of the annotations added and discussed in
“Declaring Security Roles” on page 880.

The security constraint for this example is declared in the application deployment descriptor.
The security constraint tells the server or browser to perform the following tasks:

■ Send a standard login dialog to collect user name and password data
■ Verify that the user is authorized to access the application
■ If authorized, display the servlet to the user

Deployment descriptors elements are described in “Declaring Security Requirements in a
Deployment Descriptor” on page 853.

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 881

The following sample code shows the security elements for the deployment descriptor used in
this example of basic authentication, which can be found in
tut-install/javaeetutorial5/examples/web/hello2_basicauth/web/WEB-INF/web.xml.

<security-constraint>

<display-name>SecurityConstraint</display-name>

<web-resource-collection>

<web-resource-name>WRCollection</web-resource-name>

<url-pattern>/greeting</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>helloUser</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>file</realm-name>

</login-config>

More description of the elements that declare security in a deployment descriptor can be found
in “Specifying Security Constraints” on page 856.

Protecting Passwords with SSL

Passwords are not protected for confidentiality with HTTP basic or form-based authentication,
meaning that passwords sent between a client and a server on an unprotected session can be
viewed and intercepted by third parties. To overcome this limitation, you can run these
authentication protocols over an SSL-protected session and ensure that all message content is
protected for confidentiality.

A <transport-guarantee> element indicates whether or not the protected resources should
travel over protected transport. For simplicity, this example does not require protected
transport, but in a real world application, you would want to set this value to CONFIDENTIAL to
ensure that the user name and password are not observed during transmission. When running
on protected transport, you need to use the secure SSL protocol, https, and specify the secure
port where your SSL connector is created (the default for the Application Server is 8181).

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008882

Adding Authorized Roles and Users
To authenticate a user and allow that user access to protected resources on the Application
Server, you must link the roles defined in the application to the users defined for the Application
Server.

■ A security role, which is defined at the application level, is a logical grouping of users,
classified by common traits such as customer profile or job title.

■ The Application Server has multiple realms, each of which generally includes a database of
authorized users, their passwords, and one or more logical groups to which the each user
belongs.

When an application is deployed, the application-specific security roles are mapped to security
identities in the runtime environment, such as principals (identities assigned to users as a result
of authentication) or groups. Based on this mapping, a user who has been assigned a certain
security role has associated access rights to a web application deployed onto a server.

As shown in the deployment descriptor for this example application, the security constraint
specifies that users assigned to the role of helloUser are authorized to access the URL pattern
/greeting. In this example, when this resource (because it is constrained by a security
constraint) is accessed, the Application Server sends a default login dialog, receives the login
information, and checks to see if the user is in a group that has been mapped to the role of
helloUser. If the user name and password are those of an authorized user, access to the
resource is granted to the requester.

To set up users for this example application, follow these steps:

1. If you have not already done so, create a user in the file realm of the Application Server and
assign that user to the group user. Make sure to note the user name and password that you
enter in this step so that you can use it for testing the application later. If you need help with
the steps required to accomplish this task, read “Managing Users and Groups on the
Application Server” on page 783 for more information.

2. Map the application security role of helloUser to the group of user that has been
configured on the Application Server. For more information on how to do this mapping,
read “Mapping Application Roles to Application Server Groups” on page 883.

Mapping Application Roles to Application Server Groups
Map the role of helloUser defined in the application to the group of user defined on the
Application Server by adding a security-role-mapping element to the sun-web.xml runtime
deployment descriptor file. The runtime deployment descriptor is an XML file that contains
information such as the context root of the web application and the mapping of the portable
names of an application’s resources to the Application Server’s resources.

The runtime deployment descriptor for this example,
tut-install/javaeetutorial5/examples/web/hello2_basicauth/web/WEB-INF/sun-web.xml,
looks like this:

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 883

<sun-web-app>

<context-root>/hello2_basicauth</context-root>

<security-role-mapping>

<role-name>helloUser</role-name>

<group-name>user</group-name>

</security-role-mapping>

</sun-web-app>

Building, Packaging, and Deploying the Servlet Basic Authentication
Example Using NetBeans IDE
To build, package, and deploy the web/hello2_basicauth example application using NetBeans
IDE, follow these steps:

1. If you have not already done so, follow the instructions in “Building the Examples” on
page 71. This step is necessary to provide the Ant targets with the location of your tutorial
and Application Server installations.

2. If you have not already done so, add authorized users to the file realm of the Application
Server as described in “Adding Authorized Roles and Users” on page 883.

3. Open the project in NetBeans IDE by selecting File→Open Project.
4. Browse to the tut-installjavaeetutorial5/examples/web/hello2_basicauth/ directory.
5. Make sure that Open as Main Project is selected.
6. Select Open Project.
7. Right-click hello2_basicauth in the Projects pane, then select Clean and Build.
8. Right-click hello2_basicauth in the Projects pane, then select Undeploy and Deploy.
9. To run the servlet, follow the steps in “Running the Basic Authentication Servlet” on

page 885.

Building, Packaging, and Deploying the Servlet Basic Authentication
Example Using Ant
To build, package, and deploy the web/hello2_basicauth example using the Ant tool, follow
these steps:

1. If you have not already done so, follow the instructions in “Building the Examples” on
page 71. This step is necessary to provide the Ant targets with the location of your tutorial
and Application Server installations.

2. If you have not already done so, add authorized users to the file realm of the Application
Server as described in “Adding Authorized Roles and Users” on page 883.

3. From a terminal window or command prompt, change to the
tut-install/javaeetutorial5/examples/web/hello2_basicauth/ directory.

4. Build and package the web application by entering the following command at the terminal
window or command prompt:

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008884

ant

This command uses web.xml and sun-web.xml files, located in the
tut-install/javaeetutorial5/examples/web/hello2_basicauth/web/WEB-INF/ directory.

5. To deploy the example using Ant, enter the following command at the terminal window or
command prompt:

ant deploy

The deploy target in this case gives you an incorrect URL to run the application. To run the
application, please use the URL shown in “Running the Basic Authentication Servlet” on
page 885.

6. To run the web application, follow the steps in “Running the Basic Authentication Servlet”
on page 885.

Running the Basic Authentication Servlet
To run the web client, follow these steps:

1. Open a web browser.
2. Enter the following URL in your web browser:

http://localhost:8080/hello2_basicauth/greeting

If you set the transport guarantee to CONFIDENTIAL as discussed in “Protecting
Passwords with SSL” on page 882, you must load the application in a web browser using
https for the protocol, the HTTPS port that you specified during installation for the port
(by default this port is 8181), and the context name for the application you wish to run. For
the basic authentication example, you could run the example using the following URL:
https://localhost:8181/hello2_basicauth/greeting.

3. A default login form displays. Enter a user name and password combination that
corresponds to a user that has already been created in the file realm of the Application
Server and has been assigned to the group of user, as discussed in “Adding Authorized Roles
and Users” on page 883.
Basic authentication is case-sensitive for both the user name and password, so enter the user
name and password exactly as defined for the Application Server.
If you entered My_Name as the name and My_Pwd for the password, the server returns the
requested resource if all of the following conditions are met:
■ There is a user defined for the Application Server with the user name of My_Name.
■ The user with the user name of My_Name has a password of My_Pwd defined for the

Application Server.
■ The user My_Name with the password My_Pwd is assigned to the group of user on the

Application Server.

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 885

■ The role of helloUser, as defined for the application, is mapped to the group of user, as
defined for the Application Server.

When these conditions are met, and the server has authenticated the user, the application
will display as shown in Figure 30–9.

4. Enter your name and click the Submit button. Because you have already been authorized,
the name you enter in this step does not have any limitations. You have unlimited access to
the application now.

The application responds by saying “Hello” to you, as shown in Figure 30–10.

FIGURE 30–9 Running the Application

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008886

Note – For repetitive testing of this example, you may need to close and reopen your browser.
You should also run the ant clean and ant undeploy targets or the NetBeans IDE Clean and
Build option to get a fresh start.

Troubleshooting the Basic Authentication Example
When doing iterative development with this web application, follow these steps if you are using
NetBeans IDE:

1. Close your web browser.
2. Clean and recompile the files from the previous build by right-clicking hello2_basicauth

and selecting Clean and Build.
3. Redeploy the application by right-clicking hello2_basicauth and selecting Undeploy and

Deploy.
4. Open your web browser and reload the following URL:

http://localhost:8080/hello2_basicauth/greeting

Follow these steps if you are using the Ant tool:

1. Close your web browser.
2. Undeploy the web application. To undeploy the application, use the following command in

the directory:

ant undeploy

3. Clean out files from the previous build, using the following command:

FIGURE 30–10 The Running Basic Authentication Example

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 887

ant clean

4. Recompile, repackage, and redeploy the application, using the following commands:

ant

ant deploy

5. Open your web browser and reload the following URL:

http://localhost:8080/hello2_basicauth/greeting

Example: Basic Authentication with JAX-WS
This section discusses how to configure a JAX-WS-based web service for HTTP basic
authentication. When a service that is constrained by HTTP basic authentication is requested,
the server requests a user name and password from the client and verifies that the user name
and password are valid by comparing them against a database of authorized users.

If the topic of authentication is new to you, refer to the section titled “Specifying an
Authentication Mechanism” on page 860. For an explanation of how basic authentication
works, see Figure 30–2.

For this tutorial, you will add the security elements to the JAX-WS service and client; build,
package, and deploy the service; and then build and run the client application.

This example service was developed by starting with an unsecured service, helloservice,
which can be found in the directory
tut-install/javaeetutorial5/examples/jaxws/helloservice and is discussed in “Creating a
Simple Web Service and Client with JAX-WS” on page 482. You build on this simple
application by adding the necessary elements to secure the application using basic
authentication. The example client used in this application can be found at
tut-install/javaeetutorial5/examples/jaxws/simpleclient-basicauth, which only varies
from the original simpleclient application in that it uses the helloservice-basicauth
endpoint instead of the helloservice endpoint. The completed version of the secured service
can be found at tut-install/javaeetutorial5/examples/jaxws/helloservice-basicauth.

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008888

In general, the following steps are necessary to add basic authentication to a JAX-WS web
service. In the example application included with this tutorial, many of these steps have been
completed for you and are listed here simply to show what needs to be done should you wish to
create a similar application.

1. Create an application like the one in “Creating a Simple Web Service and Client with
JAX-WS” on page 482. The example in this tutorial starts with that example and
demonstrates adding basic authentication of the client to this application. The completed
version of this application is located in the directories
tut-install/javaeetutorial5/examples/jaxws/helloservice-basicauth and
tut-install/javaeetutorial5/examples/jaxws/simpleclient-basicauth.

2. If the port value was set to a value other than the default (8080), follow the instructions in
“Setting the Port” on page 482 to update the example files to reflect this change.

3. If you have not already done so, follow the steps in “Building the Examples” on page 71 for
information on setting up your system to run the example.

4. If you have not already done so, add a user to the file realm and specify user for the group
of this new user. Write down the user name and password so that you can use them for
testing this application in a later step. If you have not already completed this step, refer to the
section “Managing Users and Groups on the Application Server” on page 783 for
instructions.

5. Modify the source code for the service, Hello.java, to specify which roles are authorized to
access the sayHello (String name) method. This step is discussed in “Annotating the
Service” on page 889.

6. Add security elements that specify that basic authentication is to be performed to the
application deployment descriptor, web.xml. This step is discussed in “Adding Security
Elements to the Deployment Descriptor” on page 890.

7. Modify the runtime deployment descriptor, sun-web.xml, to map the role used in this
application (basicUser) to a group defined on the Application Server (user). This step is
discussed in “Linking Roles to Groups” on page 891.

8. Build, package, and deploy the web service. See “Building and Deploying helloservice
with Basic Authentication Using NetBeans IDE” on page 892 or “Building and Deploying
helloservice with Basic Authentication Using Ant” on page 893 for the steps to accomplish
this.

9. Build and run the client application. See “Building and Running the helloservice Client
Application with Basic Authentication Using NetBeans IDE” on page 893 or “Building and
Running the helloservice Client Application with Basic Authentication Using Ant” on
page 894 for the steps to accomplish this.

Annotating the Service
In this example, annotations are used to specify which users are authorized to access which
methods of this service. In this simple example, the @RolesAllowed annotation is used to

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 889

specify that users in the application role of basicUser are authorized access to the
sayHello(String name) method. This application role must be linked to a group of users on
the Application Server. Linking the roles to groups is discussed in “Linking Roles to Groups” on
page 891.

The source code for the original /helloservice application was modified as shown in the
following code snippet (modifications in bold). This file can be found in the following location:

tut-install/javaeetutorial5/examples/jaxws/helloservice-basicauth/src/java/helloservice/
basicauth/endpoint/Hello.java

The code snippet is as follows:

package helloservice.basicauth.endpoint;

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.annotation.security.RolesAllowed;

@WebService()

public class Hello {

private String message = new String("Hello, ");

@WebMethod()

@RolesAllowed("basicUser")

public String sayHello(String name) {

return message + name + ".";

}

}

The @RolesAllowed annotation specifies that only users in the role of basicUser will be allowed
to access the sayHello (String name) method. An @RolesAllowed annotation implicitly
declares a role that will be referenced in the application, therefore, no @DeclareRoles

annotation is required.

Adding Security Elements to the Deployment Descriptor
To enable basic authentication for the service, add security elements to the application
deployment descriptor, web.xml. The security elements that need to be added to the
deployment descriptor include the <security-constraint> and <login-config>elements.
These security elements are discussed in more detail in “Declaring Security Requirements in a
Deployment Descriptor” on page 853 and in the Java Servlet Specification. Code in bold is
added to the original deployment descriptor to enable HTTP basic authentication. The
resulting deployment descriptor is located in
tut-install/javaeetutorial5/examples/jaxws/helloservice-basicauth/web/WEB-INF/
web.xml.

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008890

<?xml version="1.0" encoding="UTF-8"?><web-app

xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"

xmlns:xsi="http://www.w3.org/2001/XMLSchema"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<display-name>HelloService</display-name>

<listener>

<listener-class>

com.sun.xml.ws.transport.http.servlet.WSServletContextListener

</listener-class>

</listener>

<servlet>

<display-name>HelloService</display-name>

<servlet-name>HelloService</servlet-name>

<servlet-class>com.sun.xml.ws.transport.http.servlet.WSServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloService</servlet-name>

<url-pattern>/hello</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>30</session-timeout>

</session-config>

<security-constraint>

<display-name>SecurityConstraint</display-name>

<web-resource-collection>

<web-resource-name>WRCollection</web-resource-name>

<url-pattern>/hello</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>basicUser</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

<login-config>

<auth-constraint>BASIC</auth-constraint>

<realm-name>file</realm-name>

</login-config>

</web-app>

Linking Roles to Groups
The role of basicUser has been defined for this application, but there is no group of basicUser
defined for the Application Server. To map the role that is defined for the application
(basicUser) to a group that is defined on the Application Server (user), add a
<security-role-mapping> element to the runtime deployment descriptor, sun-web.xml, as

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 891

shown below (modifications from the original file are in bold). The resulting runtime
deployment descriptor is located in
tut-install/javaeetutorial5/examples/jaxws/helloservice-basicauth/web/WEB-INF/
sun-web.xml.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Application Server 9.0 Servlet 2.5//EN"
"http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app error-url="">

<context-root>/helloservice</context-root>

<class-loader delegate="true"/>
<security-role-mapping>

<role-name>basicUser</role-name>

<group-name>user</group-name>

</security-role-mapping>

</sun-web-app>

Building and Deploying helloservicewith Basic Authentication Using
NetBeans IDE
To build, package, and deploy the jaxws/helloservice-basicauth example using NetBeans
IDE, follow these steps, or the steps described in “Building, Packaging, and Deploying the
Service” on page 484.

1. If you have not already done so, set up your system for running the tutorial examples by
following the instructions in “Building the Examples” on page 71.

2. If you haven’t already done so, set up an authorized user on the Application Server, assigned
to the group user, as described in “Managing Users and Groups on the Application Server”
on page 783.

3. In NetBeans IDE, select File→Open Project.
4. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxws/.
5. Select the helloservice-basicauth folder.
6. Check the Open as Main Project and Open Required Projects check boxes.
7. Click Open Project.
8. In the Projects tab, right-click the helloservice-basicauth project and select Clean and

Build.
9. In the Projects tab, right-click the helloservice-basicauth project and select Undeploy

and Deploy.
This step builds and packages the application into helloservice-basicauth.war, located
in tut-install/javaeetutorial5/examples/jaxws/helloservice-basicauth/dist, and
deploys this war file to your Application Server instance.

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008892

Building and Deploying helloservicewith Basic Authentication Using
Ant
To build, package, and deploy the jaxws/helloservice-basicauth example using the Ant
tool, follow these steps, or the steps described in “Building, Packaging, and Deploying the
Service” on page 484.

1. If you have not already done so, set up your system for running the tutorial examples by
following the instructions in “Building the Examples” on page 71.

2. If you haven’t already done so, set up an authorized user on the Application Server, assigned
to the group user, as described in “Managing Users and Groups on the Application Server”
on page 783.

3. From a terminal window or command prompt, go to the
tut-install/javaeetutorial5/examples/jaxws/helloservice-basicauth/ directory.

4. Build, package, and deploy the JAX-WS service by entering the following at the terminal
window or command prompt in the helloservice-basicauth/ directory:

ant all

You can test the service by selecting it in the Admin Console and choosing Test. For more
information on how to do this, read “Testing the Service without a Client” on page 486.

Building and Running the helloserviceClient Application with Basic
Authentication Using NetBeans IDE
To build and run the client application, simpleclient-basicauth, using NetBeans IDE, follow
these steps. The helloservice-basicauth service must be deployed onto the Application
Server before compiling the client files. For information on deploying the service, read
“Building and Deploying helloservice with Basic Authentication Using NetBeans IDE” on
page 892.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jaxws/.
3. Select the simpleclient-basicauth folder.
4. Check the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. In the Projects tab, right-click the simpleclient-basicauth project and select Clean and

Build.
7. In the Projects tab, right-click the simpleclient-basicauth project and select Run.

You will be prompted for your user name and password.
8. Enter the user name and password of a user that has been entered into the database of users

for the file realm and has been assigned to the group of user.

Examples: Securing Web Applications

Chapter 30 • Securing Web Applications 893

If the username and password you enter are authorized, you will see the output of the
application client in the Output pane.

The client displays the following output:

[echo] running application client container.

[exec] Retrieving the port from the following service:

helloservice.basicauth.endpoint.HelloService@c8769b

[exec] Invoking the sayHello operation on the port.

[exec] Hello, No Name.

Building and Running the helloserviceClient Application with Basic
Authentication Using Ant
To build and run the client application, simpleclient-basicauth, using the Ant tool, follow
these steps. The secured service must be deployed onto the Application Server before you can
successfully compile the client application. For more information on deploying the service, read
“Building and Deploying helloservice with Basic Authentication Using Ant” on page 893.

1. Build the client by changing to the directory
tut-install/examples/jaxws/simpleclient-basicauth/ and entering the following at the
terminal window or command prompt:

ant

This command calls the default target, which builds and packages the application into a
JAR file, simpleclient-basicauth.jar, located in the /dist directory.

2. Run the client by entering the following at the terminal window or command prompt:

ant run

A Login for User dialog displays.
3. Enter a user name and password that correspond to a user set up on the Application Server

with a group of user. Click OK.

The client displays the following output:

[echo] running application client container.

[exec] Retrieving the port from the following service:

helloservice.basicauth.endpoint.HelloService@c8769b

[exec] Invoking the sayHello operation on the port.

[exec] Hello, No Name.

Examples: Securing Web Applications

The Java EE 5 Tutorial • October 2008894

The Java Message Service API

This chapter provides an introduction to the Java Message Service (JMS) API, a Java API that
allows applications to create, send, receive, and read messages using reliable, asynchronous,
loosely coupled communication. It covers the following topics:

■ “Overview of the JMS API” on page 895
■ “Basic JMS API Concepts” on page 898
■ “The JMS API Programming Model” on page 902
■ “Writing Simple JMS Client Applications” on page 913
■ “Creating Robust JMS Applications” on page 937
■ “Using the JMS API in a Java EE Application” on page 956
■ “Further Information about JMS” on page 963

Overview of the JMS API
This overview of the JMS API answers the following questions.

■ “What Is Messaging?” on page 895
■ “What Is the JMS API?” on page 896
■ “When Can You Use the JMS API?” on page 896
■ “How Does the JMS API Work with the Java EE Platform?” on page 898

What Is Messaging?
Messaging is a method of communication between software components or applications. A
messaging system is a peer-to-peer facility: A messaging client can send messages to, and
receive messages from, any other client. Each client connects to a messaging agent that provides
facilities for creating, sending, receiving, and reading messages.

Messaging enables distributed communication that is loosely coupled. A component sends a
message to a destination, and the recipient can retrieve the message from the destination.

31C H A P T E R 3 1

895

However, the sender and the receiver do not have to be available at the same time in order to
communicate. In fact, the sender does not need to know anything about the receiver; nor does
the receiver need to know anything about the sender. The sender and the receiver need to know
only which message format and which destination to use. In this respect, messaging differs from
tightly coupled technologies, such as Remote Method Invocation (RMI), which require an
application to know a remote application’s methods.

Messaging also differs from electronic mail (email), which is a method of communication
between people or between software applications and people. Messaging is used for
communication between software applications or software components.

What Is the JMS API?
The Java Message Service is a Java API that allows applications to create, send, receive, and read
messages. Designed by Sun and several partner companies, the JMS API defines a common set
of interfaces and associated semantics that allow programs written in the Java programming
language to communicate with other messaging implementations.

The JMS API minimizes the set of concepts a programmer must learn in order to use messaging
products but provides enough features to support sophisticated messaging applications. It also
strives to maximize the portability of JMS applications across JMS providers in the same
messaging domain.

The JMS API enables communication that is not only loosely coupled but also

■ Asynchronous: A JMS provider can deliver messages to a client as they arrive; a client does
not have to request messages in order to receive them.

■ Reliable: The JMS API can ensure that a message is delivered once and only once. Lower
levels of reliability are available for applications that can afford to miss messages or to
receive duplicate messages.

The JMS specification was first published in August 1998. The latest version is Version 1.1,
which was released in April 2002. You can download a copy of the specification from the JMS
web site: http://java.sun.com/products/jms/.

When Can You Use the JMS API?
An enterprise application provider is likely to choose a messaging API over a tightly coupled
API, such as remote procedure call (RPC), under the following circumstances.

■ The provider wants the components not to depend on information about other
components’ interfaces, so that components can be easily replaced.

■ The provider wants the application to run whether or not all components are up and
running simultaneously.

Overview of the JMS API

The Java EE 5 Tutorial • October 2008896

http://java.sun.com/products/jms/

■ The application business model allows a component to send information to another and to
continue to operate without receiving an immediate response.

For example, components of an enterprise application for an automobile manufacturer can use
the JMS API in situations like these:

■ The inventory component can send a message to the factory component when the inventory
level for a product goes below a certain level so that the factory can make more cars.

■ The factory component can send a message to the parts components so that the factory can
assemble the parts it needs.

■ The parts components in turn can send messages to their own inventory and order
components to update their inventories and to order new parts from suppliers.

■ Both the factory and the parts components can send messages to the accounting component
to update their budget numbers.

■ The business can publish updated catalog items to its sales force.

Using messaging for these tasks allows the various components to interact with one another
efficiently, without tying up network or other resources. Figure 31–1 illustrates how this simple
example might work.

Manufacturing is only one example of how an enterprise can use the JMS API. Retail
applications, financial services applications, health services applications, and many others can
make use of messaging.

Inventory Factory Parts

Sales Accounting

Parts
Inventory

Parts
Order

FIGURE 31–1 Messaging in an Enterprise Application

Overview of the JMS API

Chapter 31 • The Java Message Service API 897

How Does the JMS API Work with the Java EE Platform?
When the JMS API was introduced in 1998, its most important purpose was to allow Java
applications to access existing messaging-oriented middleware (MOM) systems, such as
MQSeries from IBM. Since that time, many vendors have adopted and implemented the JMS
API, so a JMS product can now provide a complete messaging capability for an enterprise.

Beginning with the 1.3 release of the Java EE platform, the JMS API has been an integral part of
the platform, and application developers can use messaging with Java EE components.

The JMS API in the Java EE platform has the following features.

■ Application clients, Enterprise JavaBeans (EJB) components, and web components can send
or synchronously receive a JMS message. Application clients can in addition receive JMS
messages asynchronously. (Applets, however, are not required to support the JMS API.)

■ Message-driven beans, which are a kind of enterprise bean, enable the asynchronous
consumption of messages. A JMS provider can optionally implement concurrent processing
of messages by message-driven beans.

■ Message send and receive operations can participate in distributed transactions, which
allow JMS operations and database accesses to take place within a single transaction.

The JMS API enhances the Java EE platform by simplifying enterprise development, allowing
loosely coupled, reliable, asynchronous interactions among Java EE components and legacy
systems capable of messaging. A developer can easily add new behavior to a Java EE application
that has existing business events by adding a new message-driven bean to operate on specific
business events. The Java EE platform, moreover, enhances the JMS API by providing support
for distributed transactions and allowing for the concurrent consumption of messages. For
more information, see the Enterprise JavaBeans specification, v3.0.

The JMS provider can be integrated with the application server using the Java EE Connector
architecture. You access the JMS provider through a resource adapter. This capability allows
vendors to create JMS providers that can be plugged in to multiple application servers, and it
allows application servers to support multiple JMS providers. For more information, see the
Java EE Connector architecture specification, v1.5.

Basic JMS API Concepts
This section introduces the most basic JMS API concepts, the ones you must know to get started
writing simple JMS client applications:

■ “JMS API Architecture” on page 899
■ “Messaging Domains” on page 900
■ “Message Consumption” on page 902

Basic JMS API Concepts

The Java EE 5 Tutorial • October 2008898

The next section introduces the JMS API programming model. Later sections cover more
advanced concepts, including the ones you need to write Java EE applications that use
message-driven beans.

JMS API Architecture
A JMS application is composed of the following parts.

■ A JMS provider is a messaging system that implements the JMS interfaces and provides
administrative and control features. An implementation of the Java EE platform includes a
JMS provider.

■ JMS clients are the programs or components, written in the Java programming language,
that produce and consume messages. Any Java EE application component can act as a JMS
client.

■ Messages are the objects that communicate information between JMS clients.
■ Administered objects are preconfigured JMS objects created by an administrator for the use

of clients. The two kinds of JMS administered objects are destinations and connection
factories, which are described in “JMS Administered Objects” on page 903.

Figure 31–2 illustrates the way these parts interact. Administrative tools allow you to bind
destinations and connection factories into a JNDI namespace. A JMS client can then use
resource injection to access the administered objects in the namespace and then establish a
logical connection to the same objects through the JMS provider.

Basic JMS API Concepts

Chapter 31 • The Java Message Service API 899

Messaging Domains
Before the JMS API existed, most messaging products supported either the point-to-point or the
publish/subscribe approach to messaging. The JMS specification provides a separate domain for
each approach and defines compliance for each domain. A stand-alone JMS provider can
implement one or both domains. A Java EE provider must implement both domains.

In fact, most implementations of the JMS API support both the point-to-point and the
publish/subscribe domains, and some JMS clients combine the use of both domains in a single
application. In this way, the JMS API has extended the power and flexibility of messaging
products.

The JMS 1.1 specification goes one step further: It provides common interfaces that enable you
to use the JMS API in a way that is not specific to either domain. The following subsections
describe the two messaging domains and then describe the use of the common interfaces.

Point-to-Point Messaging Domain
A point-to-point (PTP) product or application is built on the concept of message queues,
senders, and receivers. Each message is addressed to a specific queue, and receiving clients
extract messages from the queues established to hold their messages. Queues retain all messages
sent to them until the messages are consumed or until the messages expire.

PTP messaging has the following characteristics and is illustrated in Figure 31–3.

Administrative
Tool

JMS
Client

JNDI Namespace

CF D

JMS Provider

Bind

Inject
Resource

Logical
Connection

FIGURE 31–2 JMS API Architecture

Basic JMS API Concepts

The Java EE 5 Tutorial • October 2008900

■ Each message has only one consumer.
■ A sender and a receiver of a message have no timing dependencies. The receiver can fetch

the message whether or not it was running when the client sent the message.
■ The receiver acknowledges the successful processing of a message.

Use PTP messaging when every message you send must be processed successfully by one
consumer.

Publish/Subscribe Messaging Domain
In a publish/subscribe (pub/sub) product or application, clients address messages to a topic,
which functions somewhat like a bulletin board. Publishers and subscribers are generally
anonymous and can dynamically publish or subscribe to the content hierarchy. The system
takes care of distributing the messages arriving from a topic’s multiple publishers to its multiple
subscribers. Topics retain messages only as long as it takes to distribute them to current
subscribers.

Pub/sub messaging has the following characteristics.

■ Each message can have multiple consumers.
■ Publishers and subscribers have a timing dependency. A client that subscribes to a topic can

consume only messages published after the client has created a subscription, and the
subscriber must continue to be active in order for it to consume messages.

The JMS API relaxes this timing dependency to some extent by allowing subscribers to create
durable subscriptions, which receive messages sent while the subscribers are not active. Durable
subscriptions provide the flexibility and reliability of queues but still allow clients to send
messages to many recipients. For more information about durable subscriptions, see “Creating
Durable Subscriptions” on page 944.

Use pub/sub messaging when each message can be processed by zero, one, or many consumers.
Figure 31–4 illustrates pub/sub messaging.

Sends

MsgClient 1 Queue

Msg

Consumes Client 2
Acknowledges

FIGURE 31–3 Point-to-Point Messaging

Basic JMS API Concepts

Chapter 31 • The Java Message Service API 901

Programming with the Common Interfaces
Version 1.1 of the JMS API allows you to use the same code to send and receive messages under
either the PTP or the pub/sub domain. The destinations that you use remain domain-specific,
and the behavior of the application will depend in part on whether you are using a queue or a
topic. However, the code itself can be common to both domains, making your applications
flexible and reusable. This tutorial describes and illustrates these common interfaces.

Message Consumption
Messaging products are inherently asynchronous: There is no fundamental timing dependency
between the production and the consumption of a message. However, the JMS specification
uses this term in a more precise sense. Messages can be consumed in either of two ways:
■ Synchronously: A subscriber or a receiver explicitly fetches the message from the

destination by calling the receive method. The receive method can block until a message
arrives or can time out if a message does not arrive within a specified time limit.

■ Asynchronously: A client can register a message listener with a consumer. A message
listener is similar to an event listener. Whenever a message arrives at the destination, the
JMS provider delivers the message by calling the listener’s onMessage method, which acts on
the contents of the message.

The JMS API Programming Model
The basic building blocks of a JMS application consist of
■ Administered objects: connection factories and destinations
■ Connections
■ Sessions
■ Message producers
■ Message consumers

Publishes

MsgClient 1 Topic Msg

Subscribes
Client 2

Delivers

Subscribes
Client 3

Delivers

FIGURE 31–4 Publish/Subscribe Messaging

The JMS API Programming Model

The Java EE 5 Tutorial • October 2008902

■ Messages

Figure 31–5 shows how all these objects fit together in a JMS client application.

This section describes all these objects briefly and provides sample commands and code
snippets that show how to create and use the objects. The last subsection briefly describes JMS
API exception handling.

Examples that show how to combine all these objects in applications appear in later sections.
For more details, see the JMS API documentation, which is part of the Java EE API
documentation.

JMS Administered Objects
Two parts of a JMS application, destinations and connection factories, are best maintained
administratively rather than programmatically. The technology underlying these objects is
likely to be very different from one implementation of the JMS API to another. Therefore, the
management of these objects belongs with other administrative tasks that vary from provider to
provider.

Msg

Connection

SessionMessage
Producer

Message
Consumer

Connection
Factory

DestinationDestination

Creates

Creates

CreatesCreates

CreatesSends
To

Receives
From

FIGURE 31–5 The JMS API Programming Model

The JMS API Programming Model

Chapter 31 • The Java Message Service API 903

JMS clients access these objects through interfaces that are portable, so a client application can
run with little or no change on more than one implementation of the JMS API. Ordinarily, an
administrator configures administered objects in a JNDI namespace, and JMS clients then
access them by using resource injection.

With Sun Java System Application Server Platform Edition 9, you use the asadmin command or
the Admin Console to create JMS administered objects in the form of resources.

JMS Connection Factories
A connection factory is the object a client uses to create a connection to a provider. A connection
factory encapsulates a set of connection configuration parameters that has been defined by an
administrator. Each connection factory is an instance of the ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory interface. To learn how to create
connection factories, see “Creating JMS Administered Objects for the Synchronous Receive
Example” on page 917.

At the beginning of a JMS client program, you usually inject a connection factory resource into
a ConnectionFactory object. For example, the following code fragment specifies a resource
whose JNDI name is jms/ConnectionFactory and assigns it to a ConnectionFactory object:

@Resource(mappedName="jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;

In a Java EE application, JMS administered objects are normally placed in the jms naming
subcontext.

Note – The mappedName element of the @Resource annotation is specific to the Application
Server.

JMS Destinations
A destination is the object a client uses to specify the target of messages it produces and the
source of messages it consumes. In the PTP messaging domain, destinations are called queues.
In the pub/sub messaging domain, destinations are called topics. A JMS application can use
multiple queues or topics (or both). To learn how to create destination resources, see “Creating
JMS Administered Objects for the Synchronous Receive Example” on page 917.

To create a destination using the Application Server, you create a JMS destination resource that
specifies a JNDI name for the destination.

In the Application Server implementation of JMS, each destination resource refers to a physical
destination. You can create a physical destination explicitly, but if you do not, the Application
Server creates it when it is needed and deletes it when you delete the destination resource.

The JMS API Programming Model

The Java EE 5 Tutorial • October 2008904

In addition to injecting a connection factory resource into a client program, you usually inject a
destination resource. Unlike connection factories, destinations are specific to one domain or
the other. To create an application that allows you to use the same code for both topics and
queues, you assign the destination to a Destination object.

The following code specifies two resources, a queue and a topic. The resource names are
mapped to destinations created in the JNDI namespace.

@Resource(mappedName="jms/Queue")
private static Queue queue;

@Resource(mappedName="jms/Topic")
private static Topic topic;

With the common interfaces, you can mix or match connection factories and destinations. That
is, in addition to using the ConnectionFactory interface, you can inject a
QueueConnectionFactory resource and use it with a Topic, and you can inject a
TopicConnectionFactory resource and use it with a Queue. The behavior of the application will
depend on the kind of destination you use and not on the kind of connection factory you use.

JMS Connections
A connection encapsulates a virtual connection with a JMS provider. A connection could
represent an open TCP/IP socket between a client and a provider service daemon. You use a
connection to create one or more sessions.

Connections implement the Connection interface. When you have a ConnectionFactory
object, you can use it to create a Connection:

Connection connection = connectionFactory.createConnection();

Before an application completes, you must close any connections that you have created. Failure
to close a connection can cause resources not to be released by the JMS provider. Closing a
connection also closes its sessions and their message producers and message consumers.

connection.close();

Before your application can consume messages, you must call the connection’s start method;
for details, see “JMS Message Consumers” on page 907. If you want to stop message delivery
temporarily without closing the connection, you call the stop method.

The JMS API Programming Model

Chapter 31 • The Java Message Service API 905

JMS Sessions
A session is a single-threaded context for producing and consuming messages. You use sessions
to create the following:

■ Message producers
■ Message consumers
■ Messages
■ Queue browsers
■ Temporary queues and topics (see “Creating Temporary Destinations” on page 943)

Sessions serialize the execution of message listeners; for details, see “JMS Message Listeners” on
page 908.

A session provides a transactional context with which to group a set of sends and receives into
an atomic unit of work. For details, see “Using JMS API Local Transactions” on page 949.

Sessions implement the Session interface. After you create a Connection object, you use it to
create a Session:

Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

The first argument means that the session is not transacted; the second means that the session
automatically acknowledges messages when they have been received successfully. (For more
information, see “Controlling Message Acknowledgment” on page 938.)

To create a transacted session, use the following code:

Session session = connection.createSession(true, 0);

Here, the first argument means that the session is transacted; the second indicates that message
acknowledgment is not specified for transacted sessions. For more information on transactions,
see “Using JMS API Local Transactions” on page 949. For information about the way JMS
transactions work in Java EE applications, see “Using the JMS API in a Java EE Application” on
page 956.

JMS Message Producers
A message producer is an object that is created by a session and used for sending messages to a
destination. It implements the MessageProducer interface.

You use a Session to create a MessageProducer for a destination. The following examples show
that you can create a producer for a Destination object, a Queue object, or a Topic object:

The JMS API Programming Model

The Java EE 5 Tutorial • October 2008906

MessageProducer producer = session.createProducer(dest);

MessageProducer producer = session.createProducer(queue);

MessageProducer producer = session.createProducer(topic);

You can create an unidentified producer by specifying null as the argument to
createProducer. With an unidentified producer, you do not specify a destination until you
send a message.

After you have created a message producer, you can use it to send messages by using the send
method:

producer.send(message);

You must first create the messages; see “JMS Messages” on page 909.

If you created an unidentified producer, use an overloaded send method that specifies the
destination as the first parameter. For example:

MessageProducer anon_prod = session.createProducer(null);

anon_prod.send(dest, message);

JMS Message Consumers
A message consumer is an object that is created by a session and used for receiving messages sent
to a destination. It implements the MessageConsumer interface.

A message consumer allows a JMS client to register interest in a destination with a JMS
provider. The JMS provider manages the delivery of messages from a destination to the
registered consumers of the destination.

For example, you could use a Session to create a MessageConsumer for a Destination object, a
Queue object, or a Topic object:

MessageConsumer consumer = session.createConsumer(dest);

MessageConsumer consumer = session.createConsumer(queue);

MessageConsumer consumer = session.createConsumer(topic);

You use the Session.createDurableSubscriber method to create a durable topic subscriber.
This method is valid only if you are using a topic. For details, see “Creating Durable
Subscriptions” on page 944.

After you have created a message consumer, it becomes active, and you can use it to receive
messages. You can use the close method for a MessageConsumer to make the message
consumer inactive. Message delivery does not begin until you start the connection you created
by calling its start method. (Remember always to call the start method; forgetting to start the
connection is one of the most common JMS programming errors.)

The JMS API Programming Model

Chapter 31 • The Java Message Service API 907

You use the receive method to consume a message synchronously. You can use this method at
any time after you call the start method:

connection.start();

Message m = consumer.receive();

connection.start();

Message m = consumer.receive(1000); // time out after a second

To consume a message asynchronously, you use a message listener, described in the next
section.

JMS Message Listeners
A message listener is an object that acts as an asynchronous event handler for messages. This
object implements the MessageListener interface, which contains one method, onMessage. In
the onMessage method, you define the actions to be taken when a message arrives.

You register the message listener with a specific MessageConsumer by using the
setMessageListener method. For example, if you define a class named Listener that
implements the MessageListener interface, you can register the message listener as follows:

Listener myListener = new Listener();

consumer.setMessageListener(myListener);

After you register the message listener, you call the start method on the Connection to begin
message delivery. (If you call start before you register the message listener, you are likely to
miss messages.)

When message delivery begins, the JMS provider automatically calls the message listener’s
onMessage method whenever a message is delivered. The onMessage method takes one
argument of type Message, which your implementation of the method can cast to any of the
other message types (see “Message Bodies” on page 910).

A message listener is not specific to a particular destination type. The same listener can obtain
messages from either a queue or a topic, depending on the type of destination for which the
message consumer was created. A message listener does, however, usually expect a specific
message type and format.

Your onMessage method should handle all exceptions. It must not throw checked exceptions,
and throwing a RuntimeException is considered a programming error.

The session used to create the message consumer serializes the execution of all message listeners
registered with the session. At any time, only one of the session’s message listeners is running.

In the Java EE platform, a message-driven bean is a special kind of message listener. For details,
see “Using Message-Driven Beans to Receive Messages Asynchronously” on page 958.

The JMS API Programming Model

The Java EE 5 Tutorial • October 2008908

JMS Message Selectors
If your messaging application needs to filter the messages it receives, you can use a JMS API
message selector, which allows a message consumer to specify the messages it is interested in.
Message selectors assign the work of filtering messages to the JMS provider rather than to the
application. For an example of an application that uses a message selector, see “A Java EE
Application That Uses the JMS API with a Session Bean” on page 966.

A message selector is a String that contains an expression. The syntax of the expression is
based on a subset of the SQL92 conditional expression syntax. The message selector in the
example selects any message that has a NewsType property that is set to the value ’Sports’ or
’Opinion’:

NewsType = ’Sports’ OR NewsType = ’Opinion’

The createConsumer, createDurableSubscriber methods allow you to specify a message
selector as an argument when you create a message consumer.

The message consumer then receives only messages whose headers and properties match the
selector. (See “Message Headers” on page 909, and “Message Properties” on page 910.) A
message selector cannot select messages on the basis of the content of the message body.

JMS Messages
The ultimate purpose of a JMS application is to produce and to consume messages that can then
be used by other software applications. JMS messages have a basic format that is simple but
highly flexible, allowing you to create messages that match formats used by non-JMS
applications on heterogeneous platforms.

A JMS message has three parts: a header, properties, and a body. Only the header is required.
The following sections describe these parts:

■ “Message Headers” on page 909
■ “Message Properties” on page 910
■ “Message Bodies” on page 910

For complete documentation of message headers, properties, and bodies, see the
documentation of the Message interface in the API documentation.

Message Headers
A JMS message header contains a number of predefined fields that contain values that both
clients and providers use to identify and to route messages. Table 31–1 lists the JMS message
header fields and indicates how their values are set. For example, every message has a unique
identifier, which is represented in the header field JMSMessageID. The value of another header
field, JMSDestination, represents the queue or the topic to which the message is sent. Other
fields include a timestamp and a priority level.

The JMS API Programming Model

Chapter 31 • The Java Message Service API 909

Each header field has associated setter and getter methods, which are documented in the
description of the Message interface. Some header fields are intended to be set by a client, but
many are set automatically by the send or the publish method, which overrides any client-set
values.

TABLE 31–1 How JMS Message Header Field Values Are Set

Header Field Set By

JMSDestination send or publish method

JMSDeliveryMode send or publish method

JMSExpiration send or publish method

JMSPriority send or publish method

JMSMessageID send or publish method

JMSTimestamp send or publish method

JMSCorrelationID Client

JMSReplyTo Client

JMSType Client

JMSRedelivered JMS provider

Message Properties
You can create and set properties for messages if you need values in addition to those provided
by the header fields. You can use properties to provide compatibility with other messaging
systems, or you can use them to create message selectors (see “JMS Message Selectors” on
page 909). For an example of setting a property to be used as a message selector, see “A Java EE
Application That Uses the JMS API with a Session Bean” on page 966.

The JMS API provides some predefined property names that a provider can support. The use
either of these predefined properties or of user-defined properties is optional.

Message Bodies
The JMS API defines five message body formats, also called message types, which allow you to
send and to receive data in many different forms and provide compatibility with existing
messaging formats. Table 31–2 describes these message types.

The JMS API Programming Model

The Java EE 5 Tutorial • October 2008910

TABLE 31–2 JMS Message Types

Message Type Body Contains

TextMessage A java.lang.String object (for example, the contents of an XML file).

MapMessage A set of name-value pairs, with names as String objects and values as primitive
types in the Java programming language. The entries can be accessed sequentially
by enumerator or randomly by name. The order of the entries is undefined.

BytesMessage A stream of uninterpreted bytes. This message type is for literally encoding a body
to match an existing message format.

StreamMessage A stream of primitive values in the Java programming language, filled and read
sequentially.

ObjectMessage A Serializable object in the Java programming language.

Message Nothing. Composed of header fields and properties only. This message type is
useful when a message body is not required.

The JMS API provides methods for creating messages of each type and for filling in their
contents. For example, to create and send a TextMessage, you might use the following
statements:

TextMessage message = session.createTextMessage();

message.setText(msg_text); // msg_text is a String

producer.send(message);

At the consuming end, a message arrives as a generic Message object and must be cast to the
appropriate message type. You can use one or more getter methods to extract the message
contents. The following code fragment uses the getText method:

Message m = consumer.receive();

if (m instanceof TextMessage) {

TextMessage message = (TextMessage) m;

System.out.println("Reading message: " + message.getText());

} else {

// Handle error

}

JMS Queue Browsers
You can create a QueueBrowser object to inspect the messages in a queue. Messages sent to a
queue remain in the queue until the message consumer for that queue consumes them.
Therefore, the JMS API provides an object that allows you to browse the messages in the queue
and display the header values for each message. To create a QueueBrowser object, use the
Session.createBrowser method. For example:

The JMS API Programming Model

Chapter 31 • The Java Message Service API 911

QueueBrowser browser = session.createBrowser(queue);

See “A Simple Example of Browsing Messages in a Queue” on page 928 for an example of the use
of a QueueBrowser object.

The createBrowser method allows you to specify a message selector as a second argument
when you create a QueueBrowser. For information on message selectors, see “JMS Message
Selectors” on page 909.

The JMS API provides no mechanism for browsing a topic. Messages usually disappear from a
topic as soon as they appear: if there are no message consumers to consume them, the JMS
provider removes them. Although durable subscriptions allow messages to remain on a topic
while the message consumer is not active, no facility exists for examining them.

JMS Exception Handling
The root class for exceptions thrown by JMS API methods is JMSException. Catching
JMSException provides a generic way of handling all exceptions related to the JMS API.

The JMSException class includes the following subclasses, which are described in the API
documentation:

■ IllegalStateException

■ InvalidClientIDException

■ InvalidDestinationException

■ InvalidSelectorException

■ JMSSecurityException

■ MessageEOFException

■ MessageFormatException

■ MessageNotReadableException

■ MessageNotWriteableException

■ ResourceAllocationException

■ TransactionInProgressException

■ TransactionRolledBackException

All the examples in the tutorial catch and handle JMSException when it is appropriate to do so.

The JMS API Programming Model

The Java EE 5 Tutorial • October 2008912

Writing Simple JMS Client Applications
This section shows how to create, package, and run simple JMS client programs packaged as
stand-alone application clients. These clients access a Java EE server. The clients demonstrate
the basic tasks that a JMS application must perform:
■ Creating a connection and a session
■ Creating message producers and consumers
■ Sending and receiving messages

In a Java EE application, some of these tasks are performed, in whole or in part, by the
container. If you learn about these tasks, you will have a good basis for understanding how a
JMS application works on the Java EE platform.

This section covers the following topics:
■ “A Simple Example of Synchronous Message Receives” on page 913
■ “A Simple Example of Asynchronous Message Consumption” on page 922
■ “A Simple Example of Browsing Messages in a Queue” on page 928
■ “Running JMS Client Programs on Multiple Systems” on page 933

Each example uses two programs: one that sends messages and one that receives them. You can
run the programs in NetBeans IDE or in two terminal windows.

When you write a JMS application to run in a Java EE application, you use many of the same
methods in much the same sequence as you do for a stand-alone application client. However,
there are some significant differences. “Using the JMS API in a Java EE Application” on page 956
describes these differences, and Chapter 32, “Java EE Examples Using the JMS API,” provides
examples that illustrate them.

The examples for this section are in the following directory:

tut-install/javaeetutorial5/examples/jms/simple/

The examples are in the following four subdirectories:

producer

synchconsumer

asynchconsumer

messagebrowser

A Simple Example of Synchronous Message Receives
This section describes the sending and receiving programs in an example that uses the receive
method to consume messages synchronously. This section then explains how to compile,
package, and run the programs using the Application Server.

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 913

The following sections describe the steps in creating and running the example:

■ “Writing the Client Programs for the Synchronous Receive Example” on page 914
■ “Starting the JMS Provider” on page 917
■ “Creating JMS Administered Objects for the Synchronous Receive Example” on page 917
■ “Compiling and Packaging the Clients for the Synchronous Receive Example” on page 917
■ “Running the Clients for the Synchronous Receive Example” on page 919

Writing the Client Programs for the Synchronous Receive Example
The sending program, producer/src/java/Producer.java, performs the following steps:

1. Injects resources for a connection factory, queue, and topic:

@Resource(mappedName="jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;

@Resource(mappedName="jms/Queue")private static Queue queue;

@Resource(mappedName="jms/Topic")private static Topic topic;

2. Retrieves and verifies command-line arguments that specify the destination type and the
number of arguments:

final int NUM_MSGS;

String destType = args[0];

System.out.println("Destination type is " + destType);

if (! (destType.equals("queue") || destType.equals("topic"))) {

System.err.println("Argument must be \”queue\” or " + "\”topic\”");
System.exit(1);

}

if (args.length == 2){

NUM_MSGS = (new Integer(args[1])).intValue();

}

else {

NUM_MSGS = 1;

}

3. Assigns either the queue or topic to a destination object, based on the specified destination
type:

Destination dest = null;

try {

if (destType.equals("queue")) {

dest = (Destination) queue;

} else {

dest = (Destination) topic;

}

}

catch (Exception e) {

System.err.println("Error setting destination: " + e.toString());

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008914

e.printStackTrace();

System.exit(1);

}

4. Creates a Connection and a Session:

Connection connection = connectionFactory.createConnection();

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

5. Creates a MessageProducer and a TextMessage:

MessageProducer producer = session.createProducer(dest);

TextMessage message = session.createTextMessage();

6. Sends one or more messages to the destination:

for (int i = 0; i < NUM_MSGS; i++) {

message.setText("This is message " + (i + 1));

System.out.println("Sending message: " + message.getText());

producer.send(message);

}

7. Sends an empty control message to indicate the end of the message stream:

producer.send(session.createMessage());

Sending an empty message of no specified type is a convenient way to indicate to the
consumer that the final message has arrived.

8. Closes the connection in a finally block, automatically closing the session and
MessageProducer:

} finally {

if (connection != null) {

try { connection.close(); }

catch (JMSException e) { }

}

}

The receiving program, synchconsumer/src/java/SynchConsumer.java, performs the
following steps:

1. Injects resources for a connection factory, queue, and topic.
2. Assigns either the queue or topic to a destination object, based on the specified destination

type.
3. Creates a Connection and a Session.
4. Creates a MessageConsumer:

consumer = session.createConsumer(dest);

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 915

5. Starts the connection, causing message delivery to begin:

connection.start();

6. Receives the messages sent to the destination until the end-of-message-stream control
message is received:

while (true) {

Message m = consumer.receive(1);

if (m != null) {

if (m instanceof TextMessage) {

message = (TextMessage) m;

System.out.println("Reading message: " + message.getText());

} else {

break;

}

}

}

Because the control message is not a TextMessage, the receiving program terminates the
while loop and stops receiving messages after the control message arrives.

7. Closes the connection in a finally block, automatically closing the session and
MessageConsumer.

The receive method can be used in several ways to perform a synchronous receive. If you
specify no arguments or an argument of 0, the method blocks indefinitely until a message
arrives:

Message m = consumer.receive();

Message m = consumer.receive(0);

For a simple client program, this may not matter. But if you do not want your program to
consume system resources unnecessarily, use a timed synchronous receive. Do one of the
following:

■ Call the receive method with a timeout argument greater than 0:

Message m = consumer.receive(1); // 1 millisecond

■ Call the receiveNoWait method, which receives a message only if one is available:

Message m = consumer.receiveNoWait();

The SynchConsumer program uses an indefinite while loop to receive messages, calling receive
with a timeout argument. Calling receiveNoWait would have the same effect.

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008916

Starting the JMS Provider
When you use the Application Server, your JMS provider is the Application Server. Start the
server as described in “Starting and Stopping the Application Server” on page 69.

Creating JMS Administered Objects for the Synchronous Receive
Example
Creating the JMS administered objects for this section involves the following:
■ Creating a connection factory
■ Creating two destination resources

If you built and ran the SimpleMessage example in Chapter 23, “A Message-Driven Bean
Example,” and did not delete the resources afterward, you need to create only the topic resource.

You can create these objects using the Ant tool. To create all the resources, do the following:

1. In a terminal window, go to the producer directory:

cd producer

2. To create all the resources, type the following command:

ant create-resources

To create only the topic resource, type the following command:

ant create-topic

These Ant targets use the asadmin create-jms-resource command to create the connection
factory and the destination resources.

To verify that the resources have been created, use the following command:

asadmin list-jms-resources

The output looks like this:

jms/Queue

jms/Topic

jms/ConnectionFactory

Command list-jms-resources executed successfully.

Compiling and Packaging the Clients for the Synchronous Receive
Example
The simplest way to run these examples using the Application Server is to package each one in
an application client JAR file. The application client JAR file requires a manifest file, located in
the src/conf directory for each example, along with the .class file.

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 917

The build.xml file for each example contains Ant targets that compile and package the
example. The targets place the .class file for the example in the build/jar directory. Then the
targets use the jar command to package the class file and the manifest file in an application
client JAR file.

To compile and package the Producer and SynchConsumer examples using NetBeans IDE,
follow these steps:

1. In NetBeans IDE, choose Open Project from the File menu.

2. In the Open Project dialog, navigate to
tut-install/javaeetutorial5/examples/jms/simple/.

3. Select the producer folder.

4. Select the Open as Main Project check box.

5. Click Open Project.

6. Right-click the project and choose Build.

7. In NetBeans IDE, choose Open Project from the File menu.

8. In the Open Project dialog, navigate to
tut-install/javaeetutorial5/examples/jms/simple/.

9. Select the synchconsumer folder.

10. Select the Open as Main Project check box.

11. Click Open Project.

12. Right-click the project and choose Build.

To compile and package the Producer and SynchConsumer examples using Ant, follow these
steps:

1. In a terminal window, go to the producer directory:

cd producer

2. Type the following command:

ant

3. In a terminal window, go to the synchconsumer directory:

cd ../synchconsumer

4. Type the following command:

ant

The targets place the application client JAR file in the dist directory for each example.

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008918

Running the Clients for the Synchronous Receive Example
To run the sample programs using NetBeans IDE, follow these steps.

1. Run the Producer example:
a. Right-click the producer project and choose Properties.
b. Select Run from the Categories tree.
c. In the Arguments field, type the following:

queue 3

d. Click OK.
e. Right-click the project and choose Run.

The output of the program looks like this:

Destination type is queue

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

The messages are now in the queue, waiting to be received.
2. Now run the SynchConsumer example:

a. Right-click the synchconsumer project and choose Properties.
b. Select Run from the Categories tree.
c. In the Arguments field, type the following:

queue

d. Click OK.
e. Right-click the project and choose Run.

The output of the program looks like this:

Destination type is queue

Reading message: This is message 1

Reading message: This is message 2

Reading message: This is message 3

3. Now try running the programs in the opposite order. Right-click the synchconsumer project
and choose Run.
The Output pane displays the destination type and then appears to hang, waiting for
messages.

4. Right-click the producer project and choose Run.
The Output pane shows the output of both programs, in two different tabs.

5. Now run the Producer example using a topic instead of a queue.

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 919

a. Right-click the producer project and choose Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:

topic 3

d. Click OK.

e. Right-click the project and choose Run.

The output of the program looks like this:

Destination type is topic

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

6. Now run the SynchConsumer example using the topic.

a. Right-click the synchconsumer project and choose Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:

topic

d. Click OK.

e. Right-click the project and choose Run.

The result, however, is different. Because you are using a topic, messages that were sent
before you started the consumer cannot be received. (See “Publish/Subscribe Messaging
Domain” on page 901, for details.) Instead of receiving the messages, the program
appears to hang.

7. Run the Producer example again. Right-click the producer project and choose Run.

Now the SynchConsumer example receives the messages:

Destination type is topic

Reading message: This is message 1

Reading message: This is message 2

Reading message: This is message 3

You can also run the sample programs using the appclient command. Each of the programs
takes one or more command-line arguments: a destination type and, for Producer, a number of
messages.

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008920

To run the clients using the appclient command, follow these steps:

1. In a terminal window, go to the producer/dist directory:

cd ../producer/dist

2. Run the Producer program, sending three messages to the queue:

appclient -client producer.jar queue 3

The output of the program looks like this:

Destination type is queue

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

The messages are now in the queue, waiting to be received.
3. In the same window, go to the synchconsumer/dist directory:

cd ../../synchconsumer/dist

4. Run the SynchConsumer program, specifying the queue:

appclient -client synchconsumer.jar queue

The output of the program looks like this:

Destination type is queue

Reading message: This is message 1

Reading message: This is message 2

Reading message: This is message 3

5. Now try running the programs in the opposite order. Run the SynchConsumer program. It
displays the destination type and then appears to hang, waiting for messages.

appclient -client synchconsumer.jar queue

6. In a different terminal window, run the Producer program.

cd tut-install/javaeetutorial5/examples/jms/simple/producer/dist
appclient -client producer.jar queue 3

When the messages have been sent, the SynchConsumer program receives them and exits.
7. Now run the Producer program using a topic instead of a queue:

appclient -client producer.jar topic 3

The output of the program looks like this:

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 921

Destination type is topic

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

8. Now run the SynchConsumer program using the topic:

appclient -client synchconsumer.jar topic

The result, however, is different. Because you are using a topic, messages that were sent
before you started the consumer cannot be received. (See “Publish/Subscribe Messaging
Domain” on page 901, for details.) Instead of receiving the messages, the program appears
to hang.

9. Run the Producer program again. Now the SynchConsumer program receives the messages:

Destination type is topic

Reading message: This is message 1

Reading message: This is message 2

Reading message: This is message 3

Because the examples use the common interfaces, you can run them using either a queue or a
topic.

A Simple Example of Asynchronous Message
Consumption
This section describes the receiving programs in an example that uses a message listener to
consume messages asynchronously. This section then explains how to compile and run the
programs using the Application Server.

The following sections describe the steps in creating and running the example:

■ “Writing the Client Programs for the Asynchronous Receive Example” on page 922
■ “Compiling and Packaging the AsynchConsumer Client” on page 924
■ “Running the Clients for the Asynchronous Receive Example” on page 925

Writing the Client Programs for the Asynchronous Receive Example
The sending program is producer/src/java/Producer.java, the same program used in the
example in “A Simple Example of Synchronous Message Receives” on page 913.

An asynchronous consumer normally runs indefinitely. This one runs until the user types the
letter q or Q to stop the program.

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008922

The receiving program, asynchconsumer/src/java/AsynchConsumer.java, performs the
following steps:

1. Injects resources for a connection factory, queue, and topic.

2. Assigns either the queue or topic to a destination object, based on the specified destination
type.

3. Creates a Connection and a Session.

4. Creates a MessageConsumer.

5. Creates an instance of the TextListener class and registers it as the message listener for the
MessageConsumer:

listener = new TextListener();consumer.setMessageListener(listener);

6. Starts the connection, causing message delivery to begin.

7. Listens for the messages published to the destination, stopping when the user types the
character q or Q:

System.out.println("To end program, type Q or q, " + "then <return>");
inputStreamReader = new InputStreamReader(System.in);

while (!((answer == ’q’) || (answer == ’Q’))) {

try {

answer = (char) inputStreamReader.read();

} catch (IOException e) {

System.out.println("I/O exception: " + e.toString());

}

}

8. Closes the connection, which automatically closes the session and MessageConsumer.

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 923

The message listener, asynchconsumer/src/java/TextListener.java, follows these steps:

1. When a message arrives, the onMessage method is called automatically.
2. The onMessage method converts the incoming message to a TextMessage and displays its

content. If the message is not a text message, it reports this fact:

public void onMessage(Message message) {

TextMessage msg = null;

try {

if (message instanceof TextMessage) {

msg = (TextMessage) message;

System.out.println("Reading message: " + msg.getText());

} else {

System.out.println("Message is not a " + "TextMessage");
}

} catch (JMSException e) {

System.out.println("JMSException in onMessage(): " + e.toString());

} catch (Throwable t) {

System.out.println("Exception in onMessage():" + t.getMessage());

}

}

You will use the connection factory and destinations you created in “Creating JMS
Administered Objects for the Synchronous Receive Example” on page 917.

Compiling and Packaging the AsynchConsumerClient
To compile and package the AsynchConsumer example using NetBeans IDE, follow these steps:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to

tut-install/javaeetutorial5/examples/jms/simple/.
3. Select the asynchconsumer folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the project and choose Build.

To compile and package the AsynchConsumer example using Ant, follow these steps:

1. In a terminal window, go to the asynchconsumer directory:

cd ../../asynchconsumer

2. Type the following command:

ant

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008924

The targets package both the main class and the message listener class in the JAR file and place
the file in the dist directory for the example.

Running the Clients for the Asynchronous Receive Example
To run the programs using NetBeans IDE, follow these steps.

1. Run the AsynchConsumer example:
a. Right-click the asynchconsumer project and choose Properties.
b. Select Run from the Categories tree.
c. In the Arguments field, type the following:

topic

d. Click OK.
e. Right-click the project and choose Run.

The program displays the following lines and appears to hang:

Destination type is topic

To end program, type Q or q, then <return>

2. Now run the Producer example:
a. Right-click the producer project and choose Properties.
b. Select Run from the Categories tree.
c. In the Arguments field, type the following:

topic 3

d. Click OK.
e. Right-click the project and choose Run.

The output of the program looks like this:

Destination type is topic

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

In the other window, the AsynchConsumer program displays the following:

Destination type is topic

To end program, type Q or q, then <return>

Reading message: This is message 1

Reading message: This is message 2

Reading message: This is message 3

Message is not a TextMessage

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 925

The last line appears because the program has received the non-text control message
sent by the Producer program.

3. Type Q or q in the Output window and press Return to stop the program.

4. Now run the programs using a queue. In this case, as with the synchronous example, you
can run the Producer program first, because there is no timing dependency between the
sender and receiver.

a. Right-click the producer project and choose Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:

queue 3

d. Click OK.

e. Right-click the project and choose Run.

The output of the program looks like this:

Destination type is queue

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

5. Run the AsynchConsumer program.

a. Right-click the asynchconsumer project and choose Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:

queue

d. Click OK.

e. Right-click the project and choose Run.

The output of the program looks like this:

Destination type is queue

To end program, type Q or q, then <return>

Reading message: This is message 1

Reading message: This is message 2

Reading message: This is message 3

Message is not a TextMessage

6. Type Q or q in the Output window and press Return to stop the program.

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008926

To run the clients using the appclient command, follow these steps:

1. Run the AsynchConsumer program, specifying the topic destination type.

cd dist

appclient -client asynchconsumer.jar topic

The program displays the following lines and appears to hang:

Destination type is topic

To end program, type Q or q, then <return>

2. In the terminal window where you ran the Producer program previously, run the program
again, sending three messages. The command looks like this:

appclient -client producer.jar topic 3

The output of the program looks like this:

Destination type is topic

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

In the other window, the AsynchConsumer program displays the following:

Destination type is topic

To end program, type Q or q, then <return>

Reading message: This is message 1

Reading message: This is message 2

Reading message: This is message 3

Message is not a TextMessage

The last line appears because the program has received the non-text control message sent by
the Producer program.

3. Type Q or q and press Return to stop the program.
4. Now run the programs using a queue. In this case, as with the synchronous example, you

can run the Producer program first, because there is no timing dependency between the
sender and receiver:

appclient -client producer.jar queue 3

The output of the program looks like this:

Destination type is queue

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 927

5. Run the AsynchConsumer program:

appclient -client asynchconsumer.jar queue

The output of the program looks like this:

Destination type is queue

To end program, type Q or q, then <return>

Reading message: This is message 1

Reading message: This is message 2

Reading message: This is message 3

Message is not a TextMessage

6. Type Q or q to stop the program.

A Simple Example of Browsing Messages in a Queue
This section describes an example that creates a QueueBrowser object to examine messages on a
queue, as described in “JMS Queue Browsers” on page 911. This section then explains how to
compile, package, and run the example using the Application Server.

The following sections describe the steps in creating and running the example:

■ “Writing the Client Program for the Queue Browser Example” on page 928
■ “Compiling and Packaging the MessageBrowser Client” on page 929
■ “Running the Clients for the Queue Browser Example” on page 930

Writing the Client Program for the Queue Browser Example
To create a QueueBrowser for a queue, you call the Session.createBrowser method with the
queue as the argument. You obtain the messages in the queue as an Enumeration object. You
can then iterate through the Enumeration object and display the contents of each message.

The messagebrowser/src/java/MessageBrowser.java program performs the following steps:

1. Injects resources for a connection factory and a queue.
2. Creates a Connection and a Session.
3. Creates a QueueBrowser:

QueueBrowser browser = session.createBrowser(queue);

4. Retrieves the Enumeration that contains the messages:

Enumeration msgs = browser.getEnumeration();

5. Verifies that the Enumeration contains messages, then displays the contents of the messages:

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008928

if (!msgs.hasMoreElements()) {

System.out.println("No messages in queue");
} else {

while (msgs.hasMoreElements()) {

Message tempMsg = (Message)msgs.nextElement();

System.out.println("Message: " + tempMsg);

}

}

6. Closes the connection, which automatically closes the session and QueueBrowser.

The format in which the message contents appear is implementation-specific. In the
Application Server, the message format looks like this:

Message contents:

Text: This is message 3

Class: com.sun.messaging.jmq.jmsclient.TextMessageImpl

getJMSMessageID(): ID:14-129.148.71.199(f9:86:a2:d5:46:9b)-40814-1129061034355

getJMSTimestamp(): 1129061034355

getJMSCorrelationID(): null

JMSReplyTo: null

JMSDestination: PhysicalQueue

getJMSDeliveryMode(): PERSISTENT

getJMSRedelivered(): false

getJMSType(): null

getJMSExpiration(): 0

getJMSPriority(): 4

Properties: null

You will use the connection factory and queue you created in “Creating JMS Administered
Objects for the Synchronous Receive Example” on page 917.

Compiling and Packaging the MessageBrowserClient
To compile and package the MessageBrowser example using NetBeans IDE, follow these steps:

1. In NetBeans IDE, choose Open Project from the File menu.

2. In the Open Project dialog, navigate to
tut-install/javaeetutorial5/examples/jms/simple/.

3. Select the messagebrowser folder.

4. Select the Open as Main Project check box.

5. Click Open Project.

6. Right-click the project and choose Build.

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 929

To compile and package the MessageBrowser example using Ant, follow these steps:

1. In a terminal window, go to the messagebrowser directory. If you are currently in the
asynchconsumer/dist directory, you need to go up two levels:

cd ../../messagebrowser

2. Type the following command:

ant

The targets place the application client JAR file in the dist directory for the example.

You also need the Producer example to send the message to the queue, and one of the consumer
programs to consume the messages after you inspect them. If you did not do so already, package
these examples.

Running the Clients for the Queue Browser Example
To run the programs using NetBeans IDE, follow these steps.

1. Run the Producer program, sending one message to the queue:
a. Right-click the producer project and choose Properties.
b. Select Run from the Categories tree.
c. In the Arguments field, type the following:

queue

d. Click OK.
e. Right-click the project and choose Run.

The output of the program looks like this:

Destination type is queue

Sending message: This is message 1

2. Run the MessageBrowser program. Right-click the messagebrowser project and choose
Run.
The output of the program looks like this:

Message:

Text: This is message 1

Class: com.sun.messaging.jmq.jmsclient.TextMessageImpl

getJMSMessageID(): ID:12-129.148.71.199(8c:34:4a:1a:1b:b8)-40883-1129062957611

getJMSTimestamp(): 1129062957611

getJMSCorrelationID(): null

JMSReplyTo: null

JMSDestination: PhysicalQueue

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008930

getJMSDeliveryMode(): PERSISTENT

getJMSRedelivered(): false

getJMSType(): null

getJMSExpiration(): 0

getJMSPriority(): 4

Properties: null

Message:

Class: com.sun.messaging.jmq.jmsclient.MessageImpl

getJMSMessageID(): ID:13-129.148.71.199(8c:34:4a:1a:1b:b8)-40883-1129062957616

getJMSTimestamp(): 1129062957616

getJMSCorrelationID(): null

JMSReplyTo: null

JMSDestination: PhysicalQueue

getJMSDeliveryMode(): PERSISTENT

getJMSRedelivered(): false

getJMSType(): null

getJMSExpiration(): 0

getJMSPriority(): 4

Properties: null

3. The first message is the TextMessage, and the second is the non-text control message.
4. Run the SynchConsumer program to consume the messages.

a. Right-click the synchconsumer project and choose Properties.
b. Select Run from the Categories tree.
c. In the Arguments field, type the following:

queue

d. Click OK.
e. Right-click the project and choose Run.

The output of the program looks like this:

Destination type is queue

Reading message: This is message 1

To run the clients using the appclient command, follow these steps. You may want to use two
terminal windows.

1. Go to the producer/dist directory.
2. Run the Producer program, sending one message to the queue:

appclient -client producer.jar queue

The output of the program looks like this:

Destination type is queue

Sending message: This is message 1

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 931

3. Go to the messagebrowser/dist directory.

4. Run the MessageBrowser program:

appclient -client messagebrowser.jar

The output of the program looks like this:

Message:

Text: This is message 1

Class: com.sun.messaging.jmq.jmsclient.TextMessageImpl

getJMSMessageID(): ID:12-129.148.71.199(8c:34:4a:1a:1b:b8)-40883-1129062957611

getJMSTimestamp(): 1129062957611

getJMSCorrelationID(): null

JMSReplyTo: null

JMSDestination: PhysicalQueue

getJMSDeliveryMode(): PERSISTENT

getJMSRedelivered(): false

getJMSType(): null

getJMSExpiration(): 0

getJMSPriority(): 4

Properties: null

Message:

Class: com.sun.messaging.jmq.jmsclient.MessageImpl

getJMSMessageID(): ID:13-129.148.71.199(8c:34:4a:1a:1b:b8)-40883-1129062957616

getJMSTimestamp(): 1129062957616

getJMSCorrelationID(): null

JMSReplyTo: null

JMSDestination: PhysicalQueue

getJMSDeliveryMode(): PERSISTENT

getJMSRedelivered(): false

getJMSType(): null

getJMSExpiration(): 0

getJMSPriority(): 4

Properties: null

The first message is the TextMessage, and the second is the non-text control message.
5. Go to the synchconsumer/dist directory.
6. Run the SynchConsumer program to consume the messages:

appclient -client synchconsumer.jar queue

The output of the program looks like this:

Destination type is queue

Reading message: This is message 1

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008932

Running JMS Client Programs on Multiple Systems
JMS client programs using the Application Server can exchange messages with each other when
they are running on different systems in a network. The systems must be visible to each other by
name (the UNIX host name or the Microsoft Windows computer name) and must both be
running the Application Server. You do not have to install the tutorial examples on both
systems; you can use the examples installed on one system if you can access its file system from
the other system.

Note – Any mechanism for exchanging messages between systems is specific to the Java EE
server implementation. This tutorial describes how to use the Application Server for this
purpose.

Suppose that you want to run the Producer program on one system, earth, and the
SynchConsumer program on another system, jupiter. Before you can do so, you need to
perform these tasks:
■ Create two new connection factories
■ Edit the source code for the two examples
■ Recompile and repackage the examples

Note – A limitation in the JMS provider in the Application Server may cause a runtime
failure to create a connection to systems that use the Dynamic Host Configuration Protocol
(DHCP) to obtain an IP address. You can, however, create a connection from a system that
uses DHCP to a system that does not use DHCP. In the examples in this tutorial, earth can
be a system that uses DHCP, and jupiter can be a system that does not use DHCP.

Before you begin, start the server on both systems:

1. Start the Application Server on earth.
2. Start the Application Server on jupiter.

Creating Administered Objects for Multiple Systems
To run these programs, you must do the following:
■ Create a new connection factory on both earth and jupiter

■ Create a destination resource on both earth and jupiter

You do not have to install the tutorial on both systems, but you must be able to access the
filesystem where it is installed. You may find it more convenient to install the tutorial on both
systems if the two systems use different operating systems (for example, Windows and Solaris).
Otherwise you will have to edit the file

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 933

tut-install/javaeetutorial5/examples/bp-project/build.properties and change the
location of the javaee.home property each time you build or run a program on a different
system.

To create a new connection factory on jupiter, perform these steps:

1. From a command shell on jupiter, go to the directory
tut-install/javaeetutorial5/examples/jms/simple/producer/.

2. Type the following command:

ant create-local-factory

The create-local-factory target, defined in the build.xml file for the Producer example,
creates a connection factory named jms/JupiterConnectionFactory.

To create a new connection factory on earth that points to the connection factory on jupiter,
perform these steps:

1. From a command shell on earth, go to the directory
tut-install/javaeetutorial5/examples/jms/simple/producer/.

2. Type the following command:

ant create-remote-factory -Dsys=remote-system-name

Replace remote-system-name with the actual name of the remote system.

The create-remote-factory target, defined in the build.xml file for the Producer example,
also creates a connection factory named jms/JupiterConnectionFactory. In addition, it sets
the AddressList property for this factory to the name of the remote system.

If you have already been working on either earth or jupiter, you have the queue and topic on
one system. On the system that does not have the queue and topic, type the following
command:

ant create-resources

When you run the programs, they will work as shown in Figure 31–6. The program run on
earth needs the queue on earth only in order that the resource injection will succeed. The
connection, session, and message producer are all created on jupiter using the connection
factory that points to jupiter. The messages sent from earth will be received on jupiter.

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008934

Editing, Recompiling, Repackaging, and Running the Programs
These steps assume that you have the tutorial installed on only one of the two systems you are
using and that you are able to access the file system of jupiter from earth or vice versa.

After you create the connection factories, edit the source files to specify the new connection
factory. Then recompile, repackage, and run the programs. Perform the following steps:

1. Open the following file in a text editor:

tut-installjavaeetutorial5/examples/jms/simple/producer/src/java/Producer.java

2. Find the following line:

@Resource(mappedName="jms/ConnectionFactory")

3. Change the line to the following:

@Resource(mappedName="jms/JupiterConnectionFactory")

4. Recompile and repackage the Producer example on earth.
If you are using NetBeans IDE, right-click the producer project and choose Clean and Build.
If you are using Ant, type the following:

ant

Queue

CF

Java EE Server on Earth

CF that
points

to Jupiter

Earth

Queue
CF

Java EE Server on Jupiter

Jupiter

Sends

Msg

Delivers

Msg

Producer

SynchConsumer

FIGURE 31–6 Sending Messages from One System to Another

Writing Simple JMS Client Applications

Chapter 31 • The Java Message Service API 935

5. Open the following file in a text editor:

tut-installjavaeetutorial5/examples/jms/simple/synchconsumer/src/java/SynchConsumer.java

6. Repeat steps 2 and 3.
7. Recompile and repackage the SynchConsumer example on jupiter.

If you are using NetBeans IDE, right-click the synchconsumer project and choose Clean and
Build.
If you are using Ant, go to the synchconsumer directory and type:

ant

8. On earth, run Producer. If you are using NetBeans IDE on earth, perform these steps:
a. Right-click the producer project and choose Properties.
b. Select Run from the Categories tree.
c. In the Arguments field, type the following:

queue 3

d. Click OK.
e. Right-click the project and choose Run.

If you are using the appclient command, go to the producer/dist directory and type
the following:

appclient -client producer.jar queue 3

9. On jupiter, run SynchConsumer. If you are using NetBeans IDE on jupiter, perform these
steps:
a. Right-click the synchconsumer project and choose Properties.
b. Select Run from the Categories tree.
c. In the Arguments field, type the following:

queue

d. Click OK.
e. Right-click the project and choose Run.

If you are using the appclient command, go to the synchconsumer/dist directory and
type the following:

appclient -client synchconsumer.jar queue

For examples showing how to deploy Java EE applications on two different systems, see “An
Application Example That Consumes Messages from a Remote Server” on page 981 and “An
Application Example That Deploys a Message-Driven Bean on Two Servers” on page 987.

Writing Simple JMS Client Applications

The Java EE 5 Tutorial • October 2008936

Deleting the Connection Factory and Stopping the Server
You will need the connection factory jms/JupiterConnectionFactory in Chapter 32, “Java EE
Examples Using the JMS API.” However, if you wish to delete it, go to the producer directory
and type the following command:

ant delete-remote-factory

Remember to delete the connection factory on both systems.

You can also use Ant targets in the producer/build.xml file to delete the destinations and
connection factories you created in “Creating JMS Administered Objects for the Synchronous
Receive Example” on page 917. However, it is recommended that you keep them, because they
will be used in most of the examples in Chapter 32, “Java EE Examples Using the JMS API.”
After you have created them, they will be available whenever you restart the Application Server.

To delete the class and JAR files for each program using NetBeans IDE, right-click each project
and choose Clean.

To delete the class and JAR files for each program using Ant, type the following:

ant clean

You can also stop the Application Server, but you will need it to run the sample programs in the
next section.

Creating Robust JMS Applications
This section explains how to use features of the JMS API to achieve the level of reliability and
performance your application requires. Many people choose to implement JMS applications
because they cannot tolerate dropped or duplicate messages and require that every message be
received once and only once. The JMS API provides this functionality.

The most reliable way to produce a message is to send a PERSISTENT message within a
transaction. JMS messages are PERSISTENT by default. A transaction is a unit of work into which
you can group a series of operations, such as message sends and receives, so that the operations
either all succeed or all fail. For details, see “Specifying Message Persistence” on page 942 and
“Using JMS API Local Transactions” on page 949.

The most reliable way to consume a message is to do so within a transaction, either from a
queue or from a durable subscription to a topic. For details, see “Creating Temporary
Destinations” on page 943, “Creating Durable Subscriptions” on page 944, and “Using JMS API
Local Transactions” on page 949.

Creating Robust JMS Applications

Chapter 31 • The Java Message Service API 937

For other applications, a lower level of reliability can reduce overhead and improve
performance. You can send messages with varying priority levels (see “Setting Message Priority
Levels” on page 943) and you can set them to expire after a certain length of time (see “Allowing
Messages to Expire” on page 943).

The JMS API provides several ways to achieve various kinds and degrees of reliability. This
section divides them into two categories:

■ “Using Basic Reliability Mechanisms” on page 938
■ “Using Advanced Reliability Mechanisms” on page 944

The following sections describe these features as they apply to JMS clients. Some of the features
work differently in Java EE applications; in these cases, the differences are noted here and are
explained in detail in “Using the JMS API in a Java EE Application” on page 956.

This section includes three sample programs, which you can find in the directory
tut-install/javaeetutorial5/examples/jms/advanced/. Each sample uses a utility class called
SampleUtilities.java.

Using Basic Reliability Mechanisms
The basic mechanisms for achieving or affecting reliable message delivery are as follows:

■ Controlling message acknowledgment: You can specify various levels of control over
message acknowledgment.

■ Specifying message persistence: You can specify that messages are persistent, meaning that
they must not be lost in the event of a provider failure.

■ Setting message priority levels: You can set various priority levels for messages, which can
affect the order in which the messages are delivered.

■ Allowing messages to expire: You can specify an expiration time for messages so that they
will not be delivered if they are obsolete.

■ Creating temporary destinations: You can create temporary destinations that last only for
the duration of the connection in which they are created.

Controlling Message Acknowledgment
Until a JMS message has been acknowledged, it is not considered to be successfully consumed.
The successful consumption of a message ordinarily takes place in three stages.

1. The client receives the message.
2. The client processes the message.
3. The message is acknowledged. Acknowledgment is initiated either by the JMS provider or

by the client, depending on the session acknowledgment mode.

Creating Robust JMS Applications

The Java EE 5 Tutorial • October 2008938

In transacted sessions (see “Using JMS API Local Transactions” on page 949), acknowledgment
happens automatically when a transaction is committed. If a transaction is rolled back, all
consumed messages are redelivered.

In nontransacted sessions, when and how a message is acknowledged depend on the value
specified as the second argument of the createSession method. The three possible argument
values are as follows:

■ Session.AUTO_ACKNOWLEDGE: The session automatically acknowledges a client’s receipt of a
message either when the client has successfully returned from a call to receive or when the
MessageListener it has called to process the message returns successfully. A synchronous
receive in an AUTO_ACKNOWLEDGE session is the one exception to the rule that message
consumption is a three-stage process as described earlier.
In this case, the receipt and acknowledgment take place in one step, followed by the
processing of the message.

■ Session.CLIENT_ACKNOWLEDGE: A client acknowledges a message by calling the message’s
acknowledge method. In this mode, acknowledgment takes place on the session level:
Acknowledging a consumed message automatically acknowledges the receipt of all
messages that have been consumed by its session. For example, if a message consumer
consumes ten messages and then acknowledges the fifth message delivered, all ten messages
are acknowledged.

■ Session.DUPS_OK_ACKNOWLEDGE: This option instructs the session to lazily acknowledge the
delivery of messages. This is likely to result in the delivery of some duplicate messages if the
JMS provider fails, so it should be used only by consumers that can tolerate duplicate
messages. (If the JMS provider redelivers a message, it must set the value of the
JMSRedelivered message header to true.) This option can reduce session overhead by
minimizing the work the session does to prevent duplicates.

If messages have been received from a queue but not acknowledged when a session terminates,
the JMS provider retains them and redelivers them when a consumer next accesses the queue.
The provider also retains unacknowledged messages for a terminated session that has a durable
TopicSubscriber. (See “Creating Durable Subscriptions” on page 944.) Unacknowledged
messages for a nondurable TopicSubscriber are dropped when the session is closed.

If you use a queue or a durable subscription, you can use the Session.recover method to stop a
nontransacted session and restart it with its first unacknowledged message. In effect, the
session’s series of delivered messages is reset to the point after its last acknowledged message.
The messages it now delivers may be different from those that were originally delivered, if
messages have expired or if higher-priority messages have arrived. For a nondurable
TopicSubscriber, the provider may drop unacknowledged messages when its session is
recovered.

The sample program in the next section demonstrates two ways to ensure that a message will
not be acknowledged until processing of the message is complete.

Creating Robust JMS Applications

Chapter 31 • The Java Message Service API 939

A Message Acknowledgment Example

The AckEquivExample.java program shows how both of the following two scenarios ensure
that a message will not be acknowledged until processing of it is complete:

■ Using an asynchronous message consumer (a message listener) in an AUTO_ACKNOWLEDGE

session
■ Using a synchronous receiver in a CLIENT_ACKNOWLEDGE session

With a message listener, the automatic acknowledgment happens when the onMessage method
returns (that is, after message processing has finished). With a synchronous receiver, the client
acknowledges the message after processing is complete. If you use AUTO_ACKNOWLEDGE with a
synchronous receive, the acknowledgment happens immediately after the receive call; if any
subsequent processing steps fail, the message cannot be redelivered.

The program is in the following directory:

tut-install/javaeetutorial5/examples/jms/advanced/ackequivexample/src/java/

The program contains a SynchSender class, a SynchReceiver class, an AsynchSubscriber class
with a TextListener class, a MultiplePublisher class, a main method, and a method that runs
the other classes’ threads.

The program uses the following objects:

■ jms/ConnectionFactory, jms/Queue, and jms/Topic: resources that you created in
“Creating JMS Administered Objects for the Synchronous Receive Example” on page 917

■ jms/ControlQueue: an additional queue
■ jms/DurableConnectionFactory: a connection factory with a client ID (see “Creating

Durable Subscriptions” on page 944, for more information)

To create the new queue and connection factory, you can use Ant targets defined in the file
tut-install/javaeetutorial5/examples/jms/advanced/ackequivexample/build.xml.

To run this example, follow these steps:

1. In a terminal window, go to the following directory:

tut-install/javaeetutorial5/examples/jms/advanced/ackequivexample/

2. To create the objects needed in this example, type the following commands:

ant create-control-queue

ant create-durable-cf

3. To compile and package the program using NetBeans IDE, follow these steps:
a. In NetBeans IDE, choose Open Project from the File menu.

Creating Robust JMS Applications

The Java EE 5 Tutorial • October 2008940

b. In the Open Project dialog, navigate to
tut-install/javaeetutorial5/examples/jms/advanced/.

c. Select the ackequivexample folder.

d. Select the Open as Main Project check box.

e. Click Open Project.

f. Right-click the project and choose Build.

To compile and package the program using Ant, type the following command:

ant

4. To run the program using NetBeans IDE, right-click the ackequivexample project and
choose Run.

To run the program from the command line, follow these steps:

a. Go to the dist directory:

cd dist

b. Type the following command:

appclient -client ackequivexample.jar

The program output looks something like this:

Queue name is jms/ControlQueue

Queue name is jms/Queue

Topic name is jms/Topic

Connection factory name is jms/DurableConnectionFactory

SENDER: Created client-acknowledge session

SENDER: Sending message: Here is a client-acknowledge message

RECEIVER: Created client-acknowledge session

RECEIVER: Processing message: Here is a client-acknowledge message

RECEIVER: Now I’ll acknowledge the message

SUBSCRIBER: Created auto-acknowledge session

SUBSCRIBER: Sending synchronize message to control queue

PUBLISHER: Created auto-acknowledge session

PUBLISHER: Receiving synchronize messages from control queue; count = 1

PUBLISHER: Received synchronize message; expect 0 more

PUBLISHER: Publishing message: Here is an auto-acknowledge message 1

PUBLISHER: Publishing message: Here is an auto-acknowledge message 2

SUBSCRIBER: Processing message: Here is an auto-acknowledge message 1

PUBLISHER: Publishing message: Here is an auto-acknowledge message 3

SUBSCRIBER: Processing message: Here is an auto-acknowledge message 2

SUBSCRIBER: Processing message: Here is an auto-acknowledge message 3

Creating Robust JMS Applications

Chapter 31 • The Java Message Service API 941

After you run the program, you can delete the destination resource jms/ControlQueue. Go to
the directory tut-install/javaeetutorial5/examples/jms/advanced/ackequivexample/ and
type the following command:

ant delete-control-queue

You will need the other resources for other examples.

To delete the class and JAR files for the program using NetBeans IDE, right-click the project and
choose Clean.

To delete the class and JAR files for the program using Ant, type the following:

ant clean

Specifying Message Persistence
The JMS API supports two delivery modes for messages to specify whether messages are lost if
the JMS provider fails. These delivery modes are fields of the DeliveryMode interface.

■ The PERSISTENT delivery mode, which is the default, instructs the JMS provider to take extra
care to ensure that a message is not lost in transit in case of a JMS provider failure. A
message sent with this delivery mode is logged to stable storage when it is sent.

■ The NON_PERSISTENT delivery mode does not require the JMS provider to store the message
or otherwise guarantee that it is not lost if the provider fails.

You can specify the delivery mode in either of two ways.

■ You can use the setDeliveryMode method of the MessageProducer interface to set the
delivery mode for all messages sent by that producer. For example, the following call sets the
delivery mode to NON_PERSISTENT for a producer:

producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

■ You can use the long form of the send or the publish method to set the delivery mode for a
specific message. The second argument sets the delivery mode. For example, the following
send call sets the delivery mode for message to NON_PERSISTENT:

producer.send(message, DeliveryMode.NON_PERSISTENT, 3, 10000);

The third and fourth arguments set the priority level and expiration time, which are
described in the next two subsections.

If you do not specify a delivery mode, the default is PERSISTENT. Using the NON_PERSISTENT
delivery mode may improve performance and reduce storage overhead, but you should use it
only if your application can afford to miss messages.

Creating Robust JMS Applications

The Java EE 5 Tutorial • October 2008942

Setting Message Priority Levels
You can use message priority levels to instruct the JMS provider to deliver urgent messages first.
You can set the priority level in either of two ways.

■ You can use the setPriority method of the MessageProducer interface to set the priority
level for all messages sent by that producer. For example, the following call sets a priority
level of 7 for a producer:

producer.setPriority(7);

■ You can use the long form of the send or the publish method to set the priority level for a
specific message. The third argument sets the priority level. For example, the following send
call sets the priority level for message to 3:

producer.send(message, DeliveryMode.NON_PERSISTENT, 3, 10000);

The ten levels of priority range from 0 (lowest) to 9 (highest). If you do not specify a priority
level, the default level is 4. A JMS provider tries to deliver higher-priority messages before
lower-priority ones but does not have to deliver messages in exact order of priority.

Allowing Messages to Expire
By default, a message never expires. If a message will become obsolete after a certain period,
however, you may want to set an expiration time. You can do this in either of two ways.

■ You can use the setTimeToLive method of the MessageProducer interface to set a default
expiration time for all messages sent by that producer. For example, the following call sets a
time to live of one minute for a producer:

producer.setTimeToLive(60000);

■ You can use the long form of the send or the publish method to set an expiration time for a
specific message. The fourth argument sets the expiration time in milliseconds. For
example, the following send call sets a time to live of 10 seconds:

producer.send(message, DeliveryMode.NON_PERSISTENT, 3, 10000);

If the specified timeToLive value is 0, the message never expires.

When the message is sent, the specified timeToLive is added to the current time to give the
expiration time. Any message not delivered before the specified expiration time is destroyed.
The destruction of obsolete messages conserves storage and computing resources.

Creating Temporary Destinations
Normally, you create JMS destinations (queues and topics) administratively rather than
programmatically. Your JMS provider includes a tool that you use to create and remove
destinations, and it is common for destinations to be long-lasting.

Creating Robust JMS Applications

Chapter 31 • The Java Message Service API 943

The JMS API also enables you to create destinations (TemporaryQueue and TemporaryTopic

objects) that last only for the duration of the connection in which they are created. You create
these destinations dynamically using the Session.createTemporaryQueue and the
Session.createTemporaryTopic methods.

The only message consumers that can consume from a temporary destination are those created
by the same connection that created the destination. Any message producer can send to the
temporary destination. If you close the connection that a temporary destination belongs to, the
destination is closed and its contents are lost.

You can use temporary destinations to implement a simple request/reply mechanism. If you
create a temporary destination and specify it as the value of the JMSReplyTo message header
field when you send a message, then the consumer of the message can use the value of the
JMSReplyTo field as the destination to which it sends a reply. The consumer can also reference
the original request by setting the JMSCorrelationID header field of the reply message to the
value of the JMSMessageID header field of the request. For example, an onMessage method can
create a session so that it can send a reply to the message it receives. It can use code such as the
following:

producer = session.createProducer(msg.getJMSReplyTo());

replyMsg = session.createTextMessage("Consumer " +

"processed message: " + msg.getText());

replyMsg.setJMSCorrelationID(msg.getJMSMessageID());

producer.send(replyMsg);

For more examples, see Chapter 32, “Java EE Examples Using the JMS API.”

Using Advanced Reliability Mechanisms
The more advanced mechanisms for achieving reliable message delivery are the following:
■ Creating durable subscriptions: You can create durable topic subscriptions, which receive

messages published while the subscriber is not active. Durable subscriptions offer the
reliability of queues to the publish/subscribe message domain.

■ Using local transactions: You can use local transactions, which allow you to group a series
of sends and receives into an atomic unit of work. Transactions are rolled back if they fail at
any time.

Creating Durable Subscriptions
To ensure that a pub/sub application receives all published messages, use PERSISTENT delivery
mode for the publishers. In addition, use durable subscriptions for the subscribers.

The Session.createConsumer method creates a nondurable subscriber if a topic is specified as
the destination. A nondurable subscriber can receive only messages that are published while it
is active.

Creating Robust JMS Applications

The Java EE 5 Tutorial • October 2008944

At the cost of higher overhead, you can use the Session.createDurableSubscriber method to
create a durable subscriber. A durable subscription can have only one active subscriber at a
time.

A durable subscriber registers a durable subscription by specifying a unique identity that is
retained by the JMS provider. Subsequent subscriber objects that have the same identity resume
the subscription in the state in which it was left by the preceding subscriber. If a durable
subscription has no active subscriber, the JMS provider retains the subscription’s messages until
they are received by the subscription or until they expire.

You establish the unique identity of a durable subscriber by setting the following:

■ A client ID for the connection
■ A topic and a subscription name for the subscriber

You set the client ID administratively for a client-specific connection factory using the Admin
Console.

After using this connection factory to create the connection and the session, you call the
createDurableSubscriber method with two arguments: the topic and a string that specifies
the name of the subscription:

String subName = "MySub";
MessageConsumer topicSubscriber =

session.createDurableSubscriber(myTopic, subName);

The subscriber becomes active after you start the Connection or TopicConnection. Later, you
might close the subscriber:

topicSubscriber.close();

The JMS provider stores the messages sent or published to the topic, as it would store messages
sent to a queue. If the program or another application calls createDurableSubscriber using
the same connection factory and its client ID, the same topic, and the same subscription name,
the subscription is reactivated, and the JMS provider delivers the messages that were published
while the subscriber was inactive.

To delete a durable subscription, first close the subscriber, and then use the unsubscribe
method, with the subscription name as the argument:

topicSubscriber.close();

session.unsubscribe("MySub");

The unsubscribe method deletes the state that the provider maintains for the subscriber.

Figure 31–7 and Figure 31–8 show the difference between a nondurable and a durable
subscriber. With an ordinary, nondurable subscriber, the subscriber and the subscription begin
and end at the same point and are, in effect, identical. When a subscriber is closed, the

Creating Robust JMS Applications

Chapter 31 • The Java Message Service API 945

subscription also ends. Here, create stands for a call to Session.createConsumer with a Topic
argument, and close stands for a call to MessageConsumer.close. Any messages published to
the topic between the time of the first close and the time of the second create are not
consumed by the subscriber. In Figure 31–7, the subscriber consumes messages M1, M2, M5,
and M6, but messages M3 and M4 are lost.

With a durable subscriber, the subscriber can be closed and re-created, but the subscription
continues to exist and to hold messages until the application calls the unsubscribe method. In
Figure 31–8, create stands for a call to Session.createDurableSubscriber, close stands for
a call to MessageConsumer.close, and unsubscribe stands for a call to Session.unsubscribe.
Messages published while the subscriber is closed are received when the subscriber is created
again. So even though messages M2, M4, and M5 arrive while the subscriber is closed, they are
not lost.

Subscriber

Subscription

create close
Subscriber

Subscription

create close

M1 M2 M3 M4 M5 M6

FIGURE 31–7 Nondurable Subscribers and Subscriptions

Subscriber

create close

M1 M2 M3 M4 M5 M6

Subscriber

create close

Subscriber

create close

create unsubscribe

FIGURE 31–8 A Durable Subscriber and Subscription

Creating Robust JMS Applications

The Java EE 5 Tutorial • October 2008946

See “A Java EE Application That Uses the JMS API with a Session Bean” on page 966 for an
example of a Java EE application that uses durable subscriptions. See “A Message
Acknowledgment Example” on page 940 and the next section for examples of client
applications that use durable subscriptions.

A Durable Subscription Example
The DurableSubscriberExample.java program shows how durable subscriptions work. It
demonstrates that a durable subscription is active even when the subscriber is not active. The
program contains a DurableSubscriber class, a MultiplePublisher class, a main method, and
a method that instantiates the classes and calls their methods in sequence.

The program is in the following directory:

tut-install/javaeetutorial5/examples/jms/advanced/durablesubscriberexample/src/java/

The program begins in the same way as any publish/subscribe program: The subscriber starts,
the publisher publishes some messages, and the subscriber receives them. At this point, the
subscriber closes itself. The publisher then publishes some messages while the subscriber is not
active. The subscriber then restarts and receives the messages.

Before you run this program, compile and package the source file and create a connection
factory that has a client ID. Perform the following steps:

1. To compile and package the program using NetBeans IDE, follow these steps:
a. In NetBeans IDE, choose Open Project from the File menu.
b. In the Open Project dialog, navigate to

tut-install/javaeetutorial5/examples/jms/advanced/.
c. Select the durablesubscriberexample folder.
d. Select the Open as Main Project check box.
e. Click Open Project.
f. Right-click the project and choose Build.

To compile and package the program using Ant, follow these steps:
a. Go to the following directory:

tut-install/javaeetutorial5/examples/jms/advanced/durablesubscriberexample/

b. Type the following command:

ant

2. If you did not do so for “A Message Acknowledgment Example” on page 940, create a
connection factory named jms/DurableConnectionFactory:

ant create-durable-cf

Creating Robust JMS Applications

Chapter 31 • The Java Message Service API 947

To run the program using NetBeans IDE, right-click the durablesubscriberexample project
and choose Run.

To run the program from the command line, follow these steps:

1. Go to the dist directory:

cd dist

2. Type the following command:

appclient -client durablesubscriberexample.jar

The output looks something like this:

Connection factory without client ID is jms/ConnectionFactory

Connection factory with client ID is jms/DurableConnectionFactory

Topic name is jms/Topic

Starting subscriber

PUBLISHER: Publishing message: Here is a message 1

SUBSCRIBER: Reading message: Here is a message 1

PUBLISHER: Publishing message: Here is a message 2

SUBSCRIBER: Reading message: Here is a message 2

PUBLISHER: Publishing message: Here is a message 3

SUBSCRIBER: Reading message: Here is a message 3

Closing subscriber

PUBLISHER: Publishing message: Here is a message 4

PUBLISHER: Publishing message: Here is a message 5

PUBLISHER: Publishing message: Here is a message 6

Starting subscriber

SUBSCRIBER: Reading message: Here is a message 4

SUBSCRIBER: Reading message: Here is a message 5

SUBSCRIBER: Reading message: Here is a message 6

Closing subscriber

Unsubscribing from durable subscription

After you run the program, you can delete the connection factory
jms/DurableConnectionFactory. Go to the directory
tut-install/javaeetutorial5/examples/jms/advanced/durablesubscriberexample/ and
type the following command:

ant delete-durable-cf

To delete the class and JAR files for the program using NetBeans IDE, right-click the project and
choose Clean.

To delete the class and JAR files for the program using Ant, type the following:

ant clean

Creating Robust JMS Applications

The Java EE 5 Tutorial • October 2008948

Using JMS API Local Transactions
You can group a series of operations into an atomic unit of work called a transaction. If any one
of the operations fails, the transaction can be rolled back, and the operations can be attempted
again from the beginning. If all the operations succeed, the transaction can be committed.

In a JMS client, you can use local transactions to group message sends and receives. The JMS
API Session interface provides commit and rollback methods that you can use in a JMS client.
A transaction commit means that all produced messages are sent and all consumed messages
are acknowledged. A transaction rollback means that all produced messages are destroyed and
all consumed messages are recovered and redelivered unless they have expired (see “Allowing
Messages to Expire” on page 943).

A transacted session is always involved in a transaction. As soon as the commit or the rollback
method is called, one transaction ends and another transaction begins. Closing a transacted
session rolls back its transaction in progress, including any pending sends and receives.

In an Enterprise JavaBeans component, you cannot use the Session.commit and
Session.rollback methods. Instead, you use distributed transactions, which are described in
“Using the JMS API in a Java EE Application” on page 956.

You can combine several sends and receives in a single JMS API local transaction. If you do so,
you need to be careful about the order of the operations. You will have no problems if the
transaction consists of all sends or all receives or if the receives come before the sends. But if you
try to use a request/reply mechanism, whereby you send a message and then try to receive a
reply to the sent message in the same transaction, the program will hang, because the send
cannot take place until the transaction is committed. The following code fragment illustrates
the problem:

// Don’t do this!

outMsg.setJMSReplyTo(replyQueue);

producer.send(outQueue, outMsg);

consumer = session.createConsumer(replyQueue);

inMsg = consumer.receive();

session.commit();

Because a message sent during a transaction is not actually sent until the transaction is
committed, the transaction cannot contain any receives that depend on that message’s having
been sent.

In addition, the production and the consumption of a message cannot both be part of the same
transaction. The reason is that the transactions take place between the clients and the JMS
provider, which intervenes between the production and the consumption of the message.
Figure 31–9 illustrates this interaction.

Creating Robust JMS Applications

Chapter 31 • The Java Message Service API 949

The sending of one or more messages to one or more destinations by client 1 can form a single
transaction, because it forms a single set of interactions with the JMS provider using a single
session. Similarly, the receiving of one or more messages from one or more destinations by
client 2 also forms a single transaction using a single session. But because the two clients have
no direct interaction and are using two different sessions, no transactions can take place
between them.

Another way of putting this is that the act of producing and/or consuming messages in a session
can be transactional, but the act of producing and consuming a specific message across different
sessions cannot be transactional.

This is the fundamental difference between messaging and synchronized processing. Instead of
tightly coupling the sending and receiving of data, message producers and consumers use an
alternative approach to reliability, one that is built on a JMS provider’s ability to supply a
once-and-only-once message delivery guarantee.

When you create a session, you specify whether it is transacted. The first argument to the
createSession method is a boolean value. A value of true means that the session is transacted;
a value of false means that it is not transacted. The second argument to this method is the
acknowledgment mode, which is relevant only to nontransacted sessions (see “Controlling
Message Acknowledgment” on page 938). If the session is transacted, the second argument is
ignored, so it is a good idea to specify 0 to make the meaning of your code clear. For example:

session = connection.createSession(true, 0);

The commit and the rollback methods for local transactions are associated with the session.
You can combine queue and topic operations in a single transaction if you use the same session
to perform the operations. For example, you can use the same session to receive a message from
a queue and send a message to a topic in the same transaction.

You can pass a client program’s session to a message listener’s constructor function and use it to
create a message producer. In this way, you can use the same session for receives and sends in
asynchronous message consumers.

The next section provides an example of the use of JMS API local transactions.

Sends
Client 1 Queue

Consumes
Client 2

Transaction 1 Transaction 2

FIGURE 31–9 Using JMS API Local Transactions

Creating Robust JMS Applications

The Java EE 5 Tutorial • October 2008950

A Local Transaction Example

The TransactedExample.java program demonstrates the use of transactions in a JMS client
application. The program is in the following directory:

tut-install/javaeetutorial5/examples/jms/advanced/transactedexample/src/java/

This example shows how to use a queue and a topic in a single transaction as well as how to pass
a session to a message listener’s constructor function. The program represents a highly
simplified e-commerce application in which the following things happen.

1. A retailer sends a MapMessage to the vendor order queue, ordering a quantity of computers,
and waits for the vendor’s reply:

producer = session.createProducer(vendorOrderQueue);

outMessage = session.createMapMessage();

outMessage.setString("Item", "Computer(s)");
outMessage.setInt("Quantity", quantity);

outMessage.setJMSReplyTo(retailerConfirmQueue);

producer.send(outMessage);

System.out.println("Retailer: ordered " + quantity + " computer(s)");
orderConfirmReceiver = session.createConsumer(retailerConfirmQueue);

connection.start();

2. The vendor receives the retailer’s order message and sends an order message to the supplier
order topic in one transaction. This JMS transaction uses a single session, so you can
combine a receive from a queue with a send to a topic. Here is the code that uses the same
session to create a consumer for a queue and a producer for a topic:

vendorOrderReceiver = session.createConsumer(vendorOrderQueue);

supplierOrderProducer = session.createProducer(supplierOrderTopic);

The following code receives the incoming message, sends an outgoing message, and
commits the session. The message processing has been removed to keep the sequence
simple:

inMessage = vendorOrderReceiver.receive();

// Process the incoming message and format the outgoing

// message

...

supplierOrderProducer.send(orderMessage);

...

session.commit();

3. Each supplier receives the order from the order topic, checks its inventory, and then sends
the items ordered to the queue named in the order message’s JMSReplyTo field. If it does not
have enough in stock, the supplier sends what it has. The synchronous receive from the
topic and the send to the queue take place in one JMS transaction.

Creating Robust JMS Applications

Chapter 31 • The Java Message Service API 951

receiver = session.createConsumer(orderTopic);

...

inMessage = receiver.receive();

if (inMessage instanceof MapMessage) {

orderMessage = (MapMessage) inMessage;

}

// Process message

MessageProducer producer =

session.createProducer((Queue) orderMessage.getJMSReplyTo());

outMessage = session.createMapMessage();

// Add content to message

producer.send(outMessage);

// Display message contentssession.commit();

4. The vendor receives the replies from the suppliers from its confirmation queue and updates
the state of the order. Messages are processed by an asynchronous message listener; this step
shows the use of JMS transactions with a message listener.

MapMessage component = (MapMessage) message;

...

orderNumber = component.getInt("VendorOrderNumber");
Order order = Order.getOrder(orderNumber).processSubOrder(component);

session.commit();

5. When all outstanding replies are processed for a given order, the vendor message listener
sends a message notifying the retailer whether it can fulfill the order.

Queue replyQueue = (Queue) order.order.getJMSReplyTo();

MessageProducer producer = session.createProducer(replyQueue);

MapMessage retailerConfirmMessage = session.createMapMessage();

// Format the message

producer.send(retailerConfirmMessage);

session.commit();

6. The retailer receives the message from the vendor:

inMessage = (MapMessage) orderConfirmReceiver.receive();

Figure 31–10 illustrates these steps.

Creating Robust JMS Applications

The Java EE 5 Tutorial • October 2008952

The program contains five classes: Retailer, Vendor, GenericSupplier,
VendorMessageListener, and Order. The program also contains a main method and a method
that runs the threads of the Retailer, Vendor, and two supplier classes.

All the messages use the MapMessage message type. Synchronous receives are used for all
message reception except for the case of the vendor processing the replies of the suppliers.
These replies are processed asynchronously and demonstrate how to use transactions within a
message listener.

At random intervals, the Vendor class throws an exception to simulate a database problem and
cause a rollback.

All classes except Retailer use transacted sessions.

The program uses three queues named jms/AQueue, jms/BQueue, and jms/CQueue, and one
topic named jms/OTopic.

VendorRetailer

Supplier
1

Supplier
N

Vendor
OrderQ

Retailer
ConfirmQ

Supplier
Order
Topic

Vendor
ConfirmQ

1. 2a. 2b.

6. 5. 4.

3.

3.

3.

3.

Message Send

Message Receive

Message Listen

FIGURE 31–10 Transactions: JMS Client Example

Creating Robust JMS Applications

Chapter 31 • The Java Message Service API 953

Before you run the program, do the following:

1. In a terminal window, go to the following directory:

tut-install/javaeetutorial5/examples/jms/advanced/transactedexample/

2. Create the necessary resources using the following command:

ant create-resources

This command creates three destination resources with the names jms/AQueue,
jms/BQueue, and jms/CQueue, all of type javax.jms.Queue, and one destination resource
with the name jms/OTopic, of type javax.jms.Topic.

3. To compile and package the program using NetBeans IDE, follow these steps:

a. In NetBeans IDE, choose Open Project from the File menu.

b. In the Open Project dialog, navigate to
tut-install/javaeetutorial5/examples/jms/advanced/.

c. Select the transactedexample folder.

d. Select the Open as Main Project check box.

e. Click Open Project.

f. Right-click the project and choose Build.

To compile and package the program using Ant, follow these steps:

a. Go to the following directory:

tut-install/javaeetutorial5/examples/jms/advanced/transactedexample/

b. Type the following command:

ant

To run the program using NetBeans IDE, follow these steps:

1. Right-click the transactedexample project and choose Properties.

2. Select Run from the Categories tree.

3. In the Arguments field, type a number that specifies the number of computers to order:

3

4. Click OK.

5. Right-click the project and choose Run.

Creating Robust JMS Applications

The Java EE 5 Tutorial • October 2008954

To run the program from the command line, follow these steps:

1. Go to the dist directory:

cd dist

2. Use a command like the following to run the program. The argument specifies the number
of computers to order:

appclient -client transactedexample.jar 3

The output looks something like this:

Quantity to be ordered is 3

Retailer: ordered 3 computer(s)

Vendor: Retailer ordered 3 Computer(s)

Vendor: ordered 3 monitor(s) and hard drive(s)

Monitor Supplier: Vendor ordered 3 Monitor(s)

Monitor Supplier: sent 3 Monitor(s)

Monitor Supplier: committed transaction

Vendor: committed transaction 1

Hard Drive Supplier: Vendor ordered 3 Hard Drive(s)

Hard Drive Supplier: sent 1 Hard Drive(s)

Vendor: Completed processing for order 1

Hard Drive Supplier: committed transaction

Vendor: unable to send 3 computer(s)

Vendor: committed transaction 2

Retailer: Order not filled

Retailer: placing another order

Retailer: ordered 6 computer(s)

Vendor: JMSException occurred: javax.jms.JMSException:

Simulated database concurrent access exception

javax.jms.JMSException: Simulated database concurrent access exception

at TransactedExample$Vendor.run(Unknown Source)

Vendor: rolled back transaction 1

Vendor: Retailer ordered 6 Computer(s)

Vendor: ordered 6 monitor(s) and hard drive(s)

Monitor Supplier: Vendor ordered 6 Monitor(s)

Hard Drive Supplier: Vendor ordered 6 Hard Drive(s)

Monitor Supplier: sent 6 Monitor(s)

Monitor Supplier: committed transaction

Hard Drive Supplier: sent 6 Hard Drive(s)

Hard Drive Supplier: committed transaction

Vendor: committed transaction 1

Vendor: Completed processing for order 2

Vendor: sent 6 computer(s)

Retailer: Order filled

Vendor: committed transaction 2

Creating Robust JMS Applications

Chapter 31 • The Java Message Service API 955

After you run the program, you can delete the physical destinations and the destination
resources. Go to the directory
tut-install/javaeetutorial5/examples/jms/advanced/transactedexample/ and type the
following command:

ant delete-resources

Use the following command to remove the class and JAR files:

ant clean

Using the JMS API in a Java EE Application
This section describes the ways in which using the JMS API in a Java EE application differs from
using it in a stand-alone client application:

■ “Using @Resource Annotations in Java EE Components” on page 956
■ “Using Session Beans to Produce and to Synchronously Receive Messages” on page 957
■ “Using Message-Driven Beans to Receive Messages Asynchronously” on page 958
■ “Managing Distributed Transactions” on page 960
■ “Using the JMS API with Application Clients and Web Components” on page 962

A general rule in the Java EE platform specification applies to all Java EE components that use
the JMS API within EJB or web containers:

Application components in the web and EJB containers must not attempt to create more than
one active (not closed) Session object per connection.

This rule does not apply to application clients.

Using @ResourceAnnotations in Java EE Components
When you use the @Resource annotation in an application client component, you normally
declare the JMS resource static:

@Resource(mappedName="jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;

@Resource(mappedName="jms/Queue")
private static Queue queue;

However, when you use this annotation in a session bean, a message-driven bean, or a web
component, do not declare the resource static:

Using the JMS API in a Java EE Application

The Java EE 5 Tutorial • October 2008956

@Resource(mappedName="jms/ConnectionFactory")
private ConnectionFactory connectionFactory;

@Resource(mappedName="jms/Topic")
private Topic topic;

If you declare the resource static, runtime errors will result.

Using Session Beans to Produce and to Synchronously
Receive Messages
A Java EE application that produces messages or synchronously receives them can use a session
bean to perform these operations. The example in “A Java EE Application That Uses the JMS
API with a Session Bean” on page 966 uses a stateless session bean to publish messages to a topic.

Because a blocking synchronous receive ties up server resources, it is not a good programming
practice to use such a receive call in an enterprise bean. Instead, use a timed synchronous
receive, or use a message-driven bean to receive messages asynchronously. For details about
blocking and timed synchronous receives, see “Writing the Client Programs for the
Synchronous Receive Example” on page 914.

Using the JMS API in a Java EE application is in many ways similar to using it in a stand-alone
client. The main differences are in resource management and transactions.

Resource Management
The JMS API resources are a JMS API connection and a JMS API session. In general, it is
important to release JMS resources when they are no longer being used. Here are some useful
practices to follow.

■ If you wish to maintain a JMS API resource only for the life span of a business method, it is a
good idea to close the resource in a finally block within the method.

■ If you would like to maintain a JMS API resource for the life span of an enterprise bean
instance, it is a good idea to use a @PostConstruct callback method to create the resource
and to use a @PreDestroy callback method to close the resource. If you use a stateful session
bean and you wish to maintain the JMS API resource in a cached state, you must close the
resource in a @PrePassivate callback method and set its value to null, and you must create
it again in a @PostActivate callback method.

Transactions
Instead of using local transactions, you use container-managed transactions for bean methods
that perform sends or receives, allowing the EJB container to handle transaction demarcation.
Because container-managed transactions are the default, you do not have to use an annotation
to specify them.

Using the JMS API in a Java EE Application

Chapter 31 • The Java Message Service API 957

You can use bean-managed transactions and the javax.transaction.UserTransaction
interface’s transaction demarcation methods, but you should do so only if your application has
special requirements and you are an expert in using transactions. Usually, container-managed
transactions produce the most efficient and correct behavior. This tutorial does not provide any
examples of bean-managed transactions.

Using Message-Driven Beans to Receive Messages
Asynchronously
The sections “What Is a Message-Driven Bean?” on page 636 and “How Does the JMS API
Work with the Java EE Platform?” on page 898 describe how the Java EE platform supports a
special kind of enterprise bean, the message-driven bean, which allows Java EE applications to
process JMS messages asynchronously. Session beans allow you to send messages and to receive
them synchronously but not asynchronously.

A message-driven bean is a message listener that can reliably consume messages from a queue
or a durable subscription. The messages can be sent by any Java EE component (from an
application client, another enterprise bean, or a web component) or from an application or a
system that does not use Java EE technology.

Like a message listener in a stand-alone JMS client, a message-driven bean contains an
onMessage method that is called automatically when a message arrives. Like a message listener,
a message-driven bean class can implement helper methods invoked by the onMessage method
to aid in message processing.

A message-driven bean, however, differs from a stand-alone client’s message listener in the
following ways:
■ Certain setup tasks are performed by the EJB container.
■ The bean class uses the @MessageDriven annotation to specify properties for the bean or the

connection factory, such as a destination type, a durable subscription, a message selector, or
an acknowledgment mode. The examples in Chapter 32, “Java EE Examples Using the JMS
API,” show how the JMS resource adapter works in the Application Server.

The EJB container automatically performs several setup tasks that a stand-alone client has to
do:
■ Creating a message consumer to receive the messages. Instead of creating a message

consumer in your source code, you associate the message-driven bean with a destination
and a connection factory at deployment time. If you want to specify a durable subscription
or use a message selector, you do this at deployment time also.

■ Registering the message listener. You must not call setMessageListener.
■ Specifying a message acknowledgment mode. The default mode, AUTO_ACKNOWLEDGE, is used

unless it is overriden by a property setting.

Using the JMS API in a Java EE Application

The Java EE 5 Tutorial • October 2008958

If JMS is integrated with the application server using a resource adapter, the JMS resource
adapter handles these tasks for the EJB container.

Your message-driven bean class must implement the javax.jms.MessageListener interface
and the onMessage method.

It may implement a @PostConstruct callback method to create a connection, and a
@PreDestroy callback method to close the connection. Typically, it implements these methods
if it produces messages or does synchronous receives from another destination.

The bean class commonly injects a MessageDrivenContext resource, which provides some
additional methods that you can use for transaction management.

The main difference between a message-driven bean and a session bean is that a message-driven
bean has no local or remote interface. Instead, it has only a bean class.

A message-driven bean is similar in some ways to a stateless session bean: Its instances are
relatively short-lived and retain no state for a specific client. The instance variables of the
message-driven bean instance can contain some state across the handling of client messages: for
example, a JMS API connection, an open database connection, or an object reference to an
enterprise bean object.

Like a stateless session bean, a message-driven bean can have many interchangeable instances
running at the same time. The container can pool these instances to allow streams of messages
to be processed concurrently. The container attempts to deliver messages in chronological
order when it does not impair the concurrency of message processing, but no guarantees are
made as to the exact order in which messages are delivered to the instances of the
message-driven bean class. Because concurrency can affect the order in which messages are
delivered, you should write your applications to handle messages that arrive out of sequence.

For example, your application could manage conversations by using application-level sequence
numbers. An application-level conversation control mechanism with a persistent conversation
state could cache later messages until earlier messages have been processed.

Another way to ensure order is to have each message or message group in a conversation
require a confirmation message that the sender blocks on receipt of. This forces the
responsibility for order back on the sender and more tightly couples senders to the progress of
message-driven beans.

To create a new instance of a message-driven bean, the container does the following:

■ Instantiates the bean
■ Performs any required resource injection
■ Calls the @PostConstruct callback method, if it exists

To remove an instance of a message-driven bean, the container calls the @PreDestroy callback
method.

Using the JMS API in a Java EE Application

Chapter 31 • The Java Message Service API 959

Figure 31–11 shows the life cycle of a message-driven bean.

Managing Distributed Transactions
JMS client applications use JMS API local transactions (described in “Using JMS API Local
Transactions” on page 949), which allow the grouping of sends and receives within a specific
JMS session. Java EE applications commonly use distributed transactions to ensure the integrity
of accesses to external resources. For example, distributed transactions allow multiple
applications to perform atomic updates on the same database, and they allow a single
application to perform atomic updates on multiple databases.

In a Java EE application that uses the JMS API, you can use transactions to combine message
sends or receives with database updates and other resource manager operations. You can access
resources from multiple application components within a single transaction. For example, a
servlet can start a transaction, access multiple databases, invoke an enterprise bean that sends a
JMS message, invoke another enterprise bean that modifies an EIS system using the Connector
architecture, and finally commit the transaction. Your application cannot, however, both send a
JMS message and receive a reply to it within the same transaction; the restriction described in
“Using JMS API Local Transactions” on page 949 still applies.

Does Not
Exist

Ready

1. Dependency injection, if any
2. PostConstruct callback, if any

PreDestroy callback, if any

onMessage

FIGURE 31–11 Life Cycle of a Message-Driven Bean

Using the JMS API in a Java EE Application

The Java EE 5 Tutorial • October 2008960

Distributed transactions within the EJB container can be either of two kinds:

■ Container-managed transactions: The EJB container controls the integrity of your
transactions without your having to call commit or rollback. Container-managed
transactions are recommended for Java EE applications that use the JMS API. You can
specify appropriate transaction attributes for your enterprise bean methods.
Use the Required transaction attribute (the default) to ensure that a method is always part
of a transaction. If a transaction is in progress when the method is called, the method will be
part of that transaction; if not, a new transaction will be started before the method is called
and will be committed when the method returns.

■ Bean-managed transactions: You can use these in conjunction with the
javax.transaction.UserTransaction interface, which provides its own commit and
rollback methods that you can use to delimit transaction boundaries. Bean-managed
transactions are recommended only for those who are experienced in programming
transactions.

You can use either container-managed transactions or bean-managed transactions with
message-driven beans. To ensure that all messages are received and handled within the context
of a transaction, use container-managed transactions and use the Required transaction
attribute (the default) for the onMessage method. This means that if there is no transaction in
progress, a new transaction will be started before the method is called and will be committed
when the method returns.

When you use container-managed transactions, you can call the following
MessageDrivenContext methods:

■ setRollbackOnly: Use this method for error handling. If an exception occurs,
setRollbackOnly marks the current transaction so that the only possible outcome of the
transaction is a rollback.

■ getRollbackOnly: Use this method to test whether the current transaction has been marked
for rollback.

If you use bean-managed transactions, the delivery of a message to the onMessage method takes
place outside the distributed transaction context. The transaction begins when you call the
UserTransaction.begin method within the onMessage method, and it ends when you call
UserTransaction.commit or UserTransaction.rollback. Any call to the
Connection.createSession method must take place within the transaction. If you call
UserTransaction.rollback, the message is not redelivered, whereas calling setRollbackOnly
for container-managed transactions does cause a message to be redelivered.

Neither the JMS API specification nor the Enterprise JavaBeans specification (available from
http://java.sun.com/products/ejb/) specifies how to handle calls to JMS API methods
outside transaction boundaries. The Enterprise JavaBeans specification does state that the EJB
container is responsible for acknowledging a message that is successfully processed by the
onMessage method of a message-driven bean that uses bean-managed transactions. Using

Using the JMS API in a Java EE Application

Chapter 31 • The Java Message Service API 961

http://java.sun.com/products/ejb/

bean-managed transactions allows you to process the message by using more than one
transaction or to have some parts of the message processing take place outside a transaction
context. In most cases, however, container-managed transactions provide greater reliability and
are therefore preferable.

When you create a session in an enterprise bean, the container ignores the arguments you
specify, because it manages all transactional properties for enterprise beans. It is still a good idea
to specify arguments of true and 0 to the createSession method to make this situation clear:

session = connection.createSession(true, 0);

When you use container-managed transactions, you normally use the Required transaction
attribute (the default) for your enterprise bean’s business methods.

You do not specify a message acknowledgment mode when you create a message-driven bean
that uses container-managed transactions. The container acknowledges the message
automatically when it commits the transaction.

If a message-driven bean uses bean-managed transactions, the message receipt cannot be part
of the bean-managed transaction, so the container acknowledges the message outside the
transaction.

If the onMessage method throws a RuntimeException, the container does not acknowledge
processing the message. In that case, the JMS provider will redeliver the unacknowledged
message in the future.

Using the JMS API with Application Clients and Web
Components
An application client in a Java EE application can use the JMS API in much the same way that a
stand-alone client program does. It can produce messages, and it can consume messages by
using either synchronous receives or message listeners. See Chapter 23, “A Message-Driven
Bean Example,” for an example of an application client that produces messages. For an example
of using an application client to produce and to consume messages, see “An Application
Example That Deploys a Message-Driven Bean on Two Servers” on page 987.

The Java EE platform specification does not impose strict constraints on how web components
should use the JMS API. In the Application Server, a web component can send messages and
consume them synchronously but cannot consume them asynchronously.

Because a blocking synchronous receive ties up server resources, it is not a good programming
practice to use such a receive call in a web component. Instead, use a timed synchronous
receive. For details about blocking and timed synchronous receives, see “Writing the Client
Programs for the Synchronous Receive Example” on page 914.

Using the JMS API in a Java EE Application

The Java EE 5 Tutorial • October 2008962

Further Information about JMS
For more information about JMS, see:

■ Java Message Service web site:
http://java.sun.com/products/jms/

■ Java Message Service specification, version 1.1, available from
http://java.sun.com/products/jms/docs.html

Further Information about JMS

Chapter 31 • The Java Message Service API 963

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/docs.html

964

Java EE Examples Using the JMS API

This chapter provides examples that show how to use the JMS API within a Java EE application
in the following ways:

■ Using a session bean to send messages that are consumed by a message-driven bean using a
message selector and a durable subscription

■ Using an application client to send messages that are consumed by two message-driven
beans; the information from them is stored in a Java Persistence API entity

■ Using an application client to send messages that are consumed by a message-driven bean
on a remote server

■ Using an application client to send messages that are consumed by message-driven beans on
two different servers

The examples are in the following directory:

tut-install/javaeetutorial5/examples/jms/

To build and run the examples, you will do the following:

1. Use NetBeans IDE or the Ant tool to compile and package the example.
2. Use the Ant tool to create resources.
3. Use NetBeans IDE or the Ant tool to deploy the example.
4. Use NetBeans IDE or the Ant tool to run the client.

Each example has a build.xml file that refers to files in the following directory:

tut-install/javaeetutorial5/examples/bp-project/

See Chapter 23, “A Message-Driven Bean Example,” for a simpler example of a Java EE
application that uses the JMS API.

32C H A P T E R 3 2

965

A Java EE Application That Uses the JMS API with a Session
Bean

This section explains how to write, compile, package, deploy, and run a Java EE application that
uses the JMS API in conjunction with a session bean. The application contains the following
components:

■ An application client that invokes a session bean
■ A session bean that publishes several messages to a topic
■ A message-driven bean that receives and processes the messages using a durable topic

subscriber and a message selector

The section covers the following topics:

■ “Writing the Application Components for the clientsessionmdb Example” on page 966
■ “Creating Resources for the clientsessionmdb Example” on page 969
■ “Building, Deploying, and Running the clientsessionmdb Example Using NetBeans IDE”

on page 969
■ “Building, Deploying, and Running the clientsessionmdb Example Using Ant” on page 971

You will find the source files for this section in the directory
tut-install/javaeetutorial5/examples/jms/clientsessionmdb/. Path names in this section
are relative to this directory.

Writing the Application Components for the
clientsessionmdb Example
This application demonstrates how to send messages from an enterprise bean (in this case, a
session bean) rather than from an application client, as in the example in Chapter 23, “A
Message-Driven Bean Example.” Figure 32–1 illustrates the structure of this application.

A Java EE Application That Uses the JMS API with a Session Bean

The Java EE 5 Tutorial • October 2008966

The Publisher enterprise bean in this example is the enterprise-application equivalent of a
wire-service news feed that categorizes news events into six news categories. The
message-driven bean could represent a newsroom, where the sports desk, for example, would
set up a subscription for all news events pertaining to sports.

The application client in the example injects the Publisher enterprise bean’s remote home
interface and then calls the bean’s business method. The enterprise bean creates 18 text
messages. For each message, it sets a String property randomly to one of six values
representing the news categories and then publishes the message to a topic. The message-driven
bean uses a message selector for the property to limit which of the published messages it
receives.

Writing the components of the application involves the following:

■ “Coding the Application Client: MyAppClient.java” on page 967
■ “Coding the Publisher Session Bean” on page 968
■ “Coding the Message-Driven Bean: MessageBean.java” on page 969

Coding the Application Client: MyAppClient.java
The application client program,
clientsessionmdb-app-client/src/java/MyAppClient.java, performs no JMS API

Topic

Java EE Server

MDB Instance

EJB
Container

Application
Client

Session Bean

EJB
Container

Msg Msg
Calls

Publishes Delivers

FIGURE 32–1 A Java EE Application: Client to Session Bean to Message-Driven Bean

A Java EE Application That Uses the JMS API with a Session Bean

Chapter 32 • Java EE Examples Using the JMS API 967

operations and so is simpler than the client program in Chapter 23, “A Message-Driven Bean
Example.” The program uses dependency injection to obtain the Publisher enterprise bean’s
business interface:

@EJB(name="PublisherRemote")
static private PublisherRemote publisher;

The program then calls the bean’s business method twice.

Coding the Publisher Session Bean
The Publisher bean is a stateless session bean that has one business method. The Publisher bean
uses a remote interface rather than a local interface because it is accessed from the application
client.

The remote interface, clientsessionmdb-ejb/src/java/sb/PublisherRemote.java,
declares a single business method, publishNews.

The bean class, clientsessionmdb-ejb/src/java/sb/PublisherBean.java, implements the
publishNews method and its helper method chooseType. The bean class also injects
SessionContext, ConnectionFactory, and Topic resources and implements @PostConstruct
and @PreDestroy callback methods. The bean class begins as follows:

@Stateless

@Remote({PublisherRemote.class})

public class PublisherBean implements PublisherRemote {

@Resource

private SessionContext sc;

@Resource(mappedName="jms/ConnectionFactory")
private ConnectionFactory connectionFactory;

@Resource(mappedName="jms/Topic")
private Topic topic;

...

The @PostConstruct callback method of the bean class, makeConnection, creates the
Connection used by the bean. The business method publishNews creates a Session and a
MessageProducer and publishes the messages.

The @PreDestroy callback method, endConnection, deallocates the resources that were
allocated by the @PostConstruct callback method. In this case, the method closes the
Connection.

A Java EE Application That Uses the JMS API with a Session Bean

The Java EE 5 Tutorial • October 2008968

Coding the Message-Driven Bean: MessageBean.java
The message-driven bean class, clientsessionmdb-ejb/src/java/mdb/MessageBean.java, is
almost identical to the one in Chapter 23, “A Message-Driven Bean Example.” However, the
@MessageDriven annotation is different, because instead of a queue the bean is using a topic
with a durable subscription, and it is also using a message selector. Therefore, the annotation
sets the activation config properties messageSelector, subscriptionDurability, clientId,
and subscriptionName, as follows:

@MessageDriven(mappedName="jms/Topic",
activationConfig=

{ @ActivationConfigProperty(propertyName="messageSelector",
propertyValue="NewsType = ’Sports’ OR NewsType = ’Opinion’"),

@ActivationConfigProperty(

propertyName="subscriptionDurability",
propertyValue="Durable"),

@ActivationConfigProperty(propertyName="clientId",
propertyValue="MyID"),

@ActivationConfigProperty(propertyName="subscriptionName",
propertyValue="MySub")

})

The JMS resource adapter uses these properties to create a connection factory for the
message-driven bean that allows the bean to use a durable subscriber.

Creating Resources for the clientsessionmdb
Example
This example uses the topic named jms/Topic and the connection factory
jms/ConnectionFactory, which you created in “Creating JMS Administered Objects for the
Synchronous Receive Example” on page 917. If you deleted the connection factory or topic, you
can create them again using targets in the build.xml file for this example. Use the following
commands to create the resources:

ant create-cf

ant create-topic

Building, Deploying, and Running the
clientsessionmdb Example Using NetBeans IDE
To build, deploy, and run the application using NetBeans IDE, do the following:

1. Start the Application Server, if it is not already running.
2. In NetBeans IDE, choose Open Project from the File menu.

A Java EE Application That Uses the JMS API with a Session Bean

Chapter 32 • Java EE Examples Using the JMS API 969

3. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jms/.

4. Select the clientsessionmdb folder.

5. Select the Open as Main Project check box and the Open Required Projects check box.

6. Click Open Project.

7. Right-click the clientsessionmdb project and choose Build.

This task creates the following:
■ An application client JAR file that contains the client class file and the session bean’s

remote interface, along with a manifest file that specifies the main class
■ An EJB JAR file that contains both the session bean and the message-driven bean
■ An application EAR file that contains the two JAR files

8. Right-click the project and choose Undeploy and Deploy.

9. Right-click the project and choose Run.

This command returns a JAR file named clientsessionmdbClient.jar and then executes
it.

The output of the application client in the Output pane looks like this:

To view the bean output,

check <install_dir>/domains/domain1/logs/server.log.

The output from the enterprise beans appears in the server log
(domain-dir/logs/server.log), wrapped in logging information. The Publisher session bean
sends two sets of 18 messages numbered 0 through 17. Because of the message selector, the
message-driven bean receives only the messages whose NewsType property is Sports or
Opinion.

Undeploy the application after you finish running the client. To undeploy the application,
follow these steps:

1. Click the Services tab.
2. Expand the Servers node.
3. Expand the Sun Java System Application Server node.
4. Expand the Applications node.
5. Expand the Enterprise Applications node.
6. Right-click clientsessionmdb and choose Undeploy.

To remove the generated files, right-click the clientsessionmdb project and choose Clean.

A Java EE Application That Uses the JMS API with a Session Bean

The Java EE 5 Tutorial • October 2008970

Building, Deploying, and Running the
clientsessionmdb Example Using Ant
To build the application using Ant, do the following:

1. Start the Application Server, if it is not already running.
2. Go to the following directory:

tut-install/javaeetutorial5/examples/jms/clientsessionmdb/

3. To compile the source files and package the application, use the following command:

ant

The ant command creates the following:
■ An application client JAR file that contains the client class file and the session bean’s remote

interface, along with a manifest file that specifies the main class
■ An EJB JAR file that contains both the session bean and the message-driven bean
■ An application EAR file that contains the two JAR files

The clientsessionmdb.ear file is created in the clientsessionmdb/dist directory.

To deploy the application and run the client, use the following command:

ant run

Ignore the message that states that the application is deployed at a URL.

The client displays these lines:

running application client container.

To view the bean output,

check <install_dir>/domains/domain1/logs/server.log.

The output from the enterprise beans appears in the server log
(domain-dir/logs/server.log), wrapped in logging information. The Publisher session bean
sends two sets of 18 messages numbered 0 through 17. Because of the message selector, the
message-driven bean receives only the messages whose NewsType property is Sports or
Opinion.

Undeploy the application after you finish running the client. Use the following command:

ant undeploy

To remove the generated files, use the following command in the clientsessionmdb,
clientsessionmdb-app-client, and clientsessionmdb-ejb directories:

A Java EE Application That Uses the JMS API with a Session Bean

Chapter 32 • Java EE Examples Using the JMS API 971

ant clean

A Java EE Application That Uses the JMS API with an Entity
This section explains how to write, compile, package, deploy, and run a Java EE application that
uses the JMS API with an entity. The application uses the following components:
■ An application client that both sends and receives messages
■ Two message-driven beans
■ An entity class

This section covers the following topics:
■ “Overview of the clientmdbentity Example Application” on page 972
■ “Writing the Application Components for the clientmdbentity Example” on page 974
■ “Creating Resources for the clientmdbentity Example” on page 976
■ “Building, Deploying, and Running the clientmdbentity Example Using NetBeans IDE” on

page 977
■ “Building, Deploying, and Running the clientmdbentity Example Using Ant” on page 979

You will find the source files for this section in the directory
tut-install/javaeetutorial5/examples/jms/clientmdbentity/. Path names in this section
are relative to this directory.

Overview of the clientmdbentity Example
Application
This application simulates, in a simplified way, the work flow of a company’s human resources
(HR) department when it processes a new hire. This application also demonstrates how to use
the Java EE platform to accomplish a task that many JMS client applications perform.

A JMS client must often wait for several messages from various sources. It then uses the
information in all these messages to assemble a message that it then sends to another
destination. The common term for this process is joining messages. Such a task must be
transactional, with all the receives and the send as a single transaction. If not all the messages are
received successfully, the transaction can be rolled back. For a client example that illustrates this
task, see “A Local Transaction Example” on page 951.

A message-driven bean can process only one message at a time in a transaction. To provide the
ability to join messages, a Java EE application can have the message-driven bean store the
interim information in an entity. The entity can then determine whether all the information has
been received; when it has, the entity can report this back to one of the message-driven beans,
which then creates and sends the message to the other destination. After it has completed its
task, the entity can be removed.

A Java EE Application That Uses the JMS API with an Entity

The Java EE 5 Tutorial • October 2008972

The basic steps of the application are as follows.

1. The HR department’s application client generates an employee ID for each new hire and
then publishes a message (M1) containing the new hire’s name, employee ID, and position.
The client then creates a temporary queue, ReplyQueue, with a message listener that waits
for a reply to the message. (See “Creating Temporary Destinations” on page 943, for more
information.)

2. Two message-driven beans process each message: One bean, OfficeMDB, assigns the new
hire’s office number, and the other bean, EquipmentMDB, assigns the new hire’s equipment.
The first bean to process the message creates and persists an entity named SetupOffice,
then calls a business method of the entity to store the information it has generated. The
second bean locates the existing entity and calls another business method to add its
information.

3. When both the office and the equipment have been assigned, the entity business method
returns a value of true to the message-driven bean that called the method. The
message-driven bean then sends to the reply queue a message (M2) describing the
assignments. Then it removes the entity. The application client’s message listener retrieves
the information.

Figure 32–2 illustrates the structure of this application. Of course, an actual HR application
would have more components; other beans could set up payroll and benefits records, schedule
orientation, and so on.

Figure 32–2 assumes that OfficeMDB is the first message-driven bean to consume the message
from the client. OfficeMDB then creates and persists the SetupOffice entity and stores the office
information. EquipmentMDB then finds the entity, stores the equipment information, and learns
that the entity has completed its work. EquipmentMDB then sends the message to the reply queue
and removes the entity.

A Java EE Application That Uses the JMS API with an Entity

Chapter 32 • Java EE Examples Using the JMS API 973

Writing the Application Components for the
clientmdbentity Example
Writing the components of the application involves the following:
■ “Coding the Application Client: HumanResourceClient.java” on page 974
■ “Coding the Message-Driven Beans for the clientmdbentity Example” on page 975
■ “Coding the Entity Class for the clientmdbentity Example” on page 975

Coding the Application Client: HumanResourceClient.java
The application client program,
clientmdbentity-app-client/src/java/HumanResourceClient.java, performs the
following steps:

1. Injects ConnectionFactory and Topic resources
2. Creates a TemporaryQueue to receive notification of processing that occurs, based on

new-hire events it has published

OfficeMDB

NewHire
Topic

ReplyQueue

Message Passing

HR
Client

SetupOffice
Entity

Method Invocation

M1

M1

M1

M2 M2

Finds

Creates and
Persists

Java EE Server

EquipmentMDB

FIGURE 32–2 A Java EE Application: Client to Message-Driven Beans to Entity

A Java EE Application That Uses the JMS API with an Entity

The Java EE 5 Tutorial • October 2008974

3. Creates a MessageConsumer for the TemporaryQueue, sets the MessageConsumer’s message
listener, and starts the connection

4. Creates a MessageProducer and a MapMessage
5. Creates five new employees with randomly generated names, positions, and ID numbers (in

sequence) and publishes five messages containing this information

The message listener, HRListener, waits for messages that contain the assigned office and
equipment for each employee. When a message arrives, the message listener displays the
information received and determines whether all five messages have arrived. When they have,
the message listener notifies the main program, which then exits.

Coding the Message-Driven Beans for the clientmdbentity Example
This example uses two message-driven beans:
■ clientmdbentity-ejb/src/java/EquipmentMDB.java

■ clientmdbentity-ejb/src/java/OfficeMDB.java

The beans take the following steps:

1. They inject MessageDrivenContext and ConnectionFactory resources.
2. The onMessage method retrieves the information in the message. The EquipmentMDB’s

onMessage method chooses equipment, based on the new hire’s position; the OfficeMDB’s
onMessage method randomly generates an office number.

3. After a slight delay to simulate real world processing hitches, the onMessage method calls a
helper method, compose.

4. The compose method takes the following steps:
a. It either creates and persists the SetupOffice entity or finds it by primary key.
b. It uses the entity to store the equipment or the office information in the database, calling

either the doEquipmentList or the doOfficeNumber business method.
c. If the business method returns true, meaning that all of the information has been stored,

it creates a connection and a session, retrieves the reply destination information from
the message, creates a MessageProducer, and sends a reply message that contains the
information stored in the entity.

d. It removes the entity.

Coding the Entity Class for the clientmdbentity Example
The SetupOffice class, SetupOffice.java, is an entity class. The entity and the
message-driven beans are packaged together in an EJB JAR file. The entity class is declared as
follows:

@Entity

public class SetupOffice implements Serializable {

A Java EE Application That Uses the JMS API with an Entity

Chapter 32 • Java EE Examples Using the JMS API 975

The class contains a no-argument constructor and a constructor that takes two arguments, the
employee ID and name. It also contains getter and setter methods for the employee ID, name,
office number, and equipment list. The getter method for the employee ID has the @Id
annotation to indicate that this field is the primary key:

@Id public String getEmployeeId() {

return id;

}

The class also implements the two business methods, doEquipmentList and doOfficeNumber,
and their helper method, checkIfSetupComplete.

The message-driven beans call the business methods and the getter methods.

The persistence.xml file for the entity specifies the most basic settings:

<persistence>

<persistence-unit name="clientmdbentity">
<jta-data-source>jdbc/__default</jta-data-source>

<class>eb.SetupOffice</class>

<properties>

<property name="toplink.ddl-generation"
value="drop-and-create-tables"/>

</properties>

</persistence-unit>

</persistence>

Creating Resources for the clientmdbentity Example
This example uses the connection factory jms/ConnectionFactory and the topic jms/Topic,
both of which you used in “A Java EE Application That Uses the JMS API with a Session Bean”
on page 966. It also uses the JDBC resource named jdbc/__default, which is enabled by
default when you start the Application Server.

If you deleted the connection factory or topic, you can create them again using targets in the
build.xml file for this example. Use the following commands to create the resources:

ant create-cf

ant create-topic

A Java EE Application That Uses the JMS API with an Entity

The Java EE 5 Tutorial • October 2008976

Building, Deploying, and Running the
clientmdbentity Example Using NetBeans IDE
To build, deploy, and run the application using NetBeans IDE, do the following:

1. Start the Application Server, if it is not already running.
2. Start the database server as described in “Starting and Stopping the Java DB Database

Server” on page 71, if it is not already running.
3. In NetBeans IDE, choose Open Project from the File menu.
4. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/jms/.
5. Select the clientmdbentity folder.
6. Select the Open as Main Project check box and the Open Required Projects check box.
7. Click Open Project.
8. Right-click the clientmdbentity project and choose Build.

This task creates the following:
■ An application client JAR file that contains the client class and listener class files, along

with a manifest file that specifies the main class
■ An EJB JAR file that contains the message-driven beans and the entity class, along with

the persistence.xml file
■ An application EAR file that contains the two JAR files along with an application.xml

file
9. Right-click the project and choose Undeploy and Deploy.
10. Right-click the project and choose Run.

This command returns a JAR file named clientmdbentityClient.jar and then executes it.

The output of the application client in the Output pane looks something like this:

PUBLISHER: Setting hire ID to 25, name Gertrude Bourbon, position Senior Programmer

PUBLISHER: Setting hire ID to 26, name Jack Verdon, position Manager

PUBLISHER: Setting hire ID to 27, name Fred Tudor, position Manager

PUBLISHER: Setting hire ID to 28, name Fred Martin, position Programmer

PUBLISHER: Setting hire ID to 29, name Mary Stuart, position Manager

Waiting for 5 message(s)

New hire event processed:

Employee ID: 25

Name: Gertrude Bourbon

Equipment: Laptop

Office number: 183

Waiting for 4 message(s)

New hire event processed:

A Java EE Application That Uses the JMS API with an Entity

Chapter 32 • Java EE Examples Using the JMS API 977

Employee ID: 26

Name: Jack Verdon

Equipment: Pager

Office number: 20

Waiting for 3 message(s)

New hire event processed:

Employee ID: 27

Name: Fred Tudor

Equipment: Pager

Office number: 51

Waiting for 2 message(s)

New hire event processed:

Employee ID: 28

Name: Fred Martin

Equipment: Desktop System

Office number: 141

Waiting for 1 message(s)

New hire event processed:

Employee ID: 29

Name: Mary Stuart

Equipment: Pager

Office number: 238

The output from the message-driven beans and the entity class appears in the server log,
wrapped in logging information.

For each employee, the application first creates the entity and then finds it. You may see
runtime errors in the server log, and transaction rollbacks may occur. The errors occur if both
of the message-driven beans discover at the same time that the entity does not yet exist, so they
both try to create it. The first attempt succeeds, but the second fails because the bean already
exists. After the rollback, the second message-driven bean tries again and succeeds in finding
the entity. Container-managed transactions allow the application to run correctly, in spite of
these errors, with no special programming.

You can run the application client repeatedly.

Undeploy the application after you finish running the client. To undeploy the application,
follow these steps:

1. Click the Services tab.
2. Expand the Servers node.
3. Expand the Sun Java System Application Server node.
4. Expand the Applications node.
5. Expand the Enterprise Applications node.
6. Right-click clientmdbentity and choose Undeploy.

To remove the generated files, right-click the clientmdbentity project and choose Clean.

A Java EE Application That Uses the JMS API with an Entity

The Java EE 5 Tutorial • October 2008978

Building, Deploying, and Running the
clientmdbentity Example Using Ant
To create and package the application using Ant, perform these steps:

1. Start the Application Server, if it is not already running.
2. Start the database server as described in “Starting and Stopping the Java DB Database

Server” on page 71.
3. Go to the following directory:

tut-install/javaeetutorial5/examples/jms/clientmdbentity/

4. To compile the source files and package the application, use the following command:

ant

The ant command creates the following:

■ An application client JAR file that contains the client class and listener class files, along with
a manifest file that specifies the main class

■ An EJB JAR file that contains the message-driven beans and the entity class, along with the
persistence.xml file

■ An application EAR file that contains the two JAR files along with an application.xml file

To deploy the application and run the client, use the following command:

ant run

Ignore the message that states that the application is deployed at a URL.

The program output in the terminal window looks something like this:

running application client container.

PUBLISHER: Setting hire ID to 25, name Gertrude Bourbon, position Senior Programmer

PUBLISHER: Setting hire ID to 26, name Jack Verdon, position Manager

PUBLISHER: Setting hire ID to 27, name Fred Tudor, position Manager

PUBLISHER: Setting hire ID to 28, name Fred Martin, position Programmer

PUBLISHER: Setting hire ID to 29, name Mary Stuart, position Manager

Waiting for 5 message(s)

New hire event processed:

Employee ID: 25

Name: Gertrude Bourbon

Equipment: Laptop

Office number: 183

Waiting for 4 message(s)

New hire event processed:

A Java EE Application That Uses the JMS API with an Entity

Chapter 32 • Java EE Examples Using the JMS API 979

Employee ID: 26

Name: Jack Verdon

Equipment: Pager

Office number: 20

Waiting for 3 message(s)

New hire event processed:

Employee ID: 27

Name: Fred Tudor

Equipment: Pager

Office number: 51

Waiting for 2 message(s)

New hire event processed:

Employee ID: 28

Name: Fred Martin

Equipment: Desktop System

Office number: 141

Waiting for 1 message(s)

New hire event processed:

Employee ID: 29

Name: Mary Stuart

Equipment: Pager

Office number: 238

The output from the message-driven beans and the entity class appears in the server log,
wrapped in logging information.

For each employee, the application first creates the entity and then finds it. You may see
runtime errors in the server log, and transaction rollbacks may occur. The errors occur if both
of the message-driven beans discover at the same time that the entity does not yet exist, so they
both try to create it. The first attempt succeeds, but the second fails because the bean already
exists. After the rollback, the second message-driven bean tries again and succeeds in finding
the entity. Container-managed transactions allow the application to run correctly, in spite of
these errors, with no special programming.

Undeploy the application after you finish running the client:

ant undeploy

To remove the generated files, use the following command in the clientmdbentity,
clientmdbentity-app-client, and clientmdbentity-ejb directories:

ant clean

A Java EE Application That Uses the JMS API with an Entity

The Java EE 5 Tutorial • October 2008980

An Application Example That Consumes Messages from a
Remote Server

This section and the following section explain how to write, compile, package, deploy, and run a
pair of Java EE modules that run on two Java EE servers and that use the JMS API to interchange
messages with each other. It is a common practice to deploy different components of an
enterprise application on different systems within a company, and these examples illustrate on a
small scale how to do this for an application that uses the JMS API.

However, the two examples work in slightly different ways. In this first example, the
deployment information for a message-driven bean specifies the remote server from which it
will consume messages. In the next example, the same bean is deployed on two different servers,
so it is the client module that specifies the servers (one local, one remote) to which it is sending
messages.

This first example divides the example in Chapter 23, “A Message-Driven Bean Example,” into
two modules (not applications): one containing the application client, and the other containing
the message-driven bean.

This section covers the following topics:

■ “Overview of the consumeremote Example Modules” on page 981
■ “Writing the Module Components for the consumeremote Example” on page 982
■ “Creating Resources for the consumeremote Example” on page 983
■ “Using Two Application Servers for the consumeremote Example” on page 983
■ “Building, Deploying, and Running the consumeremoteModules Using NetBeans IDE” on

page 984
■ “Building, Deploying, and Running the consumeremote Modules Using Ant” on page 985

You will find the source files for this section in
tut-install/javaeetutorial5/examples/jms/consumeremote/. Path names in this section are
relative to this directory.

Overview of the consumeremote Example Modules
Except for the fact that it is packaged as two separate modules, this example is very similar to the
one in Chapter 23, “A Message-Driven Bean Example”:

■ One module contains the application client, which runs on the remote system and sends
three messages to a queue.

■ The other module contains the message-driven bean, which is deployed on the local server
and consumes the messages from the queue on the remote server.

The basic steps of the modules are as follows.

An Application Example That Consumes Messages from a Remote Server

Chapter 32 • Java EE Examples Using the JMS API 981

1. The administrator starts two Java EE servers, one on each system.

2. On the local server, the administrator deploys the message-driven bean module, which uses
a connection factory that specifies the remote server where the client is deployed.

3. On the remote server, the administrator places the client JAR file.

4. The client module sends three messages to a queue.

5. The message-driven bean consumes the messages.

Figure 32–3 illustrates the structure of this application. You can see that it is almost identical to
Figure 23–1 except that there are two Java EE servers. The queue used is the one on the remote
server; the queue must also exist on the local server for resource injection to succeed.

Writing the Module Components for the
consumeremote Example
Writing the components of the modules involves

■ Coding the application client
■ Coding the message-driven bean

The application client, jupiterclient/src/java/SimpleClient.java, is almost identical to
the one in “The simplemessage Application Client” on page 678.

Similarly, the message-driven bean, earthmdb/src/java/MessageBean.java, is almost
identical to the one in “The Message-Driven Bean Class” on page 679.

The only major difference is that the client and the bean are packaged in two separate modules.

Java EE Server on Earth

EJB
Container

MDB Instance

Java EE Server on Jupiter

Application
Client

Sends

Msg

Delivers

Msg
Queue

FIGURE 32–3 A Java EE Application That Consumes Messages from a Remote Server

An Application Example That Consumes Messages from a Remote Server

The Java EE 5 Tutorial • October 2008982

Creating Resources for the consumeremote Example
For this example, the message-driven bean uses the connection factory named
jms/JupiterConnectionFactory, which you created in “Creating Administered Objects for
Multiple Systems” on page 933. Use the Admin Console to verify that the connection factory
still exists and that its AddressList property is set to the name of the remote system. Because
this bean must use a specific connection factory, the connection factory is specified in the
mdb-connection-factory element of the sun-ejb-jar.xml file.

If you deleted the connection factory, you can recreate it as follows:

1. Go to the following directory:

tut-install/javaeetutorial5/examples/jms/consumeremote/earthmdb/

2. Type the following command:

ant create-remote-factory -Dsys=remote-system-name

Replace remote-system-name with the actual name of the remote system.

The application client can use any connection factory that exists on the remote server; it uses
jms/ConnectionFactory. Both components use the queue named jms/Queue, which you
created in “Creating JMS Administered Objects for the Synchronous Receive Example” on
page 917.

Using Two Application Servers for the consumeremote
Example
As in “Running JMS Client Programs on Multiple Systems” on page 933, the two servers are
named earth and jupiter.

The Application Server must be running on both systems.

Which system you use to package and deploy the modules and which system you use to run the
client depend on your network configuration (which file system you can access remotely).
These instructions assume that you can access the file system of jupiter from earth but cannot
access the file system of earth from jupiter. (You can use the same systems for jupiter and
earth that you used in “Running JMS Client Programs on Multiple Systems” on page 933.)

You can package both modules on earth and deploy the message-driven bean there. The only
action you perform on jupiter is running the client module.

An Application Example That Consumes Messages from a Remote Server

Chapter 32 • Java EE Examples Using the JMS API 983

Building, Deploying, and Running the
consumeremoteModules Using NetBeans IDE
To package the modules using NetBeans IDE, perform these steps:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to

tut-install/javaeetutorial5/examples/jms/consumeremote/.
3. Select the earthmdb folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the earthmdb project and choose Build.

This command creates a JAR file that contains the bean class file and the sun-ejb-jar.xml
deployment descriptor file.

7. Choose Open Project from the File menu.
8. Select the jupiterclient folder.
9. Select the Open as Main Project check box.
10. Click Open Project.
11. Right-click the jupiterclient project and choose Build.

This target creates a JAR file that contains the client class file and a manifest file.

To deploy the earthmdb module and run the application client, perform these steps:

1. Right-click the earthmdb project and choose Set as Main Project.
2. Right-click the earthmdb project and choose Undeploy and Deploy.
3. Copy the jupiterclient module to the remote system (jupiter):

a. In a terminal window, change to the directory
tut-install/javaeetutorial5/examples/jms/consumeremote/jupiterclient/dist/.

b. Type a command like the following:

cp jupiterclient.jar F:/

That is, copy the client JAR file to a location on the remote filesystem.
4. Go to the directory on the remote system where you copied the client JAR file.
5. Use the following command:

appclient -client jupiterclient.jar

On jupiter, the output of the appclient command looks like this:

An Application Example That Consumes Messages from a Remote Server

The Java EE 5 Tutorial • October 2008984

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

On earth, the output in the server log looks something like this (wrapped in logging
information):

MESSAGE BEAN: Message received: This is message 1

MESSAGE BEAN: Message received: This is message 2

MESSAGE BEAN: Message received: This is message 3

Undeploy the message-driven bean after you finish running the client. To undeploy the
earthmdb module, perform these steps:

1. Click the Services tab.
2. Expand the Servers node.
3. Expand the Sun Java System Application Server node.
4. Expand the Applications node.
5. Expand the EJB Modules node.
6. Right-click earthmdb and choose Undeploy.

To remove the generated files, follow these steps:

1. Right-click the earthmdb project and choose Clean.
2. In the command line window from which you copied the client JAR file, go to a directory

other than the jupiterclient/dist directory.
3. Right-click the jupiterclient project and choose Clean.

You can also delete the jupiterclient.jar file from the remote filesystem.

Building, Deploying, and Running the consumeremote
Modules Using Ant
To package the modules using Ant, perform these steps:

1. Go to the following directory:

tut-install/javaeetutorial5/examples/jms/consumeremote/earthmdb/

2. Type the following command:

ant

This command creates a JAR file that contains the bean class file and the sun-ejb-jar.xml
deployment descriptor file.

3. Go to the jupiterclient directory:

An Application Example That Consumes Messages from a Remote Server

Chapter 32 • Java EE Examples Using the JMS API 985

cd ../jupiterclient

4. Type the following command:

ant

This target creates a JAR file that contains the client class file and a manifest file.

To deploy the earthmdb module, perform these steps:

1. Change to the directory earthmdb:

cd ../earthmdb

2. Type the following command:

ant deploy

To copy the jupiterclient module to the remote system, perform these steps:

1. Change to the directory jupiterclient/dist:

cd ../jupiterclient/dist

2. Type a command like the following:

cp jupiterclient.jar F:/

That is, copy the client JAR file to a location on the remote filesystem.

To run the client, perform the following steps:

1. Go to the directory on the remote system (jupiter) where you copied the client JAR file.
2. Use the following command:

appclient -client jupiterclient.jar

On jupiter, the output of the appclient command looks like this:

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

On earth, the output in the server log looks something like this (wrapped in logging
information):

MESSAGE BEAN: Message received: This is message 1

MESSAGE BEAN: Message received: This is message 2

MESSAGE BEAN: Message received: This is message 3

An Application Example That Consumes Messages from a Remote Server

The Java EE 5 Tutorial • October 2008986

Undeploy the message-driven bean after you finish running the client. To undeploy the
earthmdb module, perform these steps:

1. Change to the directory earthmdb.
2. Type the following command:

ant undeploy

You can also delete the jupiterclient.jar file from the remote filesystem.

To remove the generated files, use the following command in both the earthmdb and
jupiterclient directories:

ant clean

An Application Example That Deploys a Message-Driven Bean
on Two Servers

This section, like the preceding one, explains how to write, compile, package, deploy, and run a
pair of Java EE modules that use the JMS API and run on two Java EE servers. The modules are
slightly more complex than the ones in the first example.

The modules use the following components:

■ An application client that is deployed on the local server. It uses two connection factories,
one ordinary one and one that is configured to communicate with the remote server, to
create two publishers and two subscribers and to publish and to consume messages.

■ A message-driven bean that is deployed twice: once on the local server, and once on the
remote one. It processes the messages and sends replies.

In this section, the term local server means the server on which both the application client and
the message-driven bean are deployed (earth in the preceding example). The term remote
server means the server on which only the message-driven bean is deployed (jupiter in the
preceding example).

The section covers the following topics:

■ “Overview of the sendremote Example Modules” on page 988
■ “Writing the Module Components for the sendremote Example” on page 989
■ “Creating Resources for the sendremote Example” on page 990
■ “Using Two Application Servers for the sendremote Example” on page 991
■ “Building, Deploying, and Running the sendremote Modules Using NetBeans IDE” on

page 991
■ “Building, Deploying, and Running the sendremote Modules Using Ant” on page 994

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 32 • Java EE Examples Using the JMS API 987

You will find the source files for this section in
tut-install/javaeetutorial5/examples/jms/sendremote/. Path names in this section are
relative to this directory.

Overview of the sendremote Example Modules
This pair of modules is somewhat similar to the modules in “An Application Example That
Consumes Messages from a Remote Server” on page 981 in that the only components are a
client and a message-driven bean. However, the modules here use these components in more
complex ways. One module consists of the application client. The other module contains only
the message-driven bean and is deployed twice, once on each server.

The basic steps of the modules are as follows.

1. You start two Java EE servers, one on each system.

2. On the local server (earth), you create two connection factories: one local and one that
communicates with the remote server (jupiter). On the remote server, you create a
connection factory that has the same name.

3. The application client looks up the two connection factories (the local one and the one that
communicates with the remote server) to create two connections, sessions, publishers, and
subscribers. The subscribers use a message listener.

4. Each publisher publishes five messages.

5. Each of the local and the remote message-driven beans receives five messages and sends
replies.

6. The client’s message listener consumes the replies.

Figure 32–4 illustrates the structure of this application. M1 represents the first message sent
using the local connection factory, and RM1 represents the first reply message sent by the local
MDB. M2 represents the first message sent using the remote connection factory, and RM2
represents the first reply message sent by the remote MDB.

An Application Example That Deploys a Message-Driven Bean on Two Servers

The Java EE 5 Tutorial • October 2008988

Writing the Module Components for the sendremote
Example
Writing the components of the modules involves two tasks:
■ “Coding the Application Client: MultiAppServerClient.java” on page 989
■ “Coding the Message-Driven Bean: ReplyMsgBean.java” on page 990

Coding the Application Client: MultiAppServerClient.java
The application client class, multiclient/src/java/MultiAppServerClient.java, does the
following.

1. It injects resources for two connection factories and a topic.
2. For each connection factory, it creates a connection, a publisher session, a publisher, a

subscriber session, a subscriber, and a temporary topic for replies.
3. Each subscriber sets its message listener, ReplyListener, and starts the connection.
4. Each publisher publishes five messages and creates a list of the messages the listener should

expect.

Local
Java EE
Server

Remote
Java EE
Server

Application
Client

CF1

CF2

M1

RM1

M2
RM2

M1 RM1

M2
RM2

PTopic Reply
Topic

Local MDB

Reply
Topic

PTopic

Remote MDB

FIGURE 32–4 A Java EE Application That Sends Messages to Two Servers

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 32 • Java EE Examples Using the JMS API 989

5. When each reply arrives, the message listener displays its contents and removes it from the
list of expected messages.

6. When all the messages have arrived, the client exits.

Coding the Message-Driven Bean: ReplyMsgBean.java
The message-driven bean class, replybean/src/ReplyMsgBean.java, does the following:

1. Uses the @MessageDriven annotation:

@MessageDriven(mappedName="jms/Topic")

2. Injects resources for the MessageDrivenContext and for a connection factory. It does not
need a destination resource because it uses the value of the incoming message’s JMSReplyTo
header as the destination.

3. Uses a @PostConstruct callback method to create the connection, and a @PreDestroy
callback method to close the connection.

The onMessage method of the message-driven bean class does the following:

1. Casts the incoming message to a TextMessage and displays the text
2. Creates a connection, a session, and a publisher for the reply message
3. Publishes the message to the reply topic
4. Closes the connection

On both servers, the bean will consume messages from the topic jms/Topic.

Creating Resources for the sendremote Example
This example uses the connection factory named jms/ConnectionFactory and the topic
named jms/Topic. These objects must exist on both the local and the remote servers.

This example uses an additional connection factory, jms/JupiterConnectionFactory, which
communicates with the remote system; you created it in “Creating Administered Objects for
Multiple Systems” on page 933. This connection factory must exist on the local server.

The build.xml file for the multiclient module contains targets that you can use to create these
resources if you deleted them previously.

An Application Example That Deploys a Message-Driven Bean on Two Servers

The Java EE 5 Tutorial • October 2008990

Using Two Application Servers for the sendremote
Example
If you are using NetBeans IDE, you need to add the remote server in order to deploy the
message-driven bean there. To do so, perform these steps:

1. In NetBeans IDE, click the Services tab.
2. Right-click the Servers node and choose Add Server. In the Add Server Instance dialog,

perform these steps:
a. Select Sun Java System Application Server (the default) from the Server list.
b. In the Name field, specify a name slightly different from that of the local server, such as

Sun Java System Application Server (1).
c. Click Next.
d. For the Platform Folder location, you can either browse to the location of the

Application Server on the remote system or, if that location is not visible from the local
system, use the default location on the local system.

e. Select the Register Remote Domain radio button.
f. Click Next.
g. Type the system name of the host in the Host field.
h. Click Next.
i. Type the administrative username and password for the remote system in the Admin

Username and Admin Password fields.
j. Click Finish.

There may be a delay while NetBeans IDE registers the remote domain.

Building, Deploying, and Running the sendremote
Modules Using NetBeans IDE
To package the modules using NetBeans IDE, perform these steps:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to

tut-install/javaeetutorial5/examples/jms/sendremote/.
3. Select the replybean folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. Right-click the replybean project and choose Build.

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 32 • Java EE Examples Using the JMS API 991

This command creates a JAR file that contains the bean class file.
7. Choose Open Project from the File menu.
8. Select the multiclient folder.
9. Select the Open as Main Project check box.
10. Click Open Project.
11. Right-click the multiclient project and choose Build.

This command creates a JAR file that contains the client class file and a manifest file.

To deploy the multiclient module on the local server, perform these steps:

1. Right-click the multiclient project and choose Properties.
2. Select Run from the Categories tree.
3. From the Server list, select Sun Java System Application Server (the local server).
4. Click OK.
5. Right-click the multiclient project and choose Undeploy and Deploy.

To deploy the replybean module on the local and remote servers, perform these steps:

1. Right-click the replybean project and choose Properties.
2. Select Run from the Categories tree.
3. From the Server list, select Sun Java System Application Server(the local server).
4. Click OK.
5. Right-click the replybean project and choose Undeploy and Deploy.
6. Right-click the replybean project again and choose Properties.
7. Select Run from the Categories tree.
8. From the Server list, select Sun Java System Application Server (1) (the remote server).
9. Click OK.
10. Right-click the replybean project and choose Undeploy and Deploy.

You can use the Services tab to verify that multiclient is deployed as an App Client Module on
the local server and that replybean is deployed as an EJB Module on both servers.

To run the application client, right-click the multiclient project and choose Run.

This command returns a JAR file named multiclientClient.jar and then executes it.

On the local system, the output of the appclient command looks something like this:

running application client container.

Sent message: text: id=1 to local app server

Sent message: text: id=2 to remote app server

An Application Example That Deploys a Message-Driven Bean on Two Servers

The Java EE 5 Tutorial • October 2008992

ReplyListener: Received message: id=1, text=ReplyMsgBean processed message: text: id=1 to local

app server

Sent message: text: id=3 to local app server

ReplyListener: Received message: id=3, text=ReplyMsgBean processed message: text: id=3 to local

app server

ReplyListener: Received message: id=2, text=ReplyMsgBean processed message: text: id=2 to remote

app server

Sent message: text: id=4 to remote app server

ReplyListener: Received message: id=4, text=ReplyMsgBean processed message: text: id=4 to remote

app server

Sent message: text: id=5 to local app server

ReplyListener: Received message: id=5, text=ReplyMsgBean processed message: text: id=5 to local

app server

Sent message: text: id=6 to remote app server

ReplyListener: Received message: id=6, text=ReplyMsgBean processed message: text: id=6 to remote

app server

Sent message: text: id=7 to local app server

ReplyListener: Received message: id=7, text=ReplyMsgBean processed message: text: id=7 to local

app server

Sent message: text: id=8 to remote app server

ReplyListener: Received message: id=8, text=ReplyMsgBean processed message: text: id=8 to remote

app server

Sent message: text: id=9 to local app server

ReplyListener: Received message: id=9, text=ReplyMsgBean processed message: text: id=9 to local

app server

Sent message: text: id=10 to remote app server

ReplyListener: Received message: id=10, text=ReplyMsgBean processed message: text: id=10 to remote

app server

Waiting for 0 message(s) from local app server

Waiting for 0 message(s) from remote app server

Finished

Closing connection 1

Closing connection 2

On the local system, where the message-driven bean receives the odd-numbered messages, the
output in the server log looks like this (wrapped in logging information):

ReplyMsgBean: Received message: text: id=1 to local app server

ReplyMsgBean: Received message: text: id=3 to local app server

ReplyMsgBean: Received message: text: id=5 to local app server

ReplyMsgBean: Received message: text: id=7 to local app server

ReplyMsgBean: Received message: text: id=9 to local app server

On the remote system, where the bean receives the even-numbered messages, the output in the
server log looks like this (wrapped in logging information):

ReplyMsgBean: Received message: text: id=2 to remote app server

ReplyMsgBean: Received message: text: id=4 to remote app server

ReplyMsgBean: Received message: text: id=6 to remote app server

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 32 • Java EE Examples Using the JMS API 993

ReplyMsgBean: Received message: text: id=8 to remote app server

ReplyMsgBean: Received message: text: id=10 to remote app server

Undeploy the modules after you finish running the client. To undeploy the modules, perform
these steps:

1. Click the Services tab.
2. Expand the Servers node.
3. Expand the Sun Java System Application Server node (the local system).
4. Expand the Applications node.
5. Expand the EJB Modules node.
6. Right-click replybean and choose Undeploy.
7. Expand the App Client Modules node.
8. Right-click multiclient and choose Undeploy.
9. Expand the Sun Java System Application Server (1) node (the remote system).
10. Expand the Applications node.
11. Expand the EJB Modules node.
12. Right-click replybean and choose Undeploy.

To remove the generated files, follow these steps:

1. Right-click the replybean project and choose Clean.
2. Right-click the multiclient project and choose Clean.

Building, Deploying, and Running the sendremote
Modules Using Ant
To package the modules, perform these steps:

1. Go to the following directory:

tut-install/javaeetutorial5/examples/jms/sendremote/multiclient/

2. Type the following command:

ant

This command creates a JAR file that contains the client class file and a manifest file.
3. Change to the directory replybean:

cd ../replybean

4. Type the following command:

ant

This command creates a JAR file that contains the bean class file.

An Application Example That Deploys a Message-Driven Bean on Two Servers

The Java EE 5 Tutorial • October 2008994

To deploy the replybean module on the local and remote servers, perform the following steps:

1. Verify that you are still in the directory replybean.
2. Type the following command:

ant deploy

Ignore the message that states that the application is deployed at a URL.
3. Type the following command:

ant deploy-remote -Dsys=remote-system-name

Replace remote-system-name with the actual name of the remote system.

To deploy and run the client, perform these steps:

1. Change to the directory multiclient:

cd ../multiclient

2. Type the following command:

ant run

On the local system, the output looks something like this:

running application client container.

Sent message: text: id=1 to local app server

Sent message: text: id=2 to remote app server

ReplyListener: Received message: id=1, text=ReplyMsgBean processed message: text: id=1 to local

app server

Sent message: text: id=3 to local app server

ReplyListener: Received message: id=3, text=ReplyMsgBean processed message: text: id=3 to local

app server

ReplyListener: Received message: id=2, text=ReplyMsgBean processed message: text: id=2 to remote

app server

Sent message: text: id=4 to remote app server

ReplyListener: Received message: id=4, text=ReplyMsgBean processed message: text: id=4 to remote

app server

Sent message: text: id=5 to local app server

ReplyListener: Received message: id=5, text=ReplyMsgBean processed message: text: id=5 to local

app server

Sent message: text: id=6 to remote app server

ReplyListener: Received message: id=6, text=ReplyMsgBean processed message: text: id=6 to remote

app server

Sent message: text: id=7 to local app server

ReplyListener: Received message: id=7, text=ReplyMsgBean processed message: text: id=7 to local

app server

Sent message: text: id=8 to remote app server

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 32 • Java EE Examples Using the JMS API 995

ReplyListener: Received message: id=8, text=ReplyMsgBean processed message: text: id=8 to remote

app server

Sent message: text: id=9 to local app server

ReplyListener: Received message: id=9, text=ReplyMsgBean processed message: text: id=9 to local

app server

Sent message: text: id=10 to remote app server

ReplyListener: Received message: id=10, text=ReplyMsgBean processed message: text: id=10 to remote

app server

Waiting for 0 message(s) from local app server

Waiting for 0 message(s) from remote app server

Finished

Closing connection 1

Closing connection 2

On the local system, where the message-driven bean receives the odd-numbered messages, the
output in the server log looks like this (wrapped in logging information):

ReplyMsgBean: Received message: text: id=1 to local app server

ReplyMsgBean: Received message: text: id=3 to local app server

ReplyMsgBean: Received message: text: id=5 to local app server

ReplyMsgBean: Received message: text: id=7 to local app server

ReplyMsgBean: Received message: text: id=9 to local app server

On the remote system, where the bean receives the even-numbered messages, the output in the
server log looks like this (wrapped in logging information):

ReplyMsgBean: Received message: text: id=2 to remote app server

ReplyMsgBean: Received message: text: id=4 to remote app server

ReplyMsgBean: Received message: text: id=6 to remote app server

ReplyMsgBean: Received message: text: id=8 to remote app server

ReplyMsgBean: Received message: text: id=10 to remote app server

Undeploy the modules after you finish running the client. To undeploy the multiclient
module, perform these steps:

1. Verify that you are still in the directory multiclient.
2. Type the following command:

ant undeploy

To undeploy the replybean module, perform these steps:

1. Change to the directory replybean:

cd ../replybean

2. Type the following command:

ant undeploy

An Application Example That Deploys a Message-Driven Bean on Two Servers

The Java EE 5 Tutorial • October 2008996

3. Type the following command:

ant undeploy-remote -Dsys=remote-system-name

Replace remote-system-name with the actual name of the remote system.

To remove the generated files, use the following command in both the replybean and
multiclient directories:

ant clean

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 32 • Java EE Examples Using the JMS API 997

998

Transactions

A typical enterprise application accesses and stores information in one or more databases.
Because this information is critical for business operations, it must be accurate, current, and
reliable. Data integrity would be lost if multiple programs were allowed to update the same
information simultaneously. It would also be lost if a system that failed while processing a
business transaction were to leave the affected data only partially updated. By preventing both
of these scenarios, software transactions ensure data integrity. Transactions control the
concurrent access of data by multiple programs. In the event of a system failure, transactions
make sure that after recovery the data will be in a consistent state.

What Is a Transaction?
To emulate a business transaction, a program may need to perform several steps. A financial
program, for example, might transfer funds from a checking account to a savings account using
the steps listed in the following pseudocode:

begin transaction

debit checking account

credit savings account

update history log

commit transaction

Either all three of these steps must complete, or none of them at all. Otherwise, data integrity is
lost. Because the steps within a transaction are a unified whole, a transaction is often defined as
an indivisible unit of work.

A transaction can end in two ways: with a commit or with a rollback. When a transaction
commits, the data modifications made by its statements are saved. If a statement within a
transaction fails, the transaction rolls back, undoing the effects of all statements in the
transaction. In the pseudocode, for example, if a disk drive were to crash during the credit

33C H A P T E R 3 3

999

step, the transaction would roll back and undo the data modifications made by the debit
statement. Although the transaction fails, data integrity would be intact because the accounts
still balance.

In the preceding pseudocode, the begin and commit statements mark the boundaries of the
transaction. When designing an enterprise bean, you determine how the boundaries are set by
specifying either container-managed or bean-managed transactions.

Container-Managed Transactions
In an enterprise bean with container-managed transaction demarcation, the EJB container sets
the boundaries of the transactions. You can use container-managed transactions with any type
of enterprise bean: session, or message-driven. Container-managed transactions simplify
development because the enterprise bean code does not explicitly mark the transaction’s
boundaries. The code does not include statements that begin and end the transaction.

By default if no transaction demarcation is specified enterprise beans use container-managed
transaction demarcation.

Typically, the container begins a transaction immediately before an enterprise bean method
starts. It commits the transaction just before the method exits. Each method can be associated
with a single transaction. Nested or multiple transactions are not allowed within a method.

Container-managed transactions do not require all methods to be associated with transactions.
When developing a bean, you can specify which of the bean’s methods are associated with
transactions by setting the transaction attributes.

Enterprise beans that use container-managed transaction demarcation must not use any
transaction management methods that interfere with the container’s transaction demarcation
boundaries. Examples of such methods are the commit, setAutoCommit, and rollback methods
of java.sql.Connection or the commit and rollback methods of javax.jms.Session. If you
require control over the transaction demarcation, you must use application-managed
transaction demarcation.

Enterprise beans that use container-managed transaction demarcation also must not use the
javax.transaction.UserTransaction interface.

Transaction Attributes
A transaction attribute controls the scope of a transaction. Figure 33–1 illustrates why
controlling the scope is important. In the diagram, method-A begins a transaction and then
invokes method-B of Bean-2. When method-B executes, does it run within the scope of the
transaction started by method-A, or does it execute with a new transaction? The answer depends
on the transaction attribute of method-B.

Container-Managed Transactions

The Java EE 5 Tutorial • October 20081000

A transaction attribute can have one of the following values:

■ Required

■ RequiresNew

■ Mandatory

■ NotSupported

■ Supports

■ Never

RequiredAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
method executes within the client’s transaction. If the client is not associated with a transaction,
the container starts a new transaction before running the method.

The Required attribute is the implicit transaction attribute for all enterprise bean methods
running with container-managed transaction demarcation. You typically do not set the
Required attribute unless you need to override another transaction attribute. Because
transaction attributes are declarative, you can easily change them later.

RequiresNewAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
container takes the following steps:

1. Suspends the client’s transaction
2. Starts a new transaction

Bean-1

.

.

.
method-A(){
 .
 .
 .
 bean-2.method-B()
}

Bean-2

.

.

.
method-B(){
 .
 .
 .
}

TX1{ TX?{
FIGURE 33–1 Transaction Scope

Container-Managed Transactions

Chapter 33 • Transactions 1001

3. Delegates the call to the method
4. Resumes the client’s transaction after the method completes

If the client is not associated with a transaction, the container starts a new transaction before
running the method.

You should use the RequiresNew attribute when you want to ensure that the method always
runs within a new transaction.

MandatoryAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
method executes within the client’s transaction. If the client is not associated with a transaction,
the container throws the TransactionRequiredException.

Use the Mandatory attribute if the enterprise bean’s method must use the transaction of the
client.

NotSupportedAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
container suspends the client’s transaction before invoking the method. After the method has
completed, the container resumes the client’s transaction.

If the client is not associated with a transaction, the container does not start a new transaction
before running the method.

Use the NotSupported attribute for methods that don’t need transactions. Because transactions
involve overhead, this attribute may improve performance.

SupportsAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
method executes within the client’s transaction. If the client is not associated with a transaction,
the container does not start a new transaction before running the method.

Because the transactional behavior of the method may vary, you should use the Supports
attribute with caution.

NeverAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
container throws a RemoteException. If the client is not associated with a transaction, the
container does not start a new transaction before running the method.

Container-Managed Transactions

The Java EE 5 Tutorial • October 20081002

Summary of Transaction Attributes
Table 33–1 summarizes the effects of the transaction attributes. Both the T1 and the T2
transactions are controlled by the container. A T1 transaction is associated with the client that
calls a method in the enterprise bean. In most cases, the client is another enterprise bean. A T2

transaction is started by the container just before the method executes.

In the last column of Table 33–1, the word None means that the business method does not
execute within a transaction controlled by the container. However, the database calls in such a
business method might be controlled by the transaction manager of the DBMS.

TABLE 33–1 Transaction Attributes and Scope

Transaction Attribute Client’s Transaction Business Method’s Transaction

Required None T2

T1 T1

RequiresNew None T2

T1 T2

Mandatory None error

T1 T1

NotSupported None None

T1 None

Supports None None

T1 T1

Never None None

T1 Error

Setting Transaction Attributes
Transaction attributes are specified by decorating the enterprise bean class or method with a
javax.ejb.TransactionAttribute annotation, and setting it to one of the
javax.ejb.TransactionAttributeType constants.

If you decorate the enterprise bean class with @TransactionAttribute, the specified
TransactionAttributeType is applied to all the business methods in the class. Decoration a
business method with @TransactionAttribute applies the TransactionAttributeType only
to that method. If a @TransactionAttributeannotation decorates both the class and the
method, the method TransactionAttributeType overrides the class
TransactionAttributeType.

Container-Managed Transactions

Chapter 33 • Transactions 1003

The TransactionAttributeType constants encapsulate the transaction attributes described
earlier in this section.

■ Required: TransactionAttributeType.REQUIRED
■ RequiresNew: TransactionAttributeType.REQUIRES_NEW
■ Mandatory: TransactionAttributeType.MANDATORY
■ NotSupported: TransactionAttributeType.NOT_SUPPORTED
■ Supports: TransactionAttributeType.SUPPORTS
■ Never: TransactionAttributeType.NEVER

The following code snippet demonstrates how to use the @TransactionAttribute annotation:

@TransactionAttribute(NOT_SUPPORTED)

@Stateful

public class TransactionBean implements Transaction {

...

@TransactionAttribute(REQUIRES_NEW)

public void firstMethod() {...}

@TransactionAttribute(REQUIRED)

public void secondMethod() {...}

public void thirdMethod() {...}

public void fourthMethod() {...}

}

In this example, the TransactionBean class’s transaction attribute has been set to
NotSupported. firstMethod has been set to RequiresNew, and secondMethod has been set to
Required. Because a @TransactionAttribute set on a method overrides the class
@TransactionAttribute, calls to firstMethod will create a new transaction, and calls to
secondMethod will either run in the current transaction, or start a new transaction. Calls to
thirdMethod or fourthMethod do not take place within a transaction.

Rolling Back a Container-Managed Transaction
There are two ways to roll back a container-managed transaction. First, if a system exception is
thrown, the container will automatically roll back the transaction. Second, by invoking the
setRollbackOnly method of the EJBContext interface, the bean method instructs the
container to roll back the transaction. If the bean throws an application exception, the rollback
is not automatic but can be initiated by a call to setRollbackOnly.

Container-Managed Transactions

The Java EE 5 Tutorial • October 20081004

Synchronizing a Session Bean’s Instance Variables
The SessionSynchronization interface, which is optional, allows stateful session bean
instances to receive transaction synchronization notifications. For example, you could
synchronize the instance variables of an enterprise bean with their corresponding values in the
database. The container invokes the SessionSynchronization methods (afterBegin,
beforeCompletion, and afterCompletion) at each of the main stages of a transaction.

The afterBegin method informs the instance that a new transaction has begun. The container
invokes afterBegin immediately before it invokes the business method.

The container invokes the beforeCompletion method after the business method has finished,
but just before the transaction commits. The beforeCompletion method is the last opportunity
for the session bean to roll back the transaction (by calling setRollbackOnly).

The afterCompletion method indicates that the transaction has completed. It has a single
boolean parameter whose value is true if the transaction was committed and false if it was
rolled back.

Methods Not Allowed in Container-Managed
Transactions
You should not invoke any method that might interfere with the transaction boundaries set by
the container. The list of prohibited methods follows:

■ The commit, setAutoCommit, and rollback methods of java.sql.Connection
■ The getUserTransaction method of javax.ejb.EJBContext
■ Any method of javax.transaction.UserTransaction

You can, however, use these methods to set boundaries in application-managed transactions.

Bean-Managed Transactions
In bean-managed transaction demarcation, the code in the session or message-driven bean
explicitly marks the boundaries of the transaction. Although beans with container-managed
transactions require less coding, they have one limitation: When a method is executing, it can
be associated with either a single transaction or no transaction at all. If this limitation will make
coding your bean difficult, you should consider using bean-managed transactions.

The following pseudocode illustrates the kind of fine-grained control you can obtain with
application-managed transactions. By checking various conditions, the pseudocode decides
whether to start or stop different transactions within the business method.

Bean-Managed Transactions

Chapter 33 • Transactions 1005

begin transaction

...

update table-a

...

if (condition-x)

commit transaction

else if (condition-y)

update table-b

commit transaction

else

rollback transaction

begin transaction

update table-c

commit transaction

When coding a application-managed transaction for session or message-driven beans, you
must decide whether to use JDBC or JTA transactions. The sections that follow discuss both
types of transactions.

JTA Transactions
JTA is the abbreviation for the Java Transaction API. This API allows you to demarcate
transactions in a manner that is independent of the transaction manager implementation. The
Application Server implements the transaction manager with the Java Transaction Service
(JTS). But your code doesn’t call the JTS methods directly. Instead, it invokes the JTA methods,
which then call the lower-level JTS routines.

A JTA transaction is controlled by the Java EE transaction manager. You may want to use a JTA
transaction because it can span updates to multiple databases from different vendors. A
particular DBMS’s transaction manager may not work with heterogeneous databases. However,
the Java EE transaction manager does have one limitation: it does not support nested
transactions. In other words, it cannot start a transaction for an instance until the preceding
transaction has ended.

To demarcate a JTA transaction, you invoke the begin, commit, and rollback methods of the
javax.transaction.UserTransaction interface.

Returning without Committing
In a stateless session bean with bean-managed transactions, a business method must commit or
roll back a transaction before returning. However, a stateful session bean does not have this
restriction.

Bean-Managed Transactions

The Java EE 5 Tutorial • October 20081006

In a stateful session bean with a JTA transaction, the association between the bean instance and
the transaction is retained across multiple client calls. Even if each business method called by
the client opens and closes the database connection, the association is retained until the
instance completes the transaction.

In a stateful session bean with a JDBC transaction, the JDBC connection retains the association
between the bean instance and the transaction across multiple calls. If the connection is closed,
the association is not retained.

Methods Not Allowed in Bean-Managed Transactions
Do not invoke the getRollbackOnly and setRollbackOnly methods of the EJBContext
interface in bean-managed transactions. These methods should be used only in
container-managed transactions. For bean-managed transactions, invoke the getStatus and
rollback methods of the UserTransaction interface.

Transaction Timeouts
For container-managed transactions, you can use the Admin Console to configure the
transaction timeout interval. See“Starting the Admin Console” on page 70.

1. In the Admin Console, expand the Configuration node and select Transaction Service.
2. On the Transaction Service page, set the value of the Transaction Timeout field to the value

of your choice (for example, 5).
With this setting, if the transaction has not completed within 5 seconds, the EJB container
rolls it back.
The default value is 0, meaning that the transaction will not time out.

3. Click Save.

For enterprise beans with bean-managed JTA transactions, you invoke the
setTransactionTimeout method of the UserTransaction interface.

Updating Multiple Databases
The Java EE transaction manager controls all enterprise bean transactions except for
bean-managed JDBC transactions. The Java EE transaction manager allows an enterprise bean
to update multiple databases within a transaction. The figures that follow show two scenarios
for updating multiple databases in a single transaction.

In Figure 33–2, the client invokes a business method in Bean-A. The business method begins a
transaction, updates Database X, updates Database Y, and invokes a business method in

Updating Multiple Databases

Chapter 33 • Transactions 1007

Bean-B. The second business method updates Database Z and returns control to the business
method in Bean-A, which commits the transaction. All three database updates occur in the same
transaction.

In Figure 33–3, the client calls a business method in Bean-A, which begins a transaction and
updates Database X. Then Bean-A invokes a method in Bean-B, which resides in a remote Java
EE server. The method in Bean-B updates Database Y. The transaction managers of the Java EE
servers ensure that both databases are updated in the same transaction.

Java EE
Server

Bean-B

Client

Bean-A

X Y Z

Databases

FIGURE 33–2 Updating Multiple Databases

Updating Multiple Databases

The Java EE 5 Tutorial • October 20081008

Transactions in Web Components
You can demarcate a transaction in a web component by using either the
java.sql.Connection or javax.transaction.UserTransaction interface. These are the same
interfaces that a session bean with bean-managed transactions can use. Transactions
demarcated with the UserTransaction interface are discussed in the section “JTA
Transactions” on page 1006. For an example of a web component using transactions, see
“Accessing Databases” on page 107.

Java EE
Server

Java EE
Server

Bean-B

Client

Bean-A

X Y

Databases

FIGURE 33–3 Updating Multiple Databases across Java EE Servers

Transactions in Web Components

Chapter 33 • Transactions 1009

1010

Resource Connections

Java EE components can access a wide variety of resources, including databases, mail sessions,
Java Message Service objects, and URLs. The Java EE 5 platform provides mechanisms that
allow you to access all these resources in a similar manner. This chapter describes how to get
connections to several types of resources.

Resources and JNDI Naming
In a distributed application, components need to access other components and resources such
as databases. For example, a servlet might invoke remote methods on an enterprise bean that
retrieves information from a database. In the Java EE platform, the Java Naming and Directory
Interface (JNDI) naming service enables components to locate other components and
resources.

A resource is a program object that provides connections to systems, such as database servers
and messaging systems. (A JDBC resource is sometimes referred to as a data source.) Each
resource object is identified by a unique, people-friendly name, called the JNDI name.

For example, the JNDI name of the JDBC resource for the Java DB database that is shipped with
the Application Server is jdbc/__default.

An administrator creates resources in a JNDI namespace. In the Application Server, you can use
either the Admin Console or the asadmin command to create resources. Applications then use
annotations to inject the resources. If an application uses resource injection, the Application
Server invokes the JNDI API, and the application is not required to do so. However, it is also
possible for an application to locate resources by making direct calls to the JNDI API.

A resource object and its JNDI name are bound together by the naming and directory service.
To create a new resource, a new name-object binding is entered into the JNDI namespace.

For information on creating Java Message Service (JMS) resources, see “Creating JMS
Administered Objects for the Synchronous Receive Example” on page 917. For an example of
creating a JDBC resource, see “Creating a Data Source in the Application Server” on page 98.

34C H A P T E R 3 4

1011

You inject resources by using the @Resource annotation in an application. For information on
resource injection, see the following sections of this Tutorial:
■ “Declaring Resource References” on page 94
■ “Updating Data in the Database” on page 710, for information on injecting a

UserTransaction resource
■ “JMS Connection Factories” on page 904, “JMS Destinations” on page 904, and “Using

@Resource Annotations in Java EE Components” on page 956, for information on injecting
JMS resources

You can use a deployment descriptor to override the resource mapping that you specify in an
annotation. Using a deployment descriptor allows you to change an application by repackaging
it, rather than by both recompiling the source files and repackaging. However, for most
applications, a deployment descriptor is not necessary.

DataSourceObjects and Connection Pools
To store, organize, and retrieve data, most applications use a relational database. Java EE 5
components may access relational databases through the JDBC API. For information on this
API, see http://java.sun.com/products/jdbc.

In the JDBC API, databases are accessed by using DataSource objects. A DataSource has a set of
properties that identify and describe the real world data source that it represents. These
properties include information such as the location of the database server, the name of the
database, the network protocol to use to communicate with the server, and so on. In the
Application Server, a data source is called a JDBC resource.

Applications access a data source using a connection, and a DataSource object can be thought
of as a factory for connections to the particular data source that the DataSource instance
represents. In a basic DataSource implementation, a call to the getConnection method returns
a connection object that is a physical connection to the data source.

If a DataSource object is registered with a JNDI naming service, an application can use the
JNDI API to access that DataSource object, which can then be used to connect to the data
source it represents.

DataSource objects that implement connection pooling also produce a connection to the
particular data source that the DataSource class represents. The connection object that the
getConnection method returns is a handle to a PooledConnection object rather than being a
physical connection. An application uses the connection object in the same way that it uses a
connection. Connection pooling has no effect on application code except that a pooled
connection, like all connections, should always be explicitly closed. When an application closes
a connection that is pooled, the connection is returned to a pool of reusable connections. The
next time getConnection is called, a handle to one of these pooled connections will be returned
if one is available. Because connection pooling avoids creating a new physical connection every
time one is requested, applications can run significantly faster.

DataSourceObjects and Connection Pools

The Java EE 5 Tutorial • October 20081012

http://java.sun.com/products/jdbc

A JDBC connection pool is a group of reusable connections for a particular database. Because
creating each new physical connection is time consuming, the server maintains a pool of
available connections to increase performance. When an application requests a connection, it
obtains one from the pool. When an application closes a connection, the connection is returned
to the pool.

Applications that use the Persistence API specify the DataSource object they are using in the
jta-data-source element of the persistence.xml file.

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

This is typically the only reference to a JDBC object for a persistence unit. The application code
does not refer to any JDBC objects. For more details, see “Persistence Units” on page 703.

Resource Injection
The javax.annotation.Resource annotation is used to declare a reference to a resource.
@Resource can decorate a class, a field, or a method. The container will inject the resource
referred to by @Resource into the component either at runtime or when the component is
initialized, depending on whether field/method injection or class injection is used. With field
and method-based injection, the container will inject the resource when the application is
initialized. For class-based injection, the resource is looked up by the application at runtime.

@Resource has the following elements:

■ name: The JNDI name of the resource
■ type: The Java language type of the resource
■ authenticationType: The authentication type to use for the resource
■ shareable: Indicates whether the resource can be shared
■ mappedName: A non-portable, implementation-specific name to which the resource should

be mapped
■ description: The description of the resource

The name element is the JNDI name of the resource, and is optional for field- and method-based
injection. For field-based injection, the default name is the field name qualified by the class
name. For method-based injection, the default name is the JavaBeans property name based on
the method qualified by the class name. The name element must be specified for class-based
injection.

Resource Injection

Chapter 34 • Resource Connections 1013

The type of resource is determined by one of the following:

■ The type of the field the @Resource annotation is decorating for field-based injection
■ The type of the JavaBeans property the @Resource annotation is decorating for

method-based injection
■ The type element of @Resource

For class-based injection, the type element is required.

The authenticationType element is used only for connection factory resources, and can be set
to one of the javax.annotation.Resource.AuthenticationType enumerated type values:
CONTAINER, the default, and APPLICATION.

The shareable element is used only for ORB instance resources or connection factory resource.
It indicates whether the resource can be shared between this component and other components,
and may be set to true, the default, or false.

The mappedName element is a non-portable, implementation-specific name that the resource
should be mapped to. Because the name element, when specified or defaulted, is local only to the
application, many Java EE servers provide a way of referring to resources across the application
server. This is done by setting the mappedName element. Use of the mappedName element is
non-portable across Java EE server implementations.

The description element is the description of the resource, typically in the default language of
the system on which the application is deployed. It is used to help identify resources, and to help
application developers choose the correct resource.

Field-Based Injection
To use field-based resource injection, declare a field and decorate it with the @Resource
annotation. The container will infer the name and type of the resource if the name and type

elements are not specified. If you do specify the type element, it must match the field’s type
declaration.

package com.example;

public class SomeClass {

@Resource

private javax.sql.DataSource myDB;

...

}

In the code above, the container infers the name of the resource based on the class name and the
field name: com.example.SomeClass/myDB. The inferred type is
javax.sql.DataSource.class.

Resource Injection

The Java EE 5 Tutorial • October 20081014

package com.example;

public class SomeClass {

@Resource(name="customerDB")
private javax.sql.DataSource myDB;

...

}

In the code above, the JNDI name is customerDB, and the inferred type is
javax.sql.DataSource.class.

Method-Based Injection
To use method-based injection, declare a setter method and decorate it with the @Resource
annotation. The container will infer the name and type of the resource if the name and type

elements are not specified. The setter method must follow the JavaBeans conventions for
property names: the method name must begin with set, have a void return type, and only one
parameter. If you do specify the type element, it must match the field’s type declaration.

package com.example;

public class SomeClass {

private javax.sql.DataSource myDB;

...

@Resource

private void setMyDB(javax.sql.DataSource ds) {

myDB = ds;

}

...

}

In the code above, the container infers the name of the resource based on the class name and the
field name: com.example.SomeClass/myDB. The inferred type is
javax.sql.DataSource.class.

package com.example;

public class SomeClass {

private javax.sql.DataSource myDB;

...

@Resource(name="customerDB")
private void setMyDB(javax.sql.DataSource ds) {

myDB = ds;

}

Resource Injection

Chapter 34 • Resource Connections 1015

...

}

In the code above, the JNDI name is customerDB, and the inferred type is
javax.sql.DataSource.class.

Class-Based Injection
To use class-based injection, decorate the class with a @Resource annotation, and set the
required name and type elements.

@Resource(name="myMessageQueue",
type="javax.jms.ConnectionFactory")

public class SomeMessageBean {

...

}

Declaring Multiple Resources
The @Resources annotation is used to group together multiple @Resource declarations for
class-based injection.

@Resources({

@Resource(name="myMessageQueue",
type="javax.jms.ConnectionFactory"),

@Resource(name="myMailSession",
type="javax.mail.Session")

})

public class SomeMessageBean {

...

}

The code above shows the @Resources annotation containing two @Resource declarations. One
is a JMS message queue, and the other is a JavaMail session.

The confirmer Example Application
The confirmer example application demonstrates how to use an injected JavaMail session to
send a confirmation email.

If you’ve ever ordered a product from a web site, you’ve probably received an email confirming
your order. The ConfirmerBean class demonstrates how to send email from an enterprise bean.

The confirmer Example Application

The Java EE 5 Tutorial • October 20081016

Like a database connection, a mail session is a resource. In the Application Server, a mail session
is called a JavaMail resource. The resource is injected into the class using @Resource and
specifying the JNDI name of the resource. The type of the session field is
javax.mail.Session.

@Resource(name="mail/myMailSession")
private Session session;

After calling several set methods on the Message object, sendNotice invokes the send method
of the javax.mail.Transport class to send the message. The source code for the sendNotice
method follows.

public void sendNotice(String recipient) {

try {

Message message = new MimeMessage(session);

message.setFrom();

message.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(recipient, false));

message.setSubject("Test Message from ConfirmerBean");
DateFormat dateFormatter = DateFormat

.getDateTimeInstance(DateFormat.LONG,

DateFormat.SHORT);

Date timeStamp = new Date();

String messageText = "Thank you for your order." + ’\n’
+ "We received your order on "
+ dateFormatter.format(timeStamp) + ".";

message.setText(messageText);

message.setHeader("X-Mailer", mailer);

message.setSentDate(timeStamp);

// Send message

Transport.send(message);

logger.info("Mail sent to " + recipient + ".");
} catch (MessagingException ex) {

ex.printStackTrace();

logger.info("Error in ConfirmerBean for " + recipient);

}

}

Running the confirmer Example Application
To run the confirmer example, follow these steps, as described in the following sections:

1. Create a mail session in the Admin Console.
2. Build the example.

The confirmer Example Application

Chapter 34 • Resource Connections 1017

3. Deploy the example.
4. Retrieve the client JAR.
5. Run the client JAR.

Creating a Mail Session
1. To create a mail session in the Application Server using the Admin Console, follow these

steps:Open the URL http://localhost:4848/asadmin in a browser.

2. Select the JavaMail Sessions node.

3. Click New.

4. Type mail/myMailSession in the JNDI Name field.

5. Type the name of the host running your mail server in the Mail Host field.

6. Type the destination email address in the Default User field.

7. Type your email address in the Default Return Address field.

8. Click OK.

Note that mail/myMailSession is listed under the JavaMail Sessions node.

Building, Packaging, and Deploying confirmer in NetBeans IDE
Follow these instructions to build, package, and deploy the confirmer example to your
Application Server instance using the NetBeans IDE IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/ejb/.

3. Select the confirmer folder.

4. Select the Open as Main Project and Open Required Projects check boxes.

5. Click Open Project.

6. In the Projects tab, right-click the confirmer project and select Undeploy and Deploy.

This builds and packages the application into confirmer.ear, located in
tut-install/javaeetutorial5/examples/ejb/confirmer/dist, and deploys this EAR file to
your Application Server instance.

The confirmer Example Application

The Java EE 5 Tutorial • October 20081018

Building, Packaging, and Deploying confirmerUsing Ant
To build and package the confirmer example, do the following:

1. In a terminal window, go to tut-install/examples/ejb/confirmer.
2. Enter the following command:

ant

This compiles the source code and creates an EAR file, confirmer.ear, in the dist
directory.

To deploy confirmer.ear, type the following command in a terminal window:

ant deploy

Running the confirmerClient in NetBeans IDE
By default, the client sends a message to pig.bodine@example.com, a fictional email address. To
change the email address in NetBeans IDE, do the following:

1. Right-click the confirmer project in the Projects pane and select Properties.
2. Click the Run category.
3. In the Client Information area, under Arguments, enter the email address to which you

want the message sent.
4. Click OK.

To run the client in NetBeans IDE, right-click the confirmer project in the Projects pane and
select Run. You should see the following line when the client has successfully sent the test
message:

...

Message sent to pig.bodine@example.com.

...

Running the confirmerClient Using Ant
By default, the client sends a message to pig.bodine@example.com, a fictional email address. To
change the email address, set the app-client.args property in
tut-install/examples/ejb/confirmer/nbproject/project.properties to the email address
to which you’d like the test message sent. For example:

app-client.args=duke@example.com

To retrieve the client JAR and run the client, enter the following command in a terminal:

ant run

The confirmer Example Application

Chapter 34 • Resource Connections 1019

You should see the following line when the client has successfully sent the test message:

[exec] Message sent to pig.bodine@example.com.

If you changed the target email address, the test message should arrive in the user’s inbox in a
few moments.

Further Information about Resources
For more information about resources and annotations, see:

■ Common Annotations for the Java Platform (JSR 250):
http://www.jcp.org/en/jsr/detail?id=250

■ The Java EE 5 Platform Specification (JSR 244):
http://www.jcp.org/en/jsr/detail?id=244

■ The Enterprise JavaBeans (EJB) 3.0 specification (JSR 220):
http://www.jcp.org/en/jsr/detail?id=220

Further Information about Resources

The Java EE 5 Tutorial • October 20081020

http://www.jcp.org/en/jsr/detail?id=250
http://www.jcp.org/en/jsr/detail?id=244
http://www.jcp.org/en/jsr/detail?id=220

Connector Architecture

The Connector architecture enables Java EE components to interact with enterprise
information systems (EISs) and EISs to interact with Java EE components. EIS software
includes various types of systems: enterprise resource planning (ERP), mainframe transaction
processing, and nonrelational databases, among others. Connector architecture simplifies the
integration of diverse EISs. Each EIS requires only one implementation of the Connector
architecture. Because an implementation adheres to the Connector specification, it is portable
across all compliant Java EE servers.

About Resource Adapters
A resource adapter is a Java EE component that implements the Connector architecture for a
specific EIS. As illustrated in Figure 35–1, the resource adapter facilitates communication
between a Java EE application and an EIS.

35C H A P T E R 3 5

1021

Stored in a Resource Adapter Archive (RAR) file, a resource adapter can be deployed on any
Java EE server, much like the EAR file of a Java EE application. An RAR file may be contained in
an EAR file, or it may exist as a separate file. See Figure 35–2 for the structure of a resource
adapter module.

Java EE Server

EIS

Enterprise
Bean

Managers:
Transaction
Connection
Security

Web
Component

Resource
Adapter

Application
Contract

Application
Contract

System
Contracts

FIGURE 35–1 Resource Adapter Contracts

About Resource Adapters

The Java EE 5 Tutorial • October 20081022

A resource adapter is analogous to a JDBC driver. Both provide a standard API through which
an application can access a resource that is outside the Java EE server. For a resource adapter,
the outside resource is an EIS; for a JDBC driver, it is a DBMS. Resource adapters and JDBC
drivers are rarely created by application developers. In most cases, both types of software are
built by vendors that sell products such as tools, servers, or integration software.

Resource Adapter Contracts
The resource adapter mediates communication between the Java EE server and the EIS by
means of contracts. The application contract defines the API through which a Java EE
component such as an enterprise bean accesses the EIS. This API is the only view that the
component has of the EIS. The system contracts link the resource adapter to important services
that are managed by the Java EE server. The resource adapter itself and its system contracts are
transparent to the Java EE component.

Management Contracts
The J2EE Connector architecture defines system contracts that enable resource adapter life
cycle and thread management.

Life-Cycle Management
The Connector architecture specifies a life-cycle management contract that allows an
application server to manage the life cycle of a resource adapter. This contract provides a
mechanism for the application server to bootstrap a resource adapter instance during the

ra.xml
sun-ra.xml

Native libraries
(.dll or .so files)

All .class/.jar
files for this
connector
module

Assembly
Root

META-INF

FIGURE 35–2 Resource Adapter Module Structure

Resource Adapter Contracts

Chapter 35 • Connector Architecture 1023

instance’s deployment or application server startup. It also provides a means for the application
server to notify the resource adapter instance when it is undeployed or when an orderly
shutdown of the application server takes place.

Work Management Contract
The Connector architecture work management contract ensures that resource adapters use
threads in the proper, recommended manner. It also enables an application server to manage
threads for resource adapters.

Resource adapters that improperly use threads can create problems for the entire application
server environment. For example, a resource adapter might create too many threads or it might
not properly release threads it has created. Poor thread handling inhibits application server
shutdown. It also impacts the application server’s performance because creating and destroying
threads are expensive operations.

The work management contract establishes a means for the application server to pool and reuse
threads, similar to pooling and reusing connections. By adhering to this contract, the resource
adapter does not have to manage threads itself. Instead, the resource adapter has the application
server create and provide needed threads. When the resource adapter is finished with a given
thread, it returns the thread to the application server. The application server manages the
thread: It can return the thread to a pool and reuse it later, or it can destroy the thread. Handling
threads in this manner results in increased application server performance and more efficient
use of resources.

In addition to moving thread management to the application server, the Connector architecture
provides a flexible model for a resource adapter that uses threads:

■ The requesting thread can choose to block (stop its own execution) until the work thread
completes.

■ Or the requesting thread can block while it waits to get the thread. When the application
server provides a work thread, the requesting thread and the work thread execute in parallel.

■ The resource adapter can opt to submit the work for the thread to a queue. The thread
executes the work from the queue at some later point. The resource adapter continues its
own execution from the point it submitted the work to the queue, no matter of when the
thread executes it.

With the latter two approaches, the resource adapter and the thread may execute
simultaneously or independently from each other. For these approaches, the contract specifies a
listener mechanism to notify the resource adapter that the thread has completed its operation.
The resource adapter can also specify the execution context for the thread, and the work
management contract controls the context in which the thread executes.

Resource Adapter Contracts

The Java EE 5 Tutorial • October 20081024

Outbound Contracts
The Connector architecture defines system-level contracts between an application server and
an EIS that enable outbound connectivity to an EIS: connection management, transaction
management, and security.

The connection management contract supports connection pooling, a technique that enhances
application performance and scalability. Connection pooling is transparent to the application,
which simply obtains a connection to the EIS.

The transaction management contract between the transaction manager and an EIS supports
transactional access to EIS resource managers. This contract lets an application server use a
transaction manager to manage transactions across multiple resource managers. This contract
also supports transactions that are managed inside an EIS resource manager without the
necessity of involving an external transaction manager. Because of the transaction management
contract, a call to the EIS may be enclosed in an XA transaction (a transaction type defined by
the distributed transaction processing specification created by The Open Group). XA
transactions are global: they can contain calls to multiple EISs, databases, and enterprise bean
business methods. Although often appropriate, XA transactions are not mandatory. Instead, an
application can use local transactions, which are managed by the individual EIS, or it can use no
transactions at all.

The security management contract provides mechanisms for authentication, authorization, and
secure communication between a J2EE server and an EIS to protect the information in the EIS.

Inbound Contracts
The J2EE Connector architecture defines system contracts between a Java EE server and an EIS
that enable inbound connectivity from the EIS: pluggability contracts for message providers
and contracts for importing transactions.

Messaging Contracts
To enable external systems to connect to a Java EE application server, the Connector
architecture extends the capabilities of message-driven beans to handle messages from any
message provider. That is, message-driven beans are no longer limited to handling JMS
messages. Instead, EISs and message providers can plug any message provider, including their
own custom or proprietary message providers, into a Java EE server.

To provide this feature, a message provider or an EIS resource adapter implements the
messaging contract, which details APIs for message handling and message delivery. A
conforming resource adapter is assured of the ability to send messages from any provider to a
message-driven bean, and it also can be plugged into a Java EE server in a standard manner.

Resource Adapter Contracts

Chapter 35 • Connector Architecture 1025

Transaction Inflow
The Connector architecture supports importing transactions from an EIS to a Java EE server.
The architecture specifies how to propagate the transaction context from the EIS. For example,
a transaction can be started by the EIS, such as the Customer Information Control System
(CICS). Within the same CICS transaction, a connection can be made through a resource
adapter to an enterprise bean on the application server. The enterprise bean does its work under
the CICS transaction context and commits within that transaction context.

The Connector architecture also specifies how the container participates in transaction
completion and how it handles crash recovery to ensure that data integrity is not lost.

Common Client Interface
This section describes how components use the Connector architecture Common Client
Interface (CCI) API and a resource adapter to access data from an EIS.

Defined by the J2EE Connector architecture specification, the CCI defines a set of interfaces
and classes whose methods allow a client to perform typical data access operations. The CCI
interfaces and classes are as follows:

■ ConnectionFactory: Provides an application component with a Connection instance to an
EIS.

■ Connection: Represents the connection to the underlying EIS.
■ ConnectionSpec: Provides a means for an application component to pass

connection-request-specific properties to the ConnectionFactory when making a
connection request.

■ Interaction: Provides a means for an application component to execute EIS functions,
such as database stored procedures.

■ InteractionSpec: Holds properties pertaining to an application component’s interaction
with an EIS.

■ Record: The superclass for the various kinds of record instances. Record instances can be
MappedRecord, IndexedRecord, or ResultSet instances, all of which inherit from the
Record interface.

■ RecordFactory: Provides an application component with a Record instance.
■ IndexedRecord: Represents an ordered collection of Record instances based on the

java.util.List interface.

A client or application component that uses the CCI to interact with an underlying EIS does so
in a prescribed manner. The component must establish a connection to the EIS’s resource
manager, and it does so using the ConnectionFactory. The Connection object represents the
actual connection to the EIS and is used for subsequent interactions with the EIS.

Common Client Interface

The Java EE 5 Tutorial • October 20081026

The component performs its interactions with the EIS, such as accessing data from a specific
table, using an Interaction object. The application component defines the Interaction object
using an InteractionSpec object. When the application component reads data from the EIS
(such as from database tables) or writes to those tables, it does so using a particular type of
Record instance: either a MappedRecord, an IndexedRecord, or a ResultSet instance. Just as the
ConnectionFactory creates Connection instances, a RecordFactory creates Record instances.

Note, too, that a client application that relies on a CCI resource adapter is very much like any
other Java EE client that uses enterprise bean methods.

Further Information about the Connector Architecture
For more information on the Connector architecture, see:

■ Connector 1.5 specification:
http://java.sun.com/j2ee/connector/download.html

■ The Connector web site:
http://java.sun.com/j2ee/connector

Further Information about the Connector Architecture

Chapter 35 • Connector Architecture 1027

http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector

1028

Case Studies
Part Seven presents case studies.

P A R T V I I

1029

1030

The Coffee Break Application

This chapter describes the Coffee Break application, a set of web applications that demonstrate
how to use several of the Java Web services APIs together. The Coffee Break sells coffee on the
Internet. Customers communicate with the Coffee Break server to order coffee online. The
server uses JavaServer Faces technology as well as Java servlets, JSP pages, and JavaBeans
components. When using the server a customer enters the quantity of each coffee to order and
clicks the Submit button to send the order.

Overview of the Coffee Break Application
The Coffee Break does not maintain any inventory. It handles customer and order management
and billing. Each order is filled by forwarding suborders to one or more coffee suppliers.
Figure 36–1 shows this process.

36C H A P T E R 3 6

1031

The Coffee Break server obtains the coffee varieties and their prices by querying suppliers at
startup and on demand.

1. The Coffee Break server uses SAAJ messaging to communicate with one of the suppliers.
The Coffee Break has been dealing with this supplier for some time and has previously made
the necessary arrangements for doing request-response SAAJ messaging. The two parties
have agreed to exchange four kinds of XML messages and have set up the DTDs those
messages will follow.

2. The Coffee Break server requests price lists from each of the coffee suppliers. The server
makes the appropriate remote web service calls and waits for the response, which is a
JavaBeans component representing a price list. The SAAJ supplier returns price lists as XML
documents.

3. Upon receiving the responses, the Coffee Break server processes the price lists from the
JavaBeans components returned by calls to the suppliers.

4. The Coffee Break server creates a local database of suppliers.

SAAJ
Coffee Supplier

Web Service

JAX-WS
Coffee Supplier

Web Service

Coffee Break
Server

Coffee Break
Client

request_prices

order_coffee

HTTP

FIGURE 36–1 Coffee Break Application Flow

Overview of the Coffee Break Application

The Java EE 5 Tutorial • October 20081032

5. When an order is placed, suborders are sent to one or more suppliers using the supplier’s
preferred protocol.

Common Code
The Coffee Break servers share the CoffeeBreak.properties file, which contains the URLs
exposed by the JAX-WS and SAAJ suppliers; the URLHelper class, which is used by the server
and client classes to retrieve the URLs; the DateHelper utility class; and several generated
JavaBeans components, described in “JAX-WS Coffee Supplier Service” on page 1033. These
JavaBeans components are generated from the cb-jaxws JAX-WS web service by the wsimport
tool.

The source code for the shared files is in the
tut-install/javaeetutorial5/examples/coffeebreak/
cb-common/src/java/com/sun/cb/common/ directory.

JAX-WS Coffee Supplier Service
The Coffee Break servers are clients of the JAX-WS coffee supplier service. The service code
consists of the service implementation class, and several JavaBeans components that are used
for method parameters and return types. The JavaBeans components are:

■ AddressBean: shipping information for customer
■ ConfirmationBean: order ID and ship date
■ CustomerBean: customer contact information
■ LineItemBean: order item
■ OrderBean: order ID, customer, address, list of line items, total price
■ PriceItemBean: price list entry (coffee name and wholesale price)
■ PriceListBean: price list

These JavaBeans components are propagated to the clients by means of the wsimport tool.

Service Implementation
The Supplier class implements the placeOrder and getPriceList methods. So that you can
focus on the code related to JAX-WS, these methods are short and simplistic. In a real world
application, these methods would access databases and would interact with other services, such
as shipping, accounting, and inventory.

The placeOrder method accepts as input a coffee order and returns a confirmation for the
order. To keep things simple, the placeOrder method confirms every order and sets the ship
date in the confirmation to the next day. The source code for the placeOrder method follows:

JAX-WS Coffee Supplier Service

Chapter 36 • The Coffee Break Application 1033

public ConfirmationBean placeOrder(OrderBean order) {

Date tomorrow = DateHelper.addDays(new Date(), 1);

ConfirmationBean confirmation =

new ConfirmationBean(order.getId(), DateHelper.dateToCalendar(tomorrow));

return confirmation;

}

The getPriceList method returns a PriceListBean object, which lists the name and price of
each type of coffee that can be ordered from this service. The getPriceList method creates the
PriceListBean object by invoking a private method named loadPrices. In a production
application, the loadPrices method would fetch the prices from a database. However, our
loadPrices method takes a shortcut by getting the prices from the
SupplierPrices.properties file. Here are the getPriceList and loadPrices methods:

public PriceListBean getPriceList() {

PriceListBean priceList = loadPrices();

return priceList;

}

private PriceListBean loadPrices() {

String propsName = "com.sun.cb.ws.server.SupplierPrices";
Date today = new Date();

Date endDate = DateHelper.addDays(today, 30);

PriceItemBean[] priceItems = PriceLoader.loadItems(propsName);

PriceListBean priceList =

new PriceListBean(DateHelper.dateToCalendar(today),

DateHelper.dateToCalendar(endDate), priceItems);

return priceList;

}

SAAJ Coffee Supplier Service
The SAAJ supplier service implements the arrangements that the supplier and the Coffee Break
have made regarding their exchange of XML documents. These arrangements include the kinds
of messages they will send, the form of those messages, and the kind of messaging they will do.
They have agreed to do request-response messaging using the SAAJ API (the javax.xml.soap
package).

SAAJ Coffee Supplier Service

The Java EE 5 Tutorial • October 20081034

The Coffee Break servers send two kinds of messages:

■ Requests for current wholesale coffee prices
■ Customer orders for coffee

The SAAJ coffee supplier responds with two kinds of messages:

■ Current price lists
■ Order confirmations

All the messages they send conform to an agreed-upon XML structure, which is specified in a
DTD for each kind of message. This allows them to exchange messages even though they use
different document formats internally.

The four kinds of messages exchanged by the Coffee Break servers and the SAAJ supplier are
specified by the following DTDs:

■ request-prices.dtd

■ price-list.dtd

■ coffee-order.dtd

■ confirm.dtd

These DTDs can be found at
tut-install/javaeetutorial5/examples/coffeebreak/cb-saaj/dtds/. The dtds directory
also contains a sample of what the XML documents specified in the DTDs might look like.

The corresponding XML files for the DTDs are as follows:

■ request-prices.xml

■ price-list.xml

■ coffee-order.xml

■ confirm.xml

Because of the DTDs, both parties know ahead of time what to expect in a particular kind of
message and can therefore extract its content using the SAAJ API.

Code for the client and server applications is in this directory:

tut-install/javaeetutorial5/examples/coffeebreak/cb-saaj/src/java

SAAJ Client
The Coffee Break server, which is a SAAJ client in this scenario, sends requests to the SAAJ
supplier. The SAAJ client application uses the SOAPConnection method call to send messages.

SOAPMessage response = con.call(request, endpoint);

SAAJ Coffee Supplier Service

Chapter 36 • The Coffee Break Application 1035

Accordingly, the client code has two major tasks. The first is to create and send the request; the
second is to extract the content from the response. These tasks are handled by the classes
PriceListRequest and OrderRequest.

Sending the Request
This section covers the code for creating and sending the request for an updated price list. This
is done in the getPriceList method of PriceListRequest, which follows the DTD
price-list.dtd.

The getPriceList method begins by creating the connection that will be used to send the
request. Then it gets the default MessageFactory object to be used for creating the SOAPMessage
object msg.

SOAPConnectionFactory scf = SOAPConnectionFactory.newInstance();

SOAPConnection con = scf.createConnection();

SOAPFactory soapFactory = SOAPFactory.newInstance();

MessageFactory mf = MessageFactory.newInstance();

SOAPMessage msg = mf.createMessage();

The next step is to access the message’s SOAPBody object, to which the message’s content will be
added.

SOAPBody body = msg.getSOAPBody();

The file price-list.dtd specifies that the topmost element inside the body is request-prices
and that it contains the element request. The text node added to request is the text of the
request being sent. Every new element that is added to the message must have a QName object to
identify it. The following lines of code create the top-level element in the SOAPBody object body.
The first element created in a SOAPBody object is always a SOAPBodyElement object.

Name bodyName = new QName("http://sonata.coffeebreak.com",
"request-prices", "RequestPrices");

SOAPBodyElement requestPrices =

body.addBodyElement(bodyName);

In the next few lines, the code adds the element request to the element request-prices
(represented by the SOAPBodyElement requestPrices). Then the code adds a text node
containing the text of the request. Next, because there are no other elements in the request, the
code calls the method saveChanges on the message to save what has been done.

QName requestName = new QName("request");
SOAPElement request = requestPrices.addChildElement(requestName);

request.addTextNode("Send updated price list.");

msg.saveChanges();

SAAJ Coffee Supplier Service

The Java EE 5 Tutorial • October 20081036

With the creation of the request message completed, the code sends the message to the SAAJ
coffee supplier. The message being sent is the SOAPMessage object msg, to which the elements
created in the previous code snippets were added. The endpoint is the URI for the SAAJ coffee
supplier, http://localhost:8080/saaj-coffee-supplier/getPriceList. The
SOAPConnection object con is used to send the message, and because it is no longer needed, it is
closed.

URL endpoint = new URL(url);

SOAPMessage response = con.call(msg, endpoint);

con.close();

When the call method is executed, the Application Server executes the servlet
PriceListServlet. This servlet creates and returns a SOAPMessage object whose content is the
SAAJ supplier’s price list. (PriceListServlet is discussed in “Returning the Price List” on
page 1042.) The Application Server knows to execute PriceListServlet because the given
endpoint is mapped to that servlet.

Extracting the Price List
This section demonstrates (1) retrieving the price list that is contained in response, the
SOAPMessage object returned by the method call, and (2) returning the price list as a
PriceListBean.

The code creates an empty Vector object that will hold the coffee-name and price elements
that are extracted from response. Then the code uses response to access its SOAPBody object,
which holds the message’s content.

Vector<String> list = new Vector<String>();

SOAPBody responseBody = response.getSOAPBody();

The next step is to retrieve the SOAPBodyElement object. The method getChildElements

returns an Iterator object that contains all the child elements of the element on which it is
called, so in the following lines of code, it1 contains the SOAPBodyElement object bodyEl,
which represents the price-list element.

Iterator it1 = responseBody.getChildElements();

while (it1.hasNext()) {

SOAPBodyElement bodyEl = (SOAPBodyElement)it1.next();

The Iterator object it2 holds the child elements of bodyEl, which represent coffee elements.
Calling the method next on it2 retrieves the first coffee element in bodyEl. As long as it2 has
another element, the method next will return the next coffee element.

Iterator it2 = bodyEl.getChildElements();

while (it2.hasNext()) {

SOAPElement child2 = (SOAPElement)it2.next();

SAAJ Coffee Supplier Service

Chapter 36 • The Coffee Break Application 1037

The next lines of code drill down another level to retrieve the coffee-name and price elements
contained in it3. Then the message getValue retrieves the text (a coffee name or a price) that
the SAAJ coffee supplier added to the coffee-name and price elements when it gave content to
response. The final line in the following code fragment adds the coffee name or price to the
Vector object list. Note that because of the nested while loops, for each coffee element that
the code retrieves, both of its child elements (the coffee-name and price elements) are
retrieved.

Iterator it3 = child2.getChildElements();

while (it3.hasNext()) {

SOAPElement child3 = (SOAPElement)it3.next();

String value = child3.getValue();

list.addElement(value);

}

}

}

The final code fragment adds the coffee names and their prices (as a PriceListItem) to the
ArrayList priceItems, and prints each pair on a separate line. Finally it constructs and returns
a PriceListBean.

ArrayList<PriceItemBean> items = new ArrayList<PriceItemBean>();

for (int i = 0; i < list.size(); i = i + 2) {

PriceItemBean pib = new PriceItemBean();

pib.setCoffeeName(list.elementAt(i).toString());

pib.setPricePerPound(new BigDecimal(list.elementAt(i + 1).toString()));

items.add(pib);

System.out.print(list.elementAt(i) + " ");
System.out.println(list.elementAt(i + 1));

}

Date today = new Date();

Date endDate = DateHelper.addDays(today, 30);

GregorianCalendar todayCal = new GregorianCalendar();

todayCal.setTime(today);

GregorianCalendar cal = new GregorianCalendar();

cal.setTime(endDate);

plb = new PriceListBean();

plb.setStartDate(DatatypeFactory.newInstance().newXMLGregorianCalendar(todayCal));

List<PriceItemBean> priceItems = new ArrayList<PriceItemBean>();

Iterator<PriceItemBean> i = items.iterator();

while (i.hasNext()) {

PriceItemBean pib = i.next();

plb.getPriceItems().add(pib);

}

plb.setEndDate(DatatypeFactory.newInstance().newXMLGregorianCalendar(cal));

SAAJ Coffee Supplier Service

The Java EE 5 Tutorial • October 20081038

Ordering Coffee
The other kind of message that the Coffee Break servers can send to the SAAJ supplier is an
order for coffee. This is done in the placeOrder method of OrderRequest, which follows the
DTD coffee-order.dtd.

Creating the Order

As with the client code for requesting a price list, the placeOrder method starts by creating a
SOAPConnection object and a SOAPMessage object and accessing the message’s SOAPBody object.

SOAPConnectionFactory scf = SOAPConnectionFactory.newInstance();

SOAPConnection con = scf.createConnection();

MessageFactory mf = MessageFactory.newInstance();

SOAPMessage msg = mf.createMessage();

SOAPBody body = msg.getSOAPBody();

Next, the code creates and adds XML elements to form the order. As is required, the first
element is a SOAPBodyElement, which in this case is coffee-order.

QName bodyName = new QName("http://sonata.coffeebreak.com",
"coffee-order", "PO");

SOAPBodyElement order = body.addBodyElement(bodyName);

The application then adds the next level of elements, the first of these being orderID. The value
given to orderID is extracted from the OrderBean object passed to the
OrderRequest.placeOrder method.

QName orderIDName = new QName("orderID");
SOAPElement orderID = order.addChildElement(orderIDName);

orderID.addTextNode(orderBean.getId());

The next element, customer, has several child elements that give information about the
customer. This information is also extracted from the Customer component of OrderBean.

QName childName = new QName("customer");
SOAPElement customer = order.addChildElement(childName);

childName = new QName("last-name");
SOAPElement lastName = customer.addChildElement(childName);

lastName.addTextNode(orderBean.getCustomer().getLastName());

childName = new QName("first-name");
SOAPElement firstName = customer.addChildElement(childName);

firstName.addTextNode(orderBean.getCustomer().getFirstName());

SAAJ Coffee Supplier Service

Chapter 36 • The Coffee Break Application 1039

childName = new QName("phone-number");
SOAPElement phoneNumber = customer.addChildElement(childName);

phoneNumber.addTextNode(orderBean.getCustomer().getPhoneNumber());

childName = new QName("email-address");
SOAPElement emailAddress = customer.addChildElement(childName);

emailAddress.addTextNode(orderBean.getCustomer().getEmailAddress());

The address element, added next, has child elements for the street, city, state, and zip code.
This information is extracted from the Address component of OrderBean.

childName = new QName("address");
SOAPElement address = order.addChildElement(childName);

childName = new QName("street");
SOAPElement street = address.addChildElement(childName);

street.addTextNode(orderBean.getAddress().getStreet());

childName = new QName("city");
SOAPElement city = address.addChildElement(childName);

city.addTextNode(orderBean.getAddress().getCity());

childName = new QName("state");
SOAPElement state = address.addChildElement(childName);

state.addTextNode(orderBean.getAddress().getState());

childName = new QName("zip");
SOAPElement zip = address.addChildElement(childName);

zip.addTextNode(orderBean.getAddress().getZip());

The element line-item has three child elements: coffeeName, pounds, and price. This
information is extracted from the LineItems list contained in OrderBean.

List<LineItemBean> lineItems = orderBean.getLineItems();

Iterator<LineItemBean> i = lineItems.iterator();

while (i.hasNext()) {

LineItemBean lib = i.next();

childName = new QName("line-item");
SOAPElement lineItem = order.addChildElement(childName);

childName = new QName("coffeeName");
SOAPElement coffeeName = lineItem.addChildElement(childName);

coffeeName.addTextNode(lib.getCoffeeName());

childName = new QName("pounds");
SOAPElement pounds = lineItem.addChildElement(childName);

pounds.addTextNode(lib.getPounds().toString());

SAAJ Coffee Supplier Service

The Java EE 5 Tutorial • October 20081040

childName = new QName("price");
SOAPElement price = lineItem.addChildElement(childName);

price.addTextNode(lib.getPrice().toString());

}

// total

childName = new QName("total");
SOAPElement total = order.addChildElement(childName);

total.addTextNode(orderBean.getTotal().toString());

With the order complete, the application sends the message to the endpoint
http://localhost:8080/saaj-coffee-supplier/orderCoffee and closes the connection.

URL endpoint = new URL(url);

SOAPMessage reply = con.call(msg, endpoint);

con.close();

Because the given endpoint is mapped to ConfirmationServlet, the Application Server
executes that servlet (discussed in “Returning the Order Confirmation” on page 1046) to create
and return the SOAPMessage object reply.

Retrieving the Order Confirmation

The rest of the placeOrder method retrieves the information returned in reply. The client
knows what elements are in it because they are specified in confirm.dtd. After accessing the
SOAPBody object, the code retrieves the confirmation element and gets the text of the orderID
and ship-date elements. Finally, it constructs and returns a ConfirmationBean with this
information.

SOAPBody sBody = reply.getSOAPBody();

Iterator bodyIt = sBody.getChildElements();

SOAPBodyElement sbEl = (SOAPBodyElement)bodyIt.next();

Iterator bodyIt2 = sbEl.getChildElements();

SOAPElement ID = (SOAPElement)bodyIt2.next();

String id = ID.getValue();

SOAPElement sDate = (SOAPElement)bodyIt2.next();

String shippingDate = sDate.getValue();

SimpleDateFormat df = new SimpleDateFormat("EEE MMM dd HH:mm:ss z yyyy");
Date date = df.parse(shippingDate);

GregorianCalendar cal = new GregorianCalendar();

cal.setTime(date);

cb = new ConfirmationBean();

cb.setOrderId(id);

cb.setShippingDate(DatatypeFactory.newInstance().newXMLGregorianCalendar(cal));

SAAJ Coffee Supplier Service

Chapter 36 • The Coffee Break Application 1041

SAAJ Service
The SAAJ coffee supplier (the SAAJ server in this scenario) provides the response part of the
request-response paradigm. When SAAJ messaging is being used, the server code is a servlet.
The core part of each servlet is made up of three javax.servlet.HttpServlet methods: init,
doPost, and onMessage. The init and doPost methods set up the response message, and the
onMessage method gives the message its content.

Returning the Price List
This section takes you through the servlet PriceListServlet. This servlet creates the message
containing the current price list that is returned to the method call, invoked in
PriceListRequest.

Any servlet extends a javax.servlet class. Being part of a web application, this servlet extends
HttpServlet. It first creates a static MessageFactory object that will be used later to create the
SOAPMessage object that is returned.

public class PriceListServlet extends HttpServlet {

static final Logger logger =

Logger.getLogger("com.sun.cb.saaj.PriceListServlet");
static MessageFactory messageFactory = null;

static {

try {

messageFactory = MessageFactory.newInstance();

} catch (Exception ex) {

logger.severe("Exception: " + ex.toString());

}

};

Every servlet has an init method. This init method initializes the servlet with the
configuration information that the Application Server passed to it.

public void init(ServletConfig servletConfig)

throws ServletException {

super.init(servletConfig);

}

The next method defined in PriceListServlet is doPost, which does the real work of the
servlet by calling the onMessage method. (The onMessage method is discussed later in this
section.) The Application Server passes the doPost method two arguments. The first argument,
the HttpServletRequest object req, holds the content of the message sent in
PriceListRequest. The doPost method gets the content from req and puts it in the
SOAPMessage object msg so that it can pass it to the onMessage method. The second argument,
the HttpServletResponse object resp, will hold the message generated by executing the
method onMessage.

SAAJ Coffee Supplier Service

The Java EE 5 Tutorial • October 20081042

In the following code fragment, doPost calls the methods getHeaders and putHeaders, defined
immediately after doPost, to read and write the headers in req. It then gets the content of req as
a stream and passes the headers and the input stream to the method
MessageFactory.createMessage. The result is that the SOAPMessage object msg contains the
request for a price list. Note that in this case, msg does not have any headers because the message
sent in PriceListRequest did not have any headers.

public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

try {

// Get all the headers from the HTTP request

MimeHeaders headers = getHeaders(req);

// Get the body of the HTTP request

InputStream is = req.getInputStream();

// Now internalize the contents of the HTTP request

// and create a SOAPMessage

SOAPMessage msg = messageFactory.createMessage(headers, is);

Next, the code declares the SOAPMessage object reply and populates it by calling the method
onMessage.

SOAPMessage reply = null;

reply = onMessage(msg);

If reply has anything in it, its contents are saved, the status of resp is set to OK, and the headers
and content of reply are written to resp. If reply is empty, the status of resp is set to indicate
that there is no content.

if (reply != null) {

/*

* Need to call saveChanges because we’re
* going to use the MimeHeaders to set HTTP

* response information. These MimeHeaders

* are generated as part of the save.

*/

if (reply.saveRequired()) {

reply.saveChanges();

}

resp.setStatus(HttpServletResponse.SC_OK);

putHeaders(reply.getMimeHeaders(), resp);

// Write out the message on the response stream

logger.info("Reply message:");

SAAJ Coffee Supplier Service

Chapter 36 • The Coffee Break Application 1043

OutputStream os = resp.getOutputStream();

reply.writeTo(os);

os.flush();

} else {

resp.setStatus(HttpServletResponse.SC_NO_CONTENT);

}

} catch (Exception ex) {

throw new ServletException("SAAJ POST failed: " + ex.getMessage());

}

}

The methods getHeaders and putHeaders are not standard methods in a servlet, as init,
doPost, and onMessage are. The method doPost calls getHeaders and passes it the
HttpServletRequest object req that the Application Server passed to it. It returns a
MimeHeaders object populated with the headers from req.

static MimeHeaders getHeaders(HttpServletRequest req) {

Enumeration headerNames = req.getHeaderNames();

MimeHeaders headers = new MimeHeaders();

while (headerNames.hasMoreElements()) {

String headerName = (String)headerNames.nextElement();

String headerValue = req.getHeader(headerName);

StringTokenizer values = new StringTokenizer(headerValue, ",");
while (values.hasMoreTokens()) {

headers.addHeader(headerName, values.nextToken().trim());

}

}

return headers;

}

The doPost method calls putHeaders and passes it the MimeHeaders object headers, which was
returned by the method getHeaders. The method putHeaders writes the headers in headers to
res, the second argument passed to it. The result is that res, the response that the Application
Server will return to the method call, now contains the headers that were in the original
request.

static void putHeaders(MimeHeaders headers, HttpServletResponse res) {

Iterator it = headers.getAllHeaders();

while (it.hasNext()) {

MimeHeader header = (MimeHeader)it.next();

String[] values = headers.getHeader(header.getName());

if (values.length == 1)

res.setHeader(header.getName(), header.getValue());

SAAJ Coffee Supplier Service

The Java EE 5 Tutorial • October 20081044

else {

StringBuffer concat = new StringBuffer();

int i = 0;

while (i < values.length) {

if (i != 0) {

concat.append(’,’);
}

concat.append(values[i++]);

}

res.setHeader(header.getName(), concat.toString());

}

}

}

The method onMessage is the application code for responding to the message sent by
PriceListRequest and internalized into msg. It uses the static MessageFactory object
messageFactory to create the SOAPMessage object message and then populates it with the
supplier’s current coffee prices.

The method doPost invokes onMessage and passes it msg. In this case, onMessage does not need
to use msg because it simply creates a message containing the supplier’s price list. The
onMessage method in ConfirmationServlet (see “Returning the Order Confirmation” on
page 1046), on the other hand, uses the message passed to it to get the order ID.

public SOAPMessage onMessage(SOAPMessage msg) {

SOAPMessage message = null;

try {

message = messageFactory.createMessage();

SOAPBody body = message.getSOAPBody();

QName bodyName =

new QName("http://sonata.coffeebreak.com", "price-list", "PriceList");
SOAPBodyElement list = body.addBodyElement(bodyName);

QName coffeeN = new QName("coffee");
SOAPElement coffee = list.addChildElement(coffeeN);

QName coffeeNm1 = new QName("coffee-name");
SOAPElement coffeeName = coffee.addChildElement(coffeeNm1);

coffeeName.addTextNode("Arabica");

QName priceName1 = new QName("price");
SOAPElement price1 = coffee.addChildElement(priceName1);

price1.addTextNode("4.50");

QName coffeeNm2 = new QName("coffee-name");

SAAJ Coffee Supplier Service

Chapter 36 • The Coffee Break Application 1045

SOAPElement coffeeName2 = coffee.addChildElement(coffeeNm2);

coffeeName2.addTextNode("Espresso");

QName priceName2 = new QName("price");
SOAPElement price2 = coffee.addChildElement(priceName2);

price2.addTextNode("5.00");

QName coffeeNm3 = new QName("coffee-name");
SOAPElement coffeeName3 = coffee.addChildElement(coffeeNm3);

coffeeName3.addTextNode("Dorada");

QName priceName3 = new QName("price");
SOAPElement price3 = coffee.addChildElement(priceName3);

price3.addTextNode("6.00");

QName coffeeNm4 = snew QName("coffee-name");
SOAPElement coffeeName4 = coffee.addChildElement(coffeeNm4);

coffeeName4.addTextNode("House Blend");

QName priceName4 = new QName("price");
SOAPElement price4 = coffee.addChildElement(priceName4);

price4.addTextNode("5.00");

message.saveChanges();

} catch(Exception e) {

logger.severe("onMessage: Exception: " + e.toString());

}

return message;

}

Returning the Order Confirmation
ConfirmationServlet creates the confirmation message that is returned to the call method
that is invoked in OrderRequest. It is very similar to the code in PriceListServlet except that
instead of building a price list, its onMessage method builds a confirmation containing the
order number and shipping date.

The onMessage method for this servlet uses the SOAPMessage object passed to it by the doPost
method to get the order number sent in OrderRequest. Then it builds a confirmation message
containing the order ID and shipping date. The shipping date is calculated as today’s date plus
two days.

public SOAPMessage onMessage(SOAPMessage message) {

logger.info("onMessage");
SOAPMessage confirmation = null;

try {

SAAJ Coffee Supplier Service

The Java EE 5 Tutorial • October 20081046

// Retrieve orderID from message received

SOAPBody sentSB = message.getSOAPBody();

Iterator sentIt = sentSB.getChildElements();

SOAPBodyElement sentSBE = (SOAPBodyElement)sentIt.next();

Iterator sentIt2 = sentSBE.getChildElements();

SOAPElement sentSE = (SOAPElement)sentIt2.next();

// Get the orderID test to put in confirmation

String sentID = sentSE.getValue();

// Create the confirmation message

confirmation = messageFactory.createMessage();

SOAPBody sb = message.getSOAPBody();

QName newBodyName =

new QName("http://sonata.coffeebreak.com", "confirmation", "Confirm");
SOAPBodyElement confirm = sb.addBodyElement(newBodyName);

// Create the orderID element for confirmation

QName newOrderIDName = new QName("orderId");
SOAPElement newOrderNo = confirm.addChildElement(newOrderIDName);

newOrderNo.addTextNode(sentID);

// Create ship-date element

QName shipDateName = new QName("ship-date");
SOAPElement shipDate = confirm.addChildElement(shipDateName);

// Create the shipping date

Date today = new Date();

long msPerDay = 1000 * 60 * 60 * 24;

long msTarget = today.getTime();

long msSum = msTarget + (msPerDay * 2);

Date result = new Date();

result.setTime(msSum);

String sd = result.toString();

shipDate.addTextNode(sd);

confirmation.saveChanges();

} catch (Exception ex) {

ex.printStackTrace();

}

return confirmation;

}

SAAJ Coffee Supplier Service

Chapter 36 • The Coffee Break Application 1047

Coffee Break Server
The Coffee Break server uses JavaServer Faces technology to build its user interface. The JSP
pages use JavaServer Faces UI component tags to represent widgets, such as text fields and
tables. All the JSP pages use preludes and codas to achieve a common look and feel among the
HTML pages, and many of the JSTL custom tags discussed in Chapter 7, “JavaServer Pages
Standard Tag Library.”

The Coffee Break server implementation is organized along the Model-View-Controller design
pattern. A FacesServlet instance (included with the JavaServer Faces API) acts as the
controller. It examines the request URL, creates and initializes model JavaBeans components,
and dispatches requests to view JSP pages. The JavaBeans components contain the business
logic for the application; they call the web services and perform computations on the data
returned from the services. The JSP pages format the data stored in the JavaBeans components.
The mapping between JavaBeans components and pages is summarized in Table 36–1.

TABLE 36–1 Model and View Components

Function JSP Page JavaBeans Component

Update order data orderForm ShoppingCart

Update delivery and billing data checkoutForm CheckoutFormBean

Display order confirmation checkoutAck OrderConfirmations

JSP Pages
The JSP pages are as follows:

■ “The orderForm Page” on page 1048
■ “The checkoutForm Page” on page 1049
■ “The checkoutAck Page” on page 1050

The orderFormPage
orderForm displays the current contents of the shopping cart. The first time the page is
requested, the quantities of all the coffees are 0 (zero). Each time the customer changes the
coffee amounts and clicks the Update button, the request is posted back to orderForm.

The CoffeeBreakBean bean component updates the values in the shopping cart, which are then
redisplayed by orderForm. When the order is complete, the customer proceeds to the
checkoutForm page by clicking the Checkout button.

The table of coffees displayed on the orderForm is rendered using one of the JavaServer Faces
component tags, dataTable. Here is part of the dataTable tag from orderForm:

Coffee Break Server

The Java EE 5 Tutorial • October 20081048

<h:dataTable id="table"
columnClasses="list-column-center,list-column-right,

list-column-center, list-column-right"
headerClass="list-header" rowClasses="list-row"
footerClass="list-column-right"
styleClass="list-background-grid"
value="#{CoffeeBreakBean.cart.items}" var="sci">
<f:facet name="header">

<h:outputText value="#{CBMessages.OrderForm}"/>
</f:facet>

<h:column>

<f:facet name="header">
<h:outputText value="Coffee"/>

</f:facet>

<h:outputText id="coffeeName"
value="#{sci.item.coffeeName}"/>

</h:column>

...

</h:dataTable>

When this tag is processed, a UIData component and a Table renderer are created on the server
side. The UIData component supports a data binding to a collection of data objects. The Table
renderer takes care of generating the HTML markup. The UIData component iterates through
the list of coffees, and the Table renderer renders each row in the table.

This example is a classic use case for a UIData component because the number of coffees might
not be known to the application developer or the page author at the time the application is
developed. Also, the UIData component can dynamically adjust the number of rows in the table
to accommodate the underlying data.

For more information on UIData, please see “Using Data-Bound Table Components” on
page 339.

The checkoutFormPage
checkoutForm is used to collect delivery and billing information from the customer. When the
Submit button is clicked, an ActionEvent is generated. This event is first handled by the submit
method of the checkoutFormBean. This method acts as a listener for the event because the tag
corresponding to the submit button references the submit method with its action attribute:

<h:commandButton value="#{CBMessages.Submit}"
action="#{checkoutFormBean.submit}"/>

The submit method submits the suborders to each supplier and stores the result in the
request-scoped OrderConfirmations bean.

The checkoutForm page has standard validators on several components and a custom validator
on the email component. Here is the tag corresponding to the firstName component, which
holds the customer’s first name:

Coffee Break Server

Chapter 36 • The Coffee Break Application 1049

<h:inputText id="firstName" value="#{checkoutFormBean.firstName}"
size="15" maxlength="20" required="true"/>

With the required attribute set to true, the JavaServer Faces implementation will check
whether the user entered something in the First Name field.

The email component has a custom validator registered on it. Here is the tag corresponding to
the email component:

<h:inputText id="email" value="#{checkoutFormBean.email}"
size="25" maxlength="125" validator="#{checkoutFormBean.validateEmail}"/>

The validator attribute refers to the validateEmail method on the CheckoutFormBean class.
This method ensures that the value the user enters in the email field contains an @ character.

If the validation does not succeed, the checkoutForm is re-rendered, with error notifications in
each invalid field. If the validation succeeds, checkoutFormBean submits suborders to each
supplier and stores the result in the request-scoped OrderConfirmations JavaBeans
component and control is passed to the checkoutAck page.

The checkoutAckPage
checkoutAck simply displays the contents of the OrderConfirmations JavaBeans component,
which is a list of the suborders constituting an order and the ship dates of each suborder. This
page also uses a UIData component. Again, the number of coffees the customer ordered is not
known before runtime. The UIData component dynamically adds rows to accommodate the
order.

The checkoutAck.jsp page also makes use of a custom converter that converts the shipping
date into an XMLGregorianCalendar type:

<h:outputText id="coffeeName"
value="#{oc.confirmationBean.shippingDate}">
<f:converter converterId="XMLGregorianCalendarConverter" /

</h:outputText>

The custom converter is implemented by XMLGregorianCalendarConverter.java.

JavaBeans Components
The JavaBeans components are as follows:

■ “The RetailPriceList JavaBeans Component” on page 1051
■ “The ShoppingCart JavaBeans Component” on page 1051
■ “The OrderConfirmations JavaBeans Component” on page 1051
■ “The CheckoutFormBean JavaBeans Component” on page 1051

Coffee Break Server

The Java EE 5 Tutorial • October 20081050

■ “The CoffeeBreakBean JavaBeans Component” on page 1052

The RetailPriceList JavaBeans Component
RetailPriceList is a list of retail price items. A retail price item contains a coffee name, a
wholesale price per pound, a retail price per pound, and a supplier. This data is used for two
purposes: it contains the price list presented to the end user and is used by CheckoutFormBean
when it constructs the suborders dispatched to coffee suppliers.

RetailPriceList first calls the URLHelper.getEndpointURL method to determine the JAX-WS
service endpoint. It then queries the JAX-WS service for a coffee price list. Finally it queries the
SAAJ service for a price list. The two price lists are combined and a retail price per pound is
determined by adding a markup of 35% to the wholesale prices.

The ShoppingCart JavaBeans Component
ShoppingCart is a list of shopping cart items. A ShoppingCartItem contains a retail price item,
the number of pounds of that item, and the total price for that item.

The OrderConfirmations JavaBeans Component
OrderConfirmations is a list of order confirmation objects. An OrderConfirmation contains
order and confirmation objects, as discussed in “Service Implementation” on page 1033.

The CheckoutFormBean JavaBeans Component
CheckoutFormBean checks the completeness of information entered into checkoutForm. If the
information is incomplete, the bean populates error messages, and redisplays checkoutForm
with the error messages. If the information is complete, order requests are constructed from the
shopping cart and the information supplied to checkoutForm, and these orders are sent to each
supplier. As each confirmation is received, an order confirmation is created and added to
OrderConfirmations.

Several of the tags on the checkoutForm page have their required attributes set to true. This
will cause the implementation to check whether the user enters values in these fields. The tag
corresponding to the email component registers a custom validator on the email component,
as explained in “The checkoutForm Page” on page 1049. The code that performs the validation
is the validateEmail method:

public void validateEmail(FacesContext context,

UIComponent toValidate, Object value) {

String message = "";
String email = (String) value;

if (email.indexOf(’@’) == -1) {

((UIInput)toValidate).setValid(false);

message = CoffeeBreakBean.loadErrorMessage(context,

Coffee Break Server

Chapter 36 • The Coffee Break Application 1051

CoffeeBreakBean.CB_RESOURCE_BUNDLE_NAME, "EMailError");
context.addMessage(toValidate.getClientId(context),

new FacesMessage(message));

}

}

The CoffeeBreakBean JavaBeans Component
CoffeeBreakBean acts as the backing bean to the JSP pages. See “Backing Beans” on page 310
for more information on backing beans. CoffeeBreakBean creates the ShoppingCart object,
which defines the model data for the components on the orderForm page that hold the data
about each coffee. CoffeeBreakBean also loads the RetailPriceList object. In addition, it
provides the methods that are invoked when the buttons on the orderForm and checkoutAck

are clicked. For example, the checkout method is invoked when the Checkout button is clicked
because the tag corresponding to the Checkout button refers to the checkout method by means
of its action attribute:

<h:commandButton id="checkoutLink" value="#{CBMessages.Checkout}"
action="#{CoffeeBreakBean.checkout}" />

The checkout method returns a String, which the JavaServer Faces page navigation system
matches against a set of navigation rules to determine what page to access next. The navigation
rules are defined in a separate XML file, described in “Resource Configuration” on page 1052.

The RetailPriceListServlet Servlet
RetailPriceListServlet responds to requests to reload the price list via the URL
/loadPriceList. It simply creates a new RetailPriceList and a new ShoppingCart.

Because this servlet would be used by administrators of the Coffee Break server, it is a protected
web resource. To load the price list, a user must authenticate (using basic authentication), and
the authenticated user must be in the admin role.

Resource Configuration
A JavaServer Faces application usually includes an XML file that configures resources for the
application. These resources include JavaBeans components, navigation rules, and others.

Two of the resources configured for the JavaServer Faces version of the Coffee Break server are
the CheckoutForm bean and navigation rules for the orderForm page:

<managed-bean>

<managed-bean-name>checkoutFormBean</managed-bean-name>

<managed-bean-class>

Coffee Break Server

The Java EE 5 Tutorial • October 20081052

com.sun.cb.CheckoutFormBean

</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

<managed-property>

<property-name>firstName</property-name>

<value>Coffee</value>

</managed-property>

<managed-property>

<property-name>lastName</property-name>

<value>Lover</value>

</managed-property>

<managed-property>

<property-name>email</property-name>

<value>jane@home</value>

</managed-property>

...

</managed-bean>

<navigation-rule>

<from-view-id>/orderForm.jsp</from-view-id>

<navigation-case>

<from-outcome>checkout</from-outcome>

<to-view-id>/checkoutForm.jsp</to-view-id>

</navigation-case>

</navigation-rule>

As shown in the managed-bean element, the checkoutForm bean properties are initialized with
the values for the user, Coffee Lover. In this way, the hyperlink tag from orderForm is not
required to submit these values in the request parameters.

As shown in the navigation-rule element, when the String, checkout, is returned from a
method referred to by a component’s action attribute, the checkoutForm page displays.

Building, Packaging, Deploying, and Running the Coffee
Break Application

The source code for the Coffee Break application is located in the directory
tut-install/javaeetutorial5/examples/coffeebreak/. Within the cb directory are
subdirectories for each web application (cb, cb-saaj, and cb-jaxws) and a directory,
cb-common, for classes shared by the web applications. Each subdirectory contains a build.xml
file. The web application subdirectories in turn contain a src subdirectory for Java classes and
configuration files, and a web subdirectory for web resources.

Building, Packaging, Deploying, and Running the Coffee Break Application

Chapter 36 • The Coffee Break Application 1053

Setting the Port
The JAX-WS and SAAJ services in the Coffee Break application run at the port that you
specified when you installed the Application Server. The tutorial examples assume that the
Application Server runs on the default port, 8080. If you have changed the port, you must
update the port number in the following file before building and running the examples:

tut-install/javaeetutorial5/examples/coffeebreak/cb-common/src/com/sun/cb/common/
CoffeeBreak.properties

Update the port in the following URLs:

■ endpoint.url=http://localhost:8080/jaxws-coffee-supplier/jaxws

■ saaj.url=http://localhost:8080/saaj-coffee-supplier

Building, Packaging, and Deploying the JAX-WS
Coffee Supplier Service
To build the JAX-WS service and client library and to package and deploy the JAX-WS service
using NetBeans IDE, follow these steps:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to

tut-install/javaeetutorial5/examples/coffeebreak/.
3. Select the cb-jaxws folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. Right-click the cb-jaxws project and choose Build.
7. Right-click the cb-jaxws project and choose Undeploy and Deploy.

To build the JAX-WS service and client library and to package and deploy the JAX-WS service
using Ant, follow these steps:

1. In a terminal window, go to
tut-install/javaeetutorial5/examples/coffeebreak/cb-jaxws/.

2. Run ant. This task calls the default target, which compiles the source files of the JAX-WS
service.

3. Make sure the Application Server is running.
4. Deploy the JAX-WS service:

ant deploy

Building, Packaging, Deploying, and Running the Coffee Break Application

The Java EE 5 Tutorial • October 20081054

Building, Packaging, and Deploying the SAAJ Coffee
Supplier Service
To build the SAAJ service and client library and to package and deploy the SAAJ service using
NetBeans IDE, follow these steps:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to

tut-install/javaeetutorial5/examples/coffeebreak/.
3. Select the cb-saaj folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. Right-click the cb-saaj project and choose Build.
7. Right-click the cb-saaj project and choose Undeploy and Deploy.

To build the SAAJ service and client library and to package and deploy the SAAJ service using
Ant, follow these steps:

1. In a terminal window, go to
tut-install/javaeetutorial5/examples/coffeebreak/cb-saaj/.

2. Run ant. This task calls the default target, which creates the client library and compiles the
SAAJ service classes.

3. Make sure the Application Server is started.
4. Deploy the SAAJ service:

ant deploy

Building, Packaging, and Deploying the Coffee Break
Server
To build, package, and deploy the Coffee Break server using NetBeans IDE, follow these steps:

1. In NetBeans IDE, choose Open Project from the File menu.
2. In the Open Project dialog, navigate to

tut-install/javaeetutorial5/examples/coffeebreak/.
3. Select the cb folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. Right-click the cb project and choose Build.

Building, Packaging, Deploying, and Running the Coffee Break Application

Chapter 36 • The Coffee Break Application 1055

7. Right-click the cb project and choose Undeploy and Deploy.

To build, package, and deploy the Coffee Break server using Ant, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/coffeebreak/cb/.

2. Run ant. This task calls the default target, which compiles the server classes.

3. Make sure the Application Server is started.

4. Deploy the Coffee Break server:

ant deploy

Running the Coffee Break Client
After you have installed all the web applications, check that all the applications are running in
the Admin Console. You should see cb, cb-saaj, and cb-jaxws in the list of applications.

You can run the Coffee Break client by opening this URL in a web browser:

http://localhost:8080/cbserver/

A page appears with the following message:

Redirecting to CoffeeBreak demo...click here otherwise.

In a few seconds, you should see a page like the one shown in Figure 36–2.

Building, Packaging, Deploying, and Running the Coffee Break Application

The Java EE 5 Tutorial • October 20081056

After you have gone through the application screens, you will get an order confirmation that
looks like the one shown in Figure 36–3.

FIGURE 36–2 Order Form

Building, Packaging, Deploying, and Running the Coffee Break Application

Chapter 36 • The Coffee Break Application 1057

Removing the Coffee Break Application
To remove the Coffee Break application, perform the following steps:

1. Undeploy the JAX-WS service, SAAJ service, and the Coffee Break server using the Admin
Console or by running ant undeploy in their respective directories.

2. Stop the Application Server.

If you want to remove the build and dist directories, run ant clean in each directory,
including tut-install/javaeetutorial5/examples/coffeebreak/cb-common/.

FIGURE 36–3 Order Confirmation

Building, Packaging, Deploying, and Running the Coffee Break Application

The Java EE 5 Tutorial • October 20081058

The Duke’s Bank Application

This chapter describes the Duke’s Bank application, an online banking application. It covers the
following topics:

■ “Overview of the Duke’s Bank Application” on page 1059
■ “Enterprise Beans” on page 1060
■ “Application Client” on page 1066
■ “Web Client” on page 1068
■ “Building, Packaging, Deploying, and Running the Duke's Bank Application” on page 1077

Overview of the Duke’s Bank Application
Duke’s Bank has two clients: an application client used by administrators to manage customers
and accounts, and a web client used by customers to access account histories and perform
transactions. The web client is built using JavaServer Faces technology (see Chapter 10,
“JavaServer Faces Technology”). The clients access the customer, account, and transaction
information maintained in a database through enterprise beans. The Duke’s Bank application
demonstrates the way that many of the component technologies presented in this tutorial
(enterprise beans, application clients, and web components) are applied to provide a simple but
functional application.

Figure 37–1 gives a high-level view of how the components of the Duke's Bank application
interact.

37C H A P T E R 3 7

1059

Enterprise Beans
Let’s take a closer look at the access paths between the clients, enterprise beans, and database
tables. The end-user clients (web and application clients) access only the session beans. Within
the enterprise bean tier, the session beans use Java Persistence entities. On the back end of the
application, the entities access the database tables that store the entity states.

Note – The source code for these enterprise beans is in the
tut-install/javaeetutorial5/examples/dukesbank/src/com/sun/ebank/ejb/ directory.

Java EE Server

Web
Container

Account
List

Account
History

Transfer
Funds

ATM

EJB Container
Tx

Controller
Session

Bean

Account
Controller
Session

Bean

Customer
Controller
Session

Bean

Tx
Entity

Account
Entity

Customer
Entity

DB

Web Client

Application
Client

FIGURE 37–1 Duke's Bank Application

Enterprise Beans

The Java EE 5 Tutorial • October 20081060

Session Beans
The Duke’s Bank application has three session beans: AccountControllerBean,
CustomerControllerBean, and TxControllerBean. (Tx stands for a business transaction, such
as transferring funds.) These session beans provide a client’s view of the application’s business
logic. Hidden from the clients are the server-side routines that implement the business logic,
access databases, manage relationships, and perform error checking.

The AccountControllerBean Session Bean
The business methods of the AccountControllerBean session bean perform tasks that fall into
the following categories: creating and removing entities, managing the account-customer
relationship, and getting the account information.

The following methods create and remove entities:

■ createAccount

■ removeAccount

These methods of the AccountControllerBean session bean call the create and remove

methods of the Account entity. The createAccount and removeAccount methods throw
application exceptions to indicate invalid method arguments. The createAccount method
throws an IllegalAccountTypeException if the type argument is neither Checking, Savings,
Credit, nor Money Market. The createAccount method also looks up the specified customer
exists by invoking the EntityManager.find method. If the result of this verification is null, the
createAccount method throws a CustomerNotFoundException.

The following methods manage the account-customer relationship:

■ addCustomerToAccount

■ removeCustomerFromAccount

The Account and Customer entities have a many-to-many relationship. A bank account can be
jointly held by more than one customer, and a customer can have multiple accounts.

In the Duke’s Bank application, the addCustomerToAccount and removeCustomerFromAccount

methods of the AccountControllerBean session bean manage the account-customer
relationship. The addCustomerToAccount method, for example, starts by verifying that the
customer exists. To create the relationship, the addCustomerToAccount method first looks up
the Customer and Account entities using the EntityManager.find method, then it calls the
Account.addCustomer method to associate the customer with the account.

The following methods get the account information:

■ getAccountsOfCustomer

■ getDetails

Enterprise Beans

Chapter 37 • The Duke’s Bank Application 1061

The AccountControllerBean session bean has two get methods. The getAccountsOfCustomer
method returns all of the accounts of a given customer by invoking the getAccounts method of
the Account entity. Instead of implementing a get method for every instance variable, the
AccountControllerBean has a getDetails method that returns an object (AccountDetails)
that encapsulates the entire state of an Account entity. Because it can invoke a single method to
retrieve the entire state, the client avoids the overhead associated with multiple remote calls.

The CustomerControllerBean Session Bean
A client creates a Customer entity by invoking the createCustomer method of the
CustomerControllerBean session bean. To remove a customer, the client calls the
removeCustomer method, which invokes the EntityManager.remove method on the Customer
instance.

The CustomerControllerBean session bean has two methods that return multiple customers:
getCustomersOfAccount and getCustomersOfLastName. getCustomersOfAccount calls the
getCustomers method of the Account entity. getCustomersOfLastName uses the
Customer.FindByLastName named query to search the database for customers with a matching
last name, which is a named parameter to the query.

The TxControllerBean Session Bean
The TxControllerBean session bean handles bank transactions. In addition to its get methods,
getTxsOfAccount and getDetails, the TxControllerBean bean has several methods that
change the balances of the bank accounts:
■ withdraw

■ deposit

■ makeCharge

■ makePayment

■ transferFunds

These methods access an Account entity to verify the account type and to set the new balance.
The withdraw and deposit methods are for standard accounts, whereas the makeCharge and
makePayment methods are for accounts that include a line of credit. If the type method
argument does not match the account, these methods throw an
IllegalAccountTypeException. If a withdrawal were to result in a negative balance, the
withdraw method throws an InsufficientFundsException. If a credit charge attempts to
exceed the account’s credit line, the makeCharge method throws an
InsufficientCreditException.

The transferFunds method also checks the account type and new balance; if necessary, it
throws the same exceptions as the withdraw and makeCharge methods. The transferFunds
method subtracts from the balance of one Account instance and adds the same amount to
another instance. Both of these steps must complete to ensure data integrity. If either step fails,
the entire operation is rolled back and the balances remain unchanged. The transferFunds

Enterprise Beans

The Java EE 5 Tutorial • October 20081062

method, like all methods in session beans that use container-managed transaction demarcation,
has an implicit Required transaction attribute. That is, you don’t need to explicitly decorate the
method with a @TransactionAttribute annotation.

Java Persistence Entities
For each business entity represented in our simple bank, the Duke’s Bank application has a
matching Java Persistence API entity:

■ Account

■ Customer

■ Tx

The purpose of these entities is to provide an object view of these database tables:
bank_account, bank_customer, and bank_tx. For each column in a table, the corresponding
entity has an instance variable. Because they use the Java Persistence API, the entities contain no
SQL statements that access the tables. The enterprise bean container manages all data in the
underlying data source, including adding, updating, and deleting data from the database tables.

Unlike the session beans, the entities do not validate method parameters. The session beans
check the parameters and throw the application exceptions, such as
CustomerNotInAccountException and IllegalAccountTypeException. Consequently, if
some other application were to include these entities, its session beans would also have to
validate the method parameters. Validation code was not added to the entity’s methods, in
order to keep the business logic separate from the entity data.

Helper Classes
The EJB JAR files include several helper classes that are used by the enterprise beans. The source
code for these classes is in the following directory:

tut-install/javaeetutorial5/examples/dukesbank/dukesbank-ejb/src/java/com/sun/tutorial/
javaee/dukesbank/util/

Table 37–1 briefly describes the helper classes.

TABLE 37–1 Helper Classes for the Application’s Enterprise Beans

Class Name Description

AccountDetails Encapsulates the state of an Account instance. Returned by the getDetails
method of AccountControllerBean.

Enterprise Beans

Chapter 37 • The Duke’s Bank Application 1063

TABLE 37–1 Helper Classes for the Application’s Enterprise Beans (Continued)
Class Name Description

CustomerDetails Encapsulates the state of a Customer instance. Returned by the getDetails
method of CustomerControllerBean.

Debug Has simple methods for printing a debugging message from an enterprise bean.
These messages appear on the standard output of the Application Server when it’s
run with the --verbose option and in the server log.

DomainUtil Contains validation methods: getAccountTypes, checkAccountType, and
isCreditAccount.

TxDetails Encapsulates the state of a Tx instance. Returned by the getDetails method of
TxControllerBean.

Database Tables
A database table of the Duke’s Bank application can be categorized by its purpose: representing
business entities.

Tables Representing Business Entities
Figure 37–2 shows the relationships between the database tables. The bank_customer and
bank_account tables have a many-to-many relationship: A customer can have several bank
accounts, and each account can be owned by more than one customer. This many-to-many
relationship is implemented by the cross–reference table named
bank_customer_account_xref. The tables named bank_account and bank_tx have a
one-to-many relationship: A bank account can have many transactions, but each transaction
refers to a single account.

Enterprise Beans

The Java EE 5 Tutorial • October 20081064

Figure 37–2 uses several abbreviations. PK stands for primary key, the value that uniquely
identifies a row in a table. FK is an abbreviation for foreign key, which is the primary key of the
related table. Tx is short for transaction, such as a deposit or withdrawal.

Protecting the Enterprise Beans
In the Java EE platform, you protect an enterprise bean by specifying the security roles that can
access its methods. In the Duke’s Bank application, you define two roles, bankCustomer and
bankAdmin, because two categories of operations are defined by the enterprise beans.

A user in the bankAdmin role will be allowed to perform administrative functions: creating or
removing an account, adding a customer to or removing a customer from an account, setting a
credit line, and setting an initial balance. A user in the bankCustomer role will be allowed to
deposit, withdraw, and transfer funds, make charges and payments, and list the account’s
transactions. Notice that there is no overlap in functions that users in either role can perform.

The system restricts access to these functions to the appropriate role by setting method
permissions on selected methods of the CustomerControllerBean, AccountControllerBean,
and TxControllerBean enterprise beans. For example, by allowing only users in the bankAdmin
role to access the createAccount method in the AccountControllerBean enterprise bean, you
deny users in the bankCustomer role (or any other role) permission to create bank accounts.

Customer

customer_id (PK)
last_name
first_name
middle_initial
street
city
state
zip
phone
email

Account

account_id (PK)
type
description
balance
credit_line
begin_balance
begin_balance_
 time_stamp

Tx

tx_id (PK)
account_id (FK)
time_stamp
amount
balance
description

Customer_Account_Xref

customer_id (FK)
account_id (FK)

One Many

One

Many

One

Many

FIGURE 37–2 Database Tables

Enterprise Beans

Chapter 37 • The Duke’s Bank Application 1065

Application Client
Sometimes, enterprise applications use a stand-alone client application for handling tasks such
as system or application administration. For example, the Duke’s Bank application uses an
application client to administer customers and accounts. This capability is useful in the event
that the site becomes inaccessible for any reason or if a customer prefers to communicate things
such as changes to account information by phone.

The application client shown in Figure 37–3 handles basic customer and account
administration for the banking application through a Swing user interface. The bank
administrator can perform any of the following functions on the respective tabs.

FIGURE 37–3 Application Client

Application Client

The Java EE 5 Tutorial • October 20081066

Customer Info tab:

■ View customer information
■ Add a new customer to the database
■ Update customer information
■ Remove a customer
■ Find a customer’s ID

Account administration:

■ Create a new account
■ Add a new customer to an existing account
■ Remove a customer from an existing account
■ View account information
■ Remove an account from the database

Error and informational messages appear in the bottom under Messages.

The Classes and Their Relationships
The source code for the application client is in the following directory:

tut-install/javaeetutorial5/examples/dukesbank/dukesbank-appclient/src/java/com/sun/tutorial/
javaee/dukesbank/client/

The application client is consists of a single class: BankAdmin.

BankAdminClass
The BankAdmin class, which creates the user interface, is a Swing class that provides action
methods that are called when certain events occur in the application, and methods that call the
controller session beans. It was created using the NetBeans IDE Swing editor, Matisse.

Note – Although BankAdmin was written using NetBeans IDE, you do not need to have NetBeans
installed in order to run the application. If you want to alter the user interface, however, you do
need to use NetBeans IDE.

The BankAdminConstructor
The BankAdmin constructor creates the initial user interface, which consists of a menu bar, two
tabs, and a message pane, by calling the initComponents method. The menu bar contains the
standard File and Edit menus, the left tab is for viewing and updating customer information, the
right tab is for viewing and updating account information, and the message pane contains a
message area.

Application Client

Chapter 37 • The Duke’s Bank Application 1067

The initComponents method is automatically generated by NetBeans IDE. It creates all the user
interface elements visible in BankAdmin.

Class Methods
The BankAdmin class provides methods that other objects call when they need to update the user
interface. These methods are as follows:

■ setCustomerTextFields: When true enables the user to enter or change information in the
customer tab. When false, the fields are disabled.

■ fillCustomerTextFields: Uses a CustomerDetails object to display customer
information in the customer tab

■ clearCustomerTextFields: Clears the contents of the customer fields in the customer tab
■ setAccountTextFields: When true enables the user to enter or change information in the

account tab. When false, the fields are disabled.
■ fillAccountTextFields: Uses an AccountDetails object to display account information

in the account tab
■ clearAccountTextFields: Clears the contents of the account fields in the account tab
■ resetAll: Calls setCustomerTextFields and setAccountFields, setting all the fields to

disabled

The following methods interact with the controller session beans to create and update customer
and account information:

■ createAccount: uses an AccountDetails object to create a new account
■ updateAccount: uses an AccountDetails object to update an account information
■ createCustomer: uses a CustomerDetails object to create a new customer
■ updateCustomer: uses a CustomerDetails object to update a customer’s information

The UI-elementMouseReleased methods are linked to the GUI controls in BankAdmin. They call
the previous methods to enable/disable the GUI fields, and create/update accounts and
customers.

Web Client
In the Duke’s Bank application, the web client is used by customers to access account
information and perform operations on accounts. Table 37–2 lists the functions the client
supports, the JSP pages the customer uses to perform the functions, and the backing beans ad
other JavaBeans components that implement the functions.

Web Client

The Java EE 5 Tutorial • October 20081068

Note – The source code for the web client is in the
tut-install/javaeetutorial5/examples/dukesbank/dukesbank-war/ directory.

TABLE 37–2 Web Client

Function JSP Pages JavaBeans Components

Home page main.jsp CustomerBean

Log on to or off of the
application

logon.jsp

logonError.jsp

logoff.jsp

CustomerBean

List accounts accountList.jsp CustomerBean, AccountHistoryBean

List the history of an
account

accountHist.jsp CustomerBean, AccountHistoryBean

Transfer funds between
accounts

transferFunds.jsp

transferAck.jsp

CustomerBean, TransferBean

Withdraw and deposit
funds

atm.jsp

atmAck.jsp

CustomerBean, ATMBean

Error handling error.jsp none

Figure 37–4 shows an account history screen.

Web Client

Chapter 37 • The Duke’s Bank Application 1069

Design Strategies
The main job of the JSP pages in the Duke’s Bank application is presentation. They use
JavaServer Faces tags to represent UI components on the page, to bind the components to
server-side data stored in backing beans, and wire the components to event-handling code. To
maintain the separation of presentation and application behavior, most dynamic processing
tasks are delegated to enterprise beans, custom tags, and JavaBeans components, including
backing beans (see “Backing Beans” on page 310).

In the Duke’s Bank application, the JSP pages rely on backing beans and other JavaBeans
components for interactions with the enterprise beans. In the Duke’s Bookstore application,
discussed in Chapters Chapter 3, “Getting Started with Web Applications,” to “Including the
Classes, Pages, and Other Resources” on page 468, the BookDB JavaBeans component acts as a
front end to a database.

FIGURE 37–4 Account History

Web Client

The Java EE 5 Tutorial • October 20081070

In the Duke’s Bank application, CustomerBean acts as a facade to the enterprise beans. Through
it, the backing beans can invoke methods on the enterprise beans. For example,
TransferFundsBean can indirectly invoke the transferFunds method of the
TxControllerBean enterprise bean by first calling getTxController on CustomerBean then
calling transferFunds on the TxController interface.

The other backing beans have much richer functionality. ATMBean sets acknowledgment strings
according to customer input, and AccountHistoryBean massages the data returned from the
enterprise beans in order to present the view of the data required by the customer.

The web client uses a template mechanism implemented by custom tags (discussed in “A
Template Tag Library” on page 267) to maintain a common look across all the JSP pages. The
template mechanism consists of three components:

■ template.jsp determines the structure of each screen. It uses the insert tag to compose a
screen from subcomponents.

■ screendefinitions.jspf defines the subcomponents used by each screen. All screens have
the same banner, but different title and body content (specified in the JSP Pages column in
Table 37–2).

Finally, the web client uses logic tags from the JSTL core tag library to perform flow control and
tags from the JSTL fmt tag library to localize messages and format currency.

Client Components
All the JavaBeans components used in the web client are instantiated by the managed bean
facility (see “Configuring a Bean” on page 311) when they are encountered in the page, such as
when an EL expression references the component. The managed bean facility is configured in
the faces-config.xml file. The following managed-bean elements from the faces-config.xml
file specify how AccountHistoryBean and CustomerBean are to be instantiated and stored in
scope:

<managed-bean>

<managed-bean-name>accountHistoryBean</managed-bean-name>

<managed-bean-class>

com.sun.tutorial.javaee.dukesbank.web.AccountHistoryBean

</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

...

<managed-property>

<property-name>accountId</property-name>

<value>#{param.accountId}</value>

</managed-property>

<managed-property>

...

Web Client

Chapter 37 • The Duke’s Bank Application 1071

</managed-bean>

<managed-bean>

<managed-bean-name>customerBean</managed-bean-name>

<managed-bean-class>

com.sun.tutorial.javaee.dukesbank.web.CustomerBean

</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

As shown by the preceding configurations, an AccountHistoryBean instance is saved into
request scope under the name accountHistoryBean, and a CustomerBean instance is saved into
session scope under the name customerBean. EL expressions use these names to reference the
beans from a page. The managed bean configurations can also initialize bean properties with
values. As shown in the preceding configuration, the accountId property of
AccountHistoryBean is set to the expression #{param.accountId} when an instance of
AccountHistoryBean is created. This expression references the accountId variable in the
request parameter map. This is so that other pages in the application can pass the account ID to
AccountHistoryBean and therefore make it available to the accountHist.jsp page.

Responsibility for managing the enterprise beans used by the web client rests with
CustomerBean. It creates account and transaction controller enterprise beans and provides
methods for retrieving the beans.

When instantiated, the CustomerBean component uses @EJB annotations to inject references to
the enterprise beans. Because these enterprise beans apply to a particular customer or session,
CustomerBean is stored in session.

public class CustomerBean {

@EJB

private AccountController accountController;

@EJB

private TxController txController;

...

}

CustomerBean also does the following:

■ Maintains the customer ID
■ Retrieves the list of accounts from the database
■ Gets detailed information about a particular account
■ Invalidates a session to allow a customer to log out.

Because CustomerBean is in session, it is a convenient place to keep account information so that
the backing beans and their associated pages can pass this information between themselves.

Web Client

The Java EE 5 Tutorial • October 20081072

The page fragment template/links.jsp generates the list of bank function links at the top of
every page. Notice that the customer is retrieved from the userPrincipal object, which is set
when the customer logs in (see “Protecting the Web Client Resources” on page 1075). After the
customer is set, the page can retrieve the collection of accounts from CustomerBean.

As shown by the following code from links.jsp, the ID of the first account in the collection of
accounts is set into request scope. The setPropertyActionListener tag is nested inside the
commandLink tag, which represents the hyperlink that launches the atm.jsp page. This
setPropertyActionListener tag causes the account ID to be set in request scope when the
hyperlink is clicked.

...

<c:set var="accountId" scope="request"
value="${customerBean.accounts[0].accountId}"/>

<h:commandLink value="#{bundle.ATM}" action="atm">
<f:setPropertyActionListener

target="#{requestScope.accountId}"
value="#{customerBean.accounts[0].accountId}"/>

</h:commandLink>

...

Request Processing
When a user clicks on a button or a hyperlink, the application navigates to a new page or reloads
the current page. Navigation to all pages listed in Table 37–2 is configured in the
web/WEB-INF/faces-config.xml file using a set of navigation rules.

As described in “Configuring Navigation Rules” on page 453, the JavaServer Faces navigation
mechanism matches a logical outcome String or an action method to one of the navigation
rules to determine which page to open next. The button or hyperlink that the user clicks
specifies the logical outcome String or action method with its action attribute.

Although it’s not necessary to do so, the web client of Duke’s Bank uses an Java SE Enum class to
encapsulate all the possible logical outcomes for the application:

public enum Navigation {

main,

accountHist,

accountList,

atm,

atmAck,

transferFunds,

transferAck,

error,

logout;

Web Client

Chapter 37 • The Duke’s Bank Application 1073

public Object action() {

return this;

}

}

If you are not familiar with enums, see
http://java.sun.com/javase/6/docs/technotes/guides/language/enums.html.

A managed bean is needed to expose the enum to the expression language so that a page can
access its logical outcomes. In this case, the Navigation enum class is accessed through the
NavigationEnumBean:

public class NavigationEnumBean extends EnumManagedBean {

public NavigationEnumBean() {

super(Util.Navigation.class);

}

}

NavigationEnumBean extends a special bean class that includes a method to return an enum
constant, which represents a logical outcome:

public Enum getEnum(String enumName) {

return Enum.valueOf(e, enumName);

}

The application also includes a custom EL resolver, EnumResolver, which resolves expressions
that reference an instance of this bean class. You create a resolver if you want expressions to
particular kinds of objects resolved in a special way that is not already supported by the EL
mechanism. See “Resolving Expressions” on page 160 for more information on EL resolvers.

The resolver calls the bean’s getEnum method from its getValue method to return the enum
constant:

public Object getValue(ELContext elContext, Object base, Object property) {

if ((base != null && property != null)

&& base instanceof EnumManagedBean) {

elContext.setPropertyResolved(true);

return

((EnumManagedBean)base)

.getEnum(property.toString());

}

return null;

}

A tag’s action attribute references a particular constant of the enum to specify a logical
outcome. The following commandLink tag appears on the links.jsp page:

<h:commandLink value="#{bundle.Logoff}"
action="#{navigation.logout.action}"/>

Web Client

The Java EE 5 Tutorial • October 20081074

http://java.sun.com/javase/6/docs/technotes/guides/language/enums.html

The action attribute has the expression #{navigation.logout.action} to invoke the action
method of the Navigation enum. This returns the enum constant, representing the logical
outcome, logout.

The following piece of a navigation rule configuration in the faces-config.xml file
corresponds to the action attribute expression of the preceding commandLink tag. It causes the
logoff.jsp page to open if the logout logical outcome is returned.

<navigation-rule>

...

<navigation-case>

<description>

Any action that returns "logout" should go to the

logoff page and invalidate the session.

</description>

<from-action>logout</from-action>

<to-view-id>/logoff.jsp</to-view-id>

</navigation-rule>

When a page in the application is rendered, it is constructed with the aid of a template
mechanism. Every page includes the template.jsp page, which in turn includes certain
subcomponents, such as banner.jsp, into the page depending on which page is being rendered.
The screendefinitions.jspf page, included in template.jsp, determines which page to
render based on the current view ID, which identifies the UI component tree that represents the
page to be rendered. The screendefinitions.jspf page accesses the view ID with this
expression from its definition tag:

<tt:definition name="bank"
screen="${facesContext.viewRoot.viewId}">

Based on the view ID, the templating mechanism will include specific components into the
page.

Protecting the Web Client Resources
In the JavaEE platform, you protect a web resource from anonymous access by specifying which
security roles can access the resource. The web container guarantees that only certain users
acting in those roles can access the resource. For the web container to enforce the security
constraint, the application must specify a means for users to identify themselves, and the web
container must support mapping a role to a user.

In the Duke’s Bank web client, you restrict all the URLs listed in Table 37–2 to the security role
bankCustomer. The application requires users to identify themselves by means of the
form-based login mechanism. When a customer tries to access a web client URL and has not
been authenticated, the web container displays the JSP page logon.jsp. This page contains an

Web Client

Chapter 37 • The Duke’s Bank Application 1075

HTML form that requires a customer to enter an identifier and password. This form is rendered
by a JavaServer Faces custom component. A custom tag represents the component on the page.
In the following piece of logon.jsp, the <db:formBasedLogin> tag represents the custom
component:

<f:view>

...

<h:outputText value="#{bundle.Logon}"/>
<h:outputText value="#{bundle.Submit}"/>.</h3>

<db:formBasedLogin />

</f:view>

Note that there is no h:form tag. This is because the custom component renders the form tag
along with the complete HTML form that customers use to log in:

<form action="j_security_check" method=post>

<table>

<tr>

<td align="center" >

<table border="0">
<tr>

<td><fmt:message key="CustomerId"/></td>
<td>

<input type="text" size="15" name="j_username">
</td>

</tr>

<tr>

<td><fmt:message key="Password"/></td>
<td>

<input type="password" size="15" name="j_password">
</td>

...

</form>

Note that the action invoked by the form, j_security_check, is specified by the Java Servlet
specification, as are the request parameters j_username and j_password. The web container
retrieves this information, maps it to a security role, and verifies that the role matches that
specified in the security constraint. In order for the web container to check the validity of the
authentication information and perform the mapping, you must perform these two steps when
you deploy the application:

1. Add the customer’s group, ID, and password to the default realm of the container using the
Admin Console.

2. Map the bankCustomer role to the customer or the customer’s group in the deployment
descriptor.

Web Client

The Java EE 5 Tutorial • October 20081076

After the customer has been authenticated, the identifier provided by the customer is used as a
key to identify the customer’s accounts. The identifier is retrieved from the FacesContext
object by the CustomerBean constructor, which saves it into the customerId property:

customerId = Long.parseLong(FacesContext.getCurrentInstance()

.getExternalContext().getUserPrincipal().getName());

Building, Packaging, Deploying, and Running the Duke's Bank
Application

To build the Duke’s Bank application, you must have installed the tutorial bundle as described
in . When you install the bundle, the Duke’s Bank application files are located in the
tut-install/javaeetutorial5/examples/dukesbank/ directory. This directory contains the
configuration files for creating the EAR, dukesbank.ear. The EAR consists of the following
three modules:

■ dukesbank-appclient: The application client
■ dukesbank-ejb: The enterprise beans and persistence entities
■ dukesbank-war: The web client

After you build the source code, all the sub-modules will be built into their respective module
packages, and the resulting EAR file will reside in the
tut-install/javaeetutorial5/examples/dukesbank/dist/ directory.

Setting Up the Servers
Before you can package, deploy, and run the example, you must first set up the Java DB database
server with customer and account data, and you must add some resources to the Application
Server.

Starting the Application Server
Before you can start this tutorial, the Application Server must be running. For information on
starting the Application Server, see “Starting and Stopping the Application Server” on page 69.

Creating the Bank Database in NetBeans IDE
To create the database tables used in Duke’s Bank, follow the instructions in “Creating the
Database Tables in NetBeans IDE” on page 724.

Building, Packaging, Deploying, and Running the Duke's Bank Application

Chapter 37 • The Duke’s Bank Application 1077

Creating the Bank Database Using Ant
In Duke’s Bank, the database tables will be created and populated before deploying the
application. This happens automatically when you run the deploy task. You can manually reset
the database to its original state by following these steps:

1. In a terminal window or command prompt, go to the
tut-install/javaeetutorial5/examples/dukesbank/ directory.

2. Execute the following command:

ant create-tables

This task executes the SQL commands contained in
tut-install/javaeetutorial5/examples/common/sql/javadb/tutorial.sql. The SQL
commands delete any existing tables, create new tables, and insert the initial data in the tables.

Adding Users and Groups to the File Realm
To enable the Application Server to determine which users can access enterprise bean methods
and resources in the web client, add users and groups to the server’s file security realm using the
Admin Console following the procedures described in “Managing Users and Groups on the
Application Server” on page 783. Add the users and groups listed in Table 37–3.

TABLE 37–3 Duke’s Bank Users and Groups

User Password Group

200 javaee bankCustomer

bankadmin javaee bankAdmin

Building, Packaging, and Deploying Duke’s Bank
Using NetBeans IDE
Follow these instructions to build, package, deploy, and run the Duke’s Bank example
application to your Application Server instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.
2. In the Open Project dialog, navigate to tut-install/javaeetutorial5/examples/.
3. Select the dukesbank folder.
4. Select the Open as Main Project and Open Required Projects check boxes.
5. Click Open Project.
6. In the Projects tab, right-click the dukesbank project and select Undeploy and Deploy.

You will see the output in the Output tab.

Building, Packaging, Deploying, and Running the Duke's Bank Application

The Java EE 5 Tutorial • October 20081078

Building, Packaging, and Deploying Duke’s Bank
Using Ant
To compile and package the enterprise beans, application client, and web client into
dukesbank.ear, go to the tut-install/javaeetutorial5/examples/dukesbank/ directory of the
tutorial distribution and execute the command:

ant

Run the following command to deploy dukesbank.ear:

ant deploy

This task calls the create-tables task to initialize the database tables.

Running the Duke's Bank Application Client Using
NetBeans IDE
To run the application client in NetBeans IDE, follow these steps:

1. In NetBeans IDE, select the dukesbank project in the Projects pane.
2. Right-click dukesbank and select Run.
3. At the login prompts, type bankadmin for the user name and javaee for the password. You

should see the application client, as shown in Figure 37–5.
You can now create customers and accounts using the application client.

Running the Duke's Bank Application Client Using Ant
To run the application client, follow these steps:

1. In a terminal window, go to tut-install/javaeetutorial5/examples/dukesbank/.
2. Enter the following command:

ant run

3. At the login prompts, type bankadmin for the user name and javaee for the password. You
should see the application client, as shown in Figure 37–5.
You can now create customers and accounts using the application client.

Building, Packaging, Deploying, and Running the Duke's Bank Application

Chapter 37 • The Duke’s Bank Application 1079

Running the Duke's Bank Web Client
To run the web client, follow these steps:

1. Open the bank URL, http://localhost:8080/bank/main.faces, in a web browser.

2. The application displays the login page. Enter 200 for the customer ID and javaee for the
password. Click Submit.

3. Select an application function: Account List, Transfer Funds, ATM, or Logoff. When you
have a list of accounts, you can get an account history by selecting an account link.

Note – The first time you select a new page, particularly a complicated page such as an
account history, it takes some time to display because the Application Server must translate
the page into a servlet class and compile and load the class.

FIGURE 37–5 BankAdminApplication Client

Building, Packaging, Deploying, and Running the Duke's Bank Application

The Java EE 5 Tutorial • October 20081080

If you select Account List, you will see the screen shown in Figure 37–6.

FIGURE 37–6 Account List

Building, Packaging, Deploying, and Running the Duke's Bank Application

Chapter 37 • The Duke’s Bank Application 1081

1082

Appendixes
Part Eight contains appendixes.

P A R T V I I I

1083

1084

Java Encoding Schemes

This appendix describes the character-encoding schemes that are supported by the Java
platform.

US-ASCII

US-ASCII is a 7-bit character set and encoding that covers the English-language alphabet. It is
not large enough to cover the characters used in other languages, however, so it is not very
useful for internationalization.

ISO-8859-1

ISO-8859-1 is the character set for Western European languages. It’s an 8-bit encoding scheme
in which every encoded character takes exactly 8 bits. (With the remaining character sets, on the
other hand, some codes are reserved to signal the start of a multibyte character.)

UTF-8

UTF-8 is an 8-bit encoding scheme. Characters from the English-language alphabet are all
encoded using an 8-bit byte. Characters for other languages are encoded using 2, 3, or even 4
bytes. UTF-8 therefore produces compact documents for the English language, but for other
languages, documents tend to be half again as large as they would be if they used UTF-16. If the
majority of a document’s text is in a Western European language, then UTF-8 is generally a
good choice because it allows for internationalization while still minimizing the space required
for encoding.

UTF-16

UTF-16 is a 16-bit encoding scheme. It is large enough to encode all the characters from all the
alphabets in the world. It uses 16 bits for most characters but includes 32-bit characters for
ideogram-based languages such as Chinese. A Western European-language document that uses
UTF-16 will be twice as large as the same document encoded using UTF-8. But documents
written in far Eastern languages will be far smaller using UTF-16.

AA P P E N D I X A

1085

Note – UTF-16 depends on the system’s byte-ordering conventions. Although in most systems,
high-order bytes follow low-order bytes in a 16-bit or 32-bit “word,” some systems use the
reverse order. UTF-16 documents cannot be interchanged between such systems without a
conversion.

Further Information about Character Encoding
The character set and encoding names recognized by Internet authorities are listed in the IANA
character set registry at http://www.iana.org/assignments/character-sets.

The Java programming language represents characters internally using the Unicode character
set, which provides support for most languages. For storage and transmission over networks,
however, many other character encodings are used. The Java 2 platform therefore also supports
character conversion to and from other character encodings. Any Java runtime must support
the Unicode transformations UTF-8, UTF-16BE, and UTF-16LE as well as the ISO-8859-1
character encoding, but most implementations support many more. For a complete list of the
encodings that can be supported by the Java 2 platform, see
http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html.

Further Information about Character Encoding

The Java EE 5 Tutorial • October 20081086

http://www.iana.org/assignments/character-sets
http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

Preparation for Java EE Certification Exams

Sun Microsystems provides certification examinations for Solaris administrators and different
types of Java programmers. Sun also offers a learning path, consisting of training classes and
practice exams, for each type of certification.

The Java EE learning path focuses on providing Java EE training for architects and for Web
component, business component, and integration developers. Java EE training can lead to one
of three certifications: Sun Certified Web Component Developer (SCWCD), Sun Certified
Business Component Developer (SCBCD), or Sun Certified Enterprise Architect (SCEA).

You can use the Java EE Tutorial as preparation for the certification exams. This appendix
provides details about how the sections of the exams map to chapters of the tutorial. Exam
objectives change over time, and potential certification candidates should check
http://www.sun.com/training/certification/ for the most up-to-date list of certification
exam objectives.

Note – This tutorial is not intended as a primer for the certification exams: it does not cover
every subject to the depth that will be on the exam. The links below are presented so that you
can use this tutorial as one of many sources for exam preparation.

This appendix provides information relating to the following certification exam: “CX-310-083:
Sun Certified Web Component Developer” on page 1088.

This appendix also provides information relating to the following course: “SL-351–EE5:
Business Component Development with Enterprise JavaBeans Technology” on page 1088.

BA P P E N D I X B

1087

http://www.sun.com/training/certification/

CX-310-083: Sun Certified Web Component Developer
The certification exam, CX-310-083: Sun Certified Web Component Developer, is for Sun
Certified Programmers (any edition) who are using the Java Servlet technology and JavaServer
Pages (JSP) application program interface (APIs) to develop Web applications.

TABLE B–1 Mapping from CX-310-083 Sections to Tutorial Chapters

Course Section Tutorial Chapters

Section 1: The Servlet Technology Model Chapter 4, “Java Servlet Technology”

Section 2: The Structure and Deployment of Web
Applications

Chapter 3, “Getting Started with Web Applications”

Section 3: The Web Container Model Chapter 3, “Getting Started with Web Applications”

Chapter 4, “Java Servlet Technology”

Section 4: Session Management Chapter 3, “Getting Started with Web Applications”

Chapter 4, “Java Servlet Technology”

Chapter 5, “JavaServer Pages Technology”

Section 5: Web Application Security Chapter 30, “Securing Web Applications”

Section 6: The JavaServer Pages (JSP) Technology
Model

Chapter 5, “JavaServer Pages Technology”

Section 8: Building JSP Pages Using Standard Actions Chapter 5, “JavaServer Pages Technology”

Section 9: Building JSP Pages Using Tag Libraries Chapter 7, “JavaServer Pages Standard Tag Library”

Section 10: Building a Custom Tag Library Chapter 8, “Custom Tags in JSP Pages”

SL-351–EE5: Business Component Development with
Enterprise JavaBeansTM Technology

The course SL-351: Business Component Development with Enterprise JavaBeans Technology
provides students with advanced concepts and skills in designing, developing, and deploying
EJB applications for the business tier.

CX-310-083: Sun Certified Web Component Developer

The Java EE 5 Tutorial • October 20081088

http://www.sun.com/training/catalog/courses/CX-310-083.xml
http://www.sun.com/training/catalog/courses/SL-351-EE5.xml

TABLE B–2 Mapping from SL-351 Modules to Tutorial Chapters

Course Module Tutorial Chapters

Module 1: Examine EJB Applications Chapter 20, “Enterprise Beans”

Chapter 21, “Getting Started with Enterprise Beans”

Module 3: Examine session beans Chapter 21, “Getting Started with Enterprise Beans”

Chapter 22, “Session Bean Examples”

Module 4: Examine Java Persistence API Chapter 24, “Introduction to the Java Persistence API”

Chapter 26, “Persistence in the EJB Tier”

Module 5: Model data association relationships using
persistence entities

Chapter 24, “Introduction to the Java Persistence API”

Chapter 26, “Persistence in the EJB Tier”

Module 6: Model inheritance and composition
relationships using persistence entities

Chapter 24, “Introduction to the Java Persistence API”

Chapter 26, “Persistence in the EJB Tier”

Module 7: Examine the Java Persistence query
language

Chapter 24, “Introduction to the Java Persistence API”

Chapter 27, “The Java Persistence Query Language”

Module 8: Examine Java Messaging API Chapter 31, “The Java Message Service API”

Chapter 32, “Java EE Examples Using the JMS API”

Module 9: Examine message-driven beans Chapter 20, “Enterprise Beans”

Chapter 23, “A Message-Driven Bean Example”

Module 11: Examine EJB transactions Chapter 20, “Enterprise Beans”

Chapter 33, “Transactions”

Module 12: Examine exception handling in an EJB
application

Chapter 20, “Enterprise Beans”

Module 13: Use timer services Chapter 22, “Session Bean Examples”

Module 14: Examine Java EE security Chapter 28, “Introduction to Security in the Java EE
Platform”

Chapter 29, “Securing Java EE Applications”

SL-351–EE5: Business Component Development with Enterprise JavaBeansTM Technology

Appendix B • Preparation for Java EE Certification Exams 1089

1090

About the Authors

Java Architecture for XML Binding

Eric Jendrock is a staff writer at Sun Microsystems, where he leads the Java EE Tutorial and the
Java WSIT Tutorial. Previously, he documented middleware products and standards.
Currently, he writes about the Java Web Services Interoperability Technologies, the Java
Architecture for XML Binding (JAXB), and security in the Java EE platform.

JavaServer Faces Technology, Web-Tier Technologies

Jennifer Ball is a staff writer at Sun Microsystems, where she documents JavaServer Faces
technology. Previously she documented the Java2D API, deploytool, and JAXB. She holds an
M.A. degree in Interdisciplinary Computer Science from Mills College.

Security

Debbie Carson is a staff writer at Sun Microsystems, where she documents the Java EE, Java SE,
and Java Web Services Interoperability Technologies platforms. In previous positions she
documented creating database applications using C++ and Java technologies and creating
distributed applications using Java technology.

Java API for XML Web Services, Enterprise JavaBeans Technology, Java Persistence API

Ian Evans is a staff writer at Sun Microsystems, where he documents the Java EE and Java Web
Services platforms and edits the Java EE platform specifications. In previous positions he
documented programming tools, CORBA middleware, and Java application servers, and taught
classes on UNIX, web programming, and server-side Java development.

Streaming API for XML, Java Architecture for XML Binding

Scott Fordin is a senior staff writer, illustrator, and online help specialist in the Java and XML
Technology groups at Sun Microsystems. He has written numerous articles on Java, XML, and
web service technologies. Scott has also written many developer guides, administrator guides,
user guides (including the JAXB User’s Guide), specifications, white papers, and tutorials for a

CA P P E N D I X C

1091

wide range of products. Some of his most recent work includes writing about the StAX APIs,
Application Server troubleshooting, and Application Server error messages.

SOAP with Attachments API for Java, Java Message Service API

Kim Haase is a staff writer at Sun Microsystems, where she documents the Java EE platform and
Java Web Services. In previous positions she documented compilers, debuggers, and
floating-point programming. She currently writes about the Java Message Service, the Java API
for XML Registries, SOAP with Attachments API for Java, the Java DB database, and Service
Registry.

About the Authors

The Java EE 5 Tutorial • October 20081092

Index

Numbers and Symbols
@DeclareRoles annotation, 803, 804, 806, 808, 817,

843, 844
@DenyAll annotation, 809, 817
@EmbeddedId annotation, 690
@Entity annotation, 687
@Id annotation, 690
@IdClass annotation, 690
@Local annotation, 641, 660
@ManyToMany annotation, 692
@ManyToOne annotation, 692
@MessageDriven annotation, 969
@NamedQuery annotation, 701
@OneToMany annotation, 692, 693
@OneToOne annotation, 692, 693
@PermitAll annotation, 809, 817
@PersistenceContext annotation, 698
@PersistenceUnit annotation, 699
@PostActivate annotation, 661, 662-663
@PostConstruct annotation, 643-646
@PostConstruct annotation, 661, 662-663
@PostConstruct method, session beans using

JMS, 968
@PreDestroy annotation, 643-646
@PreDestroy annotation, 661, 662-663
@PreDestroy method, session beans using JMS, 968
@PrePassivate annotation, 661, 662-663
@Remote annotation, 641, 660
@Remove annotation, 644
@Remove annotation, 661, 664
@Resource annotation, 1012, 1013-1016

JMS resources, 678, 904, 905

@RolesAllowed annotation, 806, 808, 809, 817
@RunAs annotation, 816, 817
@Stateful annotation, 660
@Timeout annotation, 671
@Timeout method, 672
@Transient annotation, 689
@WebMethod annotation, 663
@XmlAccessorOrder annotation, 498, 540-542

defined on class, 540
defined on package, 540

@XmlAnyAttribute annotation, 501
@XmlAnyElement annotation, 501
@XmlAttachmentRef annotation, 502
@XmlAttribute annotation, 501, 545-546

defining property or field as XML attribute, 545-546
where to set annotation, 546

@XmlElement annotation, 500
@XmlElementDecl annotation, 502
@XmlElementRef annotation, 500
@XmlElementRefs annotation, 500
@XmlElements annotation, 500
@XmlElementWrapper annotation, 501
@XmlEnum annotation, 499
@XmlEnumValue annotation, 499
@XmlID annotation, 501
@XmlIDREF annotation, 501
@XmlInlineBinaryData annotation, 502
@XmlJavaTypeAdapter annotation, 502, 542-545

associating XmlAdapter implementation with
Target type, 543

@XmlJavaTypeAdapters annotation, 503
@XmlList annotation, 501

1093

@XmlMimeType annotation, 502
@XmlMixed annotation, 502
@XmlRootElement annotation, 499, 500, 546-547
@XmlSchema annotation, 498, 547-548
@XmlSchemaType annotation, 498

customizing mapping of property/field to XML
built-in type, 547-548

@XmlSchemaTypes annotation, 498
@XmlTransient annotation, 501
@XmlType annotation, 499, 540-541

mapping class or enum type to XML Schema
type, 548-550

@XmlType.propOrder annotation, 540-542
defined on class, 542

@XmlValue annotation, 501

A
abstract schemas

defined, 735
types, 735

access control, 772
acknowledge method, 939
acknowledging messages., See message

acknowledgment
action events, 306-307, 309, 339, 397-400

ActionEvent class, 397
ActionListener registration, 363
and UICommand component, 338
handling events of custom UI components, 431

ActionEvent method, 399
actionListener attribute, 373

and backing bean methods, 373
and JSP pages, 417
and UICommand component, 338
handling events of custom UI components, 431
referencing methods that handle action

events, 374
ActionListener class, 363-364, 398

invoke application phase, 318
ActionListener implementation, 399-400
actionListener tag, 327, 363-364, 413
processAction(ActionEvent) method, 399

action events (Continued)
referencing methods that handle action
events, 374-375, 408
writing a backing-bean method to handle action

events, 408
action method, 308
addChildElement method, 596
addTextNode method, 596
Admin Console, 64

starting, 70
administered objects, JMS, 903-905

See also connection factories, destinations
definition, 899

annotations
@DeclareRoles, 803, 804, 806, 808, 843, 844
@DenyAll, 809
@PermitAll, 809
@RolesAllowed, 806, 808, 809
@RunAs, 816
@XmlAccessorOrder, 498, 540-542
@XmlAnyAttribute, 501
@XmlAnyElement, 501
@XmlAttachmentRef, 502
@XmlAttribute, 501, 545-546
@XmlElement, 500
@XmlElementDecl, 502
@XmlElementRef, 500
@XmlElementRefs, 500
@XmlElements, 500
@XmlElementWrapper, 501
@XmlEnum, 499
@XmlEnumValue, 499
@XmlID, 501
@XmlIDREF, 501
@XmlInlineBinaryData, 502
@XmlJavaTypeAdapter, 502, 542-545
@XmlJavaTypeAdapters, 503
@XmlList, 501
@XmlMimeType, 502
@XmlMixed, 502
@XmlRootElement, 499, 500, 546-547
@XmlSchema, 498, 547-548
@XmlSchemaType, 498, 547-548
@XmlSchemaTypes, 498

Index

The Java EE 5 Tutorial • October 20081094

annotations (Continued)
@XmlTransient, 501
@XmlType, 499, 540-541, 548-550
@XmlType.propOrder, 540-542
@XmlValue, 501
deployment descriptors, 805, 851-853
enterprise bean security, 817, 842
security, 777-778, 799, 841

web applications, 841
anonymous role, 822
Ant tool, 69

building examples, 72-73
appclient tool, 64
applet containers, 50
applets, 45, 47
application client containers, 50
application clients, 45, 650

Duke’s Bank, 1066, 1067
classes, 1067
running, 1079

examples, 651, 678
JAR files, 650
securing, 834-835

Application Server
adding users to, 783-784
creating data sources, 98
creating mail sessions, 1018
downloading, 68
enabling debugging, 74
installation tips, 68
securing, 779
server logs, 73-74
SSL connectors, 787
starting, 69
stopping, 70
tools, 64

applications, security, 774
asadmin tool, 64
asant tool, 64
asynchronous message consumption, 902

See also message-driven beans
JMS client example, 922-928

AttachmentPart class, 591, 603-606
creating objects, 604-605

AttachmentPart class (Continued)
headers, 604

attachments, 590-591
adding, 603-606
SAAJ example, 624-626

attributes
SOAP envelope, 597
SOAP header, 607-610
XML elements, 606-610

attributes referencing backing bean methods, 373
action attribute, 373

and backing bean methods, 373
and commandButton tag, 295
and navigation, 374
invoke application phase, 318

actionListener attribute, 373, 374
validator attribute, 373, 375
valueChangeListener attribute, 373, 375

audit modules, pluggable, 779
auditing, 773
auth-constraint element, 785
authentication, 772-773, 779, 787, 1025

basic, 862
example, 888-894

client, 795-797
entities, 869
form-based

example, 870-879
mutual, 795-797
web resources

Duke’s Bank, 1075
form-based, 863
HTTP basic, 862, 870-879
SSL protection, 874, 882

authorization, 772-773, 779, 1025
authorization constraint, 785
authorization providers, pluggable, 779
AUTO_ACKNOWLEDGE mode, 939

B
backing bean methods, 373, 406

attributes referencing
See attributes referencing backing bean methods

Index

1095

backing bean methods (Continued)
referencing

See referencing backing bean methods
writing

See writing backing bean methods
backing bean properties, 310, 313, 358, 367

bound to component instances, 390-391
properties for UISelectItems composed of

SelectItem instances, 388
UIData properties, 384-385
UIInput and UIOutput properties, 383
UISelectBoolean properties, 385
UISelectItems properties, 387-389
UISelectMany properties, 385-386
UISelectOne properties, 386-387

backing beans, 310-313
conversion model, 305
custom component alternative, 413
developing, 298
event and listener model, 306
method binding

See method binding
methods

See backing bean methods
properties

See backing bean properties
value binding

See value binding
bean-managed transactions, 961

See transactions, bean-managed
binding runtime framework, 492
BLOBs, See persistence, BLOBs
BodyTag interface, 278
BodyTagSupport class, 278
BufferedReader class, 110
business interfaces

examples, 648
locating, 652

business logic, 633
business methods, 639, 651, 652

client calls, 663
exceptions, 664
requirements, 663
transactions, 1003, 1005, 1006, 1007

BytesMessage interface, 911

C
call method, 591-592, 592, 599
CallbackHandler interface, 834
capture-schema tool, 64
CCI, See J2EE Connector architecture, CCI
CDATA events, 568
certificate authority, 790
Certificate Signing Request

security certificates
digitally-signed, 793

certificates, 774
client

generating, 795-797
digital, 775, 790-794

managing, 791
signing, 793

server, 793-794
generating, 791-793

using for authentication, 784
character encodings, 475, 1085

ISO 8859, 475
ISO-8859-1, 1085
US-ASCII, 1085
UTF-16, 1085
UTF-8, 475, 1085

character sets, 474
IANA registry, 1086
Unicode, 474
US-ASCII, 474

classic tags, 278
tag handlers, 225, 278

defining variables, 284
how invoked, 279
life cycle, 279
methods, 279
shared objects, 282-284
variable availability, 284
with bodies, 280

CLIENT_ACKNOWLEDGE mode, 939
client applications, JMS, 913-937

packaging, 917-918, 924-925

Index

The Java EE 5 Tutorial • October 20081096

client applications, JMS (Continued)
running, 919-922, 925-928
running on multiple systems, 933-937

client certificates, generating, 795-797
client ID, for durable subscriptions, 945
clients

authenticating, 795-797, 865-867
securing, 834-835

CLOBs, See persistence, CLOBs
close method, 599
Coffee Break, 1031-1058

building, packaging, and deploying, 1053-1058
JavaBeans components, 1033-1034, 1050-1052
JavaServer Faces server resource

configuration, 1052-1053
JAX-WS client, 1051
JAX-WS service, 1033-1034
JSP pages, 1048-1050
removing, 1058
running, 1056-1057
SAAJ client, 1035-1041, 1051
SAAJ service, 1034-1047
server, 1048-1053
server interaction, 1032
setting service port numbers, 1054
shared files, 1033
web service, 1033-1034

commit method, 1005
commit method (JMS), 949-956
commits, See transactions, commits
component binding, 313, 367, 371, 382

binding attribute
external data sources, 367
to a bean property, 371
value expressions, 313

component-managed sign-on, 836
component rendering model, 299, 302

decode method, 426
ActionListener registration, 363
apply request values phase, 316
conversion model, 396
handling events of custom UI components, 431

decoding, 413, 421
delegated implementation, 413

component rendering model (Continued)
direct implementation, 413
encode method, 397
encodeBegin method, 424
encodeChildren method, 424
encodeEnd method, 424, 429
encoding, 413, 421
HTML render kit, 436, 457
render kit, 302
renderer, 411
Renderer class, 302, 363
Renderer implementation, 457
RenderKit class, 302
RenderKit implementation, 457

concurrent access, 999
confidentiality, 787
configuring beans, 441-450
configuring JavaServer Faces applications, 288

Application class, 440
application configuration resource files, 439-440

backing beans, 298-299
commandButton tag, 338
conversion model, 358
error message registration, 400
navigation model, 308, 374
value binding, 368-369

Application instance, 393, 402
configuring beans

See configuring beans
configuring navigation rules

See configuring navigation rules
faces-config.xml files, 454
including the classes, pages, and other

resources, 468
including the required JAR files, 468
javax.faces.application.CONFIG_FILES context

parameter, 440
registering custom converters

See registering custom converters
registering custom renderers, 429

See registering custom renderers
registering custom UI components

See registering custom UI components

Index

1097

configuring JavaServer Faces applications (Continued)
registering custom validators

See registering custom validators
registering messages

See registering messages
restricting access to JavaServer Faces

components, 465-466
specifying a path to an application configuration

resource file, 463-464
specifying where UI component state is saved, 428,

464
turning on validation of XML files, 466-467
validateXML context parameter, 466
verifying custom objects, 467

configuring navigation rules, 453-456
from-action element, 455
from-view-id element, 455
navigation-case element, 454, 456
navigation-rule element, 454, 455
to-view-id element, 455

Connection class, 1026
connection factories, JMS

creating, 681, 917
injecting resources, 678, 904
introduction, 904
specifying for remote servers, 933-934

Connection interface, 1009
Connection interface (java.sql), 1005
Connection interface (JMS), 905
connection pooling, 1012
ConnectionFactory interface (JMS), 904
connections

mail sessions, 1017
secure, 787
securing, 787-797

connections, JMS
introduction, 905
managing in Java EE applications, 957

connections, SAAJ, 591-592
closing, 599
point-to-point, 599

connectors, See J2EE Connector architecture
constraint

authorization, 785

constraint (Continued)
security, 785
user data, 785

container-managed sign-on, 836
container-managed transactions, See transactions,

container-managed
containers, 48-50

See also applet containers
See also application client containers
See also EJB containers
See also web containers
configurable services, 49
nonconfigurable services, 49
securing, 776-778
security, 768-773
services, 49
trust between, 817

context roots, 84
conversion model, 299, 305

converter attribute, 358-359
custom converters, 377
custom objects, 376
text components, 334

Converter implementations, 305, 357, 377
Converter interface, 395
converter tags

See converter tags
converterId attribute, 358
converters

See converters
converting data between model and

presentation, 305
javax.faces.convert package, 357
model view, 395, 396
presentation view, 395, 396

Converter implementation classes
BigDecimalConverter class, 357
BigIntegerConverter class, 357
BooleanConverter class, 357
ByteConverter class, 357
CharacterConverter class, 357
DateTimeConverter, 357
DateTimeConverter class, 357, 359
DoubleConverter class, 357

Index

The Java EE 5 Tutorial • October 20081098

Converter implementation classes (Continued)
FloatConverter class, 357
IntegerConverter class, 357
LongConverter class, 357
NumberConverter class, 357, 358, 360
ShortConverter class, 357

converter tags
convertDateTime tag, 359
convertDateTime tag attributes, 360
converter tag, 358, 376
convertNumber tag, 358, 360
convertNumber tag attributes, 361-362
parseLocale attribute, 359

converters, 286, 299, 315
custom converters, 305, 376, 377
standard converters

See standard converters
converting data, See conversion model
CORBA, 819-821
core tags, convertNumber tag, 360
createBrowser method, 928
createTimer method, 671
credential, 783
cryptography, public key, 790
CSR, 793
cursor, StAX API, 555
Cursor, StAX example, 570-573
Cursor-to-Event, StAX example, 573-575
custom converters, 305, 376

creating, 395-397
getAsObject(FacesContext, UIComponent,

String) method, 395
getAsObject method, 396
getAsString(FacesContext, UIComponent,

Object) method, 396
getAsString method, 397
registering

See registering custom converters
using, 377

custom objects
See custom validators
custom converters, 376, 377

See custom converters

custom objects (Continued)
custom tags

See custom tags
custom UI components

See custom UI components
using, 376-380
using custom converters, renderers and tags

together, 414-415
custom renderers, 457

creating the Renderer class, 429-430
determining necessity of, 413-414
performing decoding, 426
performing encoding, 424-425
registering

See registering custom renderers
registering with a render kit, 457-459
ResponseWriter class, 425, 429
startElement method, 425
writeAttribute method, 425

custom tags, 225-272, 307, 411
See also classic tags
See also simple tags
and scripting elements, 278
attributes

validation, 257
cooperating, 233
createValidator method, 404
creating, 404-406
creating tag handler, 432-436
creating using JSP syntax, 233
Duke’s Bank, 1071
getComponentType method, 420, 433
getRendererType method, 420, 431, 435
identifying the renderer type, 429
release method, 436
setProperties method, 420
tag handler class, 404, 419, 420, 432
tag library descriptor, 405-406, 420
tag library descriptors

See tag library descriptors
template tag library, 226
UIComponentTag class, 420, 432
UIComponentTag.release method, 436
ValidatorTag class, 404

Index

1099

custom tags (Continued)
writing the tag library descriptor, 405-406

custom UI components
creating, 411-437
creating component classes, 421-429
custom objects, 376
delegating rendering, 429-431
determining necessity of, 412-413
handling events emitted by, 431-432
queueEvent method, 426
registering

See registering custom UI components
restoreState(FacesContext, Object)

method, 403, 428
saveState(FacesContext) method, 428
saving state, 428-429
specifying where state is saved, 464
steps for creating, 420
using, 379-380

custom validators, 378-379, 400-406
createValidator method, 404
custom validator tags, 404-406
implementing a backing-bean method to perform

validation, 400
implementing the Validator interface, 401-404
registering

See registering custom validators
using, 378-379
validate method, 401, 409
Validator implementation, 401, 404

backing bean methods, 406
Validator interface, 400
validator tag, 400, 404
ValidatorTag class, 404

D
data

binding, 553
encryption, 865

data integrity, 772, 999
data sources, 1012
databases

See also persistence

databases (Continued)
clients, 633
connections, 664, 724, 1007
data recovery, 999
Duke’s Bank tables, 1064
EIS tier, 43
message-driven beans and, 637
multiple, 1006, 1007-1008
transactions

See transactions
DataSource interface, 1012
debugging, Java EE applications, 73-74
declarative security, 768, 799, 841
delivery modes, JMS, 942

JMSDeliveryMode message header field, 910
DeliveryMode interface, 942
deployer roles, 56
deployment descriptor

annotations, 805, 851-853
auth-constraint element, 785
security-constraint element, 785
specifying SSL, 788-789
transport-guarantee element, 785
user-data-constraint element, 785
web-resource-collection element, 785

deployment descriptors, 768, 776-777, 799, 841
ejb-jar.xml file, 777
portable, 53
runtime, 53
security-role-mapping element, 786
security-role-ref element, 844
web application, 79, 82, 460

runtime, 82, 846, 875
web services, 777
web.xml file, 777

Destination interface, 904-905
destinations, JMS

See also queues, temporary destinations, topics
creating, 681, 917
injecting resources, 678, 905
introduction, 904-905
JMSDestination message header field, 910
temporary, 943-944, 974-975, 989-990

destroy method, 128

Index

The Java EE 5 Tutorial • October 20081100

detachNode method, 595
Detail interface, 612
DetailEntry interface, 613
development roles, 54-57

application assemblers, 56
application client developers, 56
application deployers and administrators, 56
enterprise bean developers, 55
Java EE product providers, 55
tool providers, 55
web component developers, 55

digital signature, 790
DNS, 62
doAfterBody method, 281
doEndTag method, 279
doFilter method, 115, 121
doGet method, 110
doInitBody method, 281
DOM

SAAJ and, 591, 603, 620-624
StAX versus, 551-552

domains, 70
doPost method, 110
doStartTag method, 279
doTag method, 257
downloading

Application Server, 68
Duke’s Bank, 1059

adding groups and users to the default realm, 1078
application client, 1066

classes, 1067
running, 1079

authentication, 1075
building and deploying, 1077
compiling, 1079
custom tags, 1071
database tables, 1064
enterprise beans, 1060, 1065

method permissions, 1065
protecting, 1065

entities, 1063
helper classes, 1063
JavaBeans components, 1070
JSP pages, 1068

Duke’s Bank (Continued)
JSP template, 1071
packaging, 1079
populating the database, 1078
security roles, 1065
session beans, 1061, 1062
web client, 1068

request processing, 1073
running, 1080

web resources
protecting, 1075

Duke’s Bookstore
applet, 177
common classes and database schema, 96
JavaServer Faces technology version, 321
JSP documents in, 185
JSP with basic JSTL version, 136
JSP with example custom tags, 226
JSP with JSTL SQL tags, 201
JSP with JSTL XML tags, 213
MVC architecture, 138
populating the database, 97
servlet version, 100
use of JSTL tags, 138

DUPS_OK_ACKNOWLEDGE mode, 939
durable subscriptions, JMS, 944-948

examples, 947-948, 966-972
DynamicAttributes interface, 258

E
EAR files, 53
ebXML, 52, 61
EIS, 1021, 1026
EIS tier, 48

security, 836-839
EJB, security, 800-822
EJB containers, 50

container-managed transactions, 1000
message-driven beans, 958-960
onMessage method, invoking, 679-680
services, 633, 800-822

EJB JAR files, 642
portability, 642

Index

1101

EJBContext interface, 1004, 1005, 1007
end-to-end security, 776
enterprise beans, 47, 57

See also Java EE components
accessing, 638
business interfaces

See business interfaces
business methods

See business methods
classes, 642
compiling, 649-650
contents, 642
defined, 633
deployment, 642
deployment descriptor security, 818
distribution, 640
Duke’s Bank, 1060, 1065

protecting, 1065
exceptions, 676
implementor of business logic, 47
interfaces, 638-642, 642
life cycles, 643-646
local access, 639-640
message-driven beans.

See message-driven beans
method permissions

Duke’s Bank, 1065
packaging, 649-650
performance, 640
persistence, 713-733

See persistence
protecting, 800-822
remote access, 638-639
securing, 800-822
session beans

See session beans
timer service, 671-676
types, 634
web services, 634, 641, 667-670

Enterprise Information Systems, See EIS tier
entities

abstract schema names, 736
collections, 750
creating, 707-708

entities (Continued)
Duke’s Bank, 1063
entity manager, 698-703
entity managers, 708-710
finding, 699, 722
inheritance, 693-697, 729-730
life cycle, 699-701
managing, 698-704
persistent fields, 688-689
persistent properties, 688-689
persisting, 700
primary keys, 690-691
relationships, 722
removing, 700-701, 723
requirements, 687-688
synchronizing, 701
updating, 710-712

entity relationships
bidirectional, 692-693
many-to-many, 692
many-to-one, 692
multiplicity, 691
one-to-many, 692
one-to-one, 692
query language, 693
unidirectional, 693

equals method, 690
Event, StAX example, 575-577
event and listener model, 299, 306-307

action events
See action events

ActionEvent class, 333, 336
data model events, 306
Event class, 306
event handlers, 315, 420
event listeners

apply request values phase, 316
invoke application phase, 318
JavaServer Faces UI, 286
process validations phase, 317
update model values phase, 317

handling events of custom UI components, 431-432
implementing event listeners, 397-400
Listener class, 306, 406

Index

The Java EE 5 Tutorial • October 20081102

event and listener model (Continued)
queueEvent method, 426
value-change events

See value-change events
ValueChangeEvent class, 375

examples, 67-74
See Coffee Break
See Duke’s Bank
See Duke’s Bookstore
application clients, 651
building, 71-73
business interfaces, 648
classpath, 650
directory structure, 73
Duke’s Bookstore, JavaServer Faces technology

version, 321
guessNumber, 288, 315
JAXB, 503-512
JMS

asynchronous message consumption, 922-928
browsing messages in a queue, 928-932
durable subscriptions, 947-948
Java EE examples, 966-972, 972-980, 981-987,

987-997
local transactions, 951-956
message acknowledgment, 940-942
synchronous message consumption, 913-922

JSP pages, 134, 652
JSP scripting elements, 273
JSP simple tags, 265, 267
location, 68
primary keys, 690
query language, 737-742
required software, 67-69
SAAJ

attachments, 624-626
DOM, 620-624
headers, 617-619
SOAP faults, 626-628

security, 768-771
basic authentication, 888-894
form-based authentication, 870-879

session beans, 648, 659-676
setting build properties, 72

examples (Continued)
simple JSP pages, 81
simple servlets, 81
StAX, 569-584
timer service, 673-674
web clients, 652
web services, 482, 667, 1031-1058

exceptions
business methods, 664
enterprise beans, 676
JMS, 912
mapping to error screens, 93
rolling back transactions, 676, 1004
transactions, 1002

exclude-list element, 811
expiration of JMS messages, 943

JMSExpiration message header field, 910
expressions, lvalue expressions, 312

F
factory classes, StAX, 561-562
Filter, StAX example, 577-580
filter chains, 115, 121
Filter interface, 115
filters, 114

defining, 115
mapping to web components, 119
mapping to web resources, 119, 121, 122
overriding request methods, 117
overriding response methods, 117
response wrappers, 117

findAncestorWithClass method, 264
foreign keys, 715
forward method, 124
fully qualified names, 595

G
garbage collection, 646
GenericServlet interface, 99
getAttachments method, 605-606
getBody method, 594

Index

1103

getCallerPrincipal method, 802
getConnection method, 1012
getEnvelope method, 594
getHeader method, 594
getJspBody method, 260
getJspContext method, 261
getParameter method, 110
getParent method, 264
getRemoteUser method, 847
getRequestDispatcher method, 122
getRollbackOnly method, 961
getServletContext method, 124
getSession method, 125
getSOAPBody method, 594
getSOAPHeader method, 594
getSOAPPart method, 594
getUserPrincipal method, 847
getValue method, 600
getVariableInfo method, 262
GIOP, 819-821
groups, 782

managing, 783-784

H
handling events, See event and listener model
hashCode method, 690
helper classes, 642, 664

Duke’s Bank, 1063
HTTP, 481

over SSL, 865
HTTP request URLs, 111

query strings, 111
request paths, 111

HTTP requests, 110
See also requests

HTTP responses, 112
See also responses
status codes, 93

mapping to error screens, 93
HTTPS, 775, 789-790, 790
HttpServlet interface, 99
HttpServletRequest interface, 110, 847
HttpServletResponse interface, 112

HttpSession interface, 125

I
identification, 772-773, 779
IIOP, 819-821
implicit objects, 370
include directive, 175
include method, 122
init method, 109
InitialContext interface, 63
initializing properties with the managed-property

element
initializing Array and List properties, 447
initializing managed-bean properties, 447-449
initializing Map properties, 445-446
initializing maps and lists, 449-450
referencing an initialization parameter, 444-445

integrity, 787
of data, 772

internationalization, 469-477
Internationalizing

JavaServer Faces applications
See internationalizing JavaServer Faces

applications
internationalizing JavaServer Faces applications

basename, 354, 451
FacesContext.getLocale method, 360
FacesMessage class, 393
getMessage(FacesContext, String, Object)

method, 393, 402
loadBundle tag, 328, 355, 473
locale attribute, 325
localizing messages, 393-394
message factory pattern, 393
MessageFactory class, 393-394, 402
performing localization, 392-394
queueing messages, 409
using localized static data and messages, 348-349
using the FacesMessage class to create a

message, 394
interoperability, secure, 819-821
invalidate method, 127
invoke method, 260

Index

The Java EE 5 Tutorial • October 20081104

IOR security, 819-821
isCallerInRole method, 802
isThreadSafe attribute, 146
isUserInRole method, 847
IterationTag interface, 278
iterator, StAX API, 555-559

event types, 556-557
example event mapping, 557-559

J
J2EE Connector architecture, 61

CCI, 1026-1027
connection management contract, 1025
life-cycle management contract, 1023
messaging contract, 1025
resource adapters

See resource adapters
security management contract, 1025
transaction management contract, 1025
work management contract, 1024

JAAS, 63, 773, 834-835
login modules, 835

JACC, 779
JAF, 60
JAR files

See also EJB JAR files
javaee.jar, 650
query language, 749

JAR signatures, 774
Java API for XML Binding, See JAXB
Java API for XML Processing, See JAXP
Java API for XML Registries, See JAXR
Java API for XML Web Services, See JAX-WS
Java Architecture for XML Binding, See JAXB
Java Authentication and Authorization Service, 773

See JAAS
Java BluePrints, 73
Java Cryptography Extension (JCE), 773
Java DB database, 64

starting, 71
stopping, 71

Java EE 5 platform, APIs, 57
Java EE applications, 42

Java EE applications (Continued)
See also Duke’s Bank
debugging, 73-74
deploying, 654
iterative development, 656
JMS examples, 966-972, 972-980, 981-987, 987-997
running on more than one system, 981-987,

987-997
tiers, 42

Java EE clients, 44-46
application clients, 45

See also application clients
web clients, 77-98

See also web clients
web clients versus application clients, 46

Java EE components, 44
sending email, 1016
types, 44

Java EE modules, 53, 54
application client modules, 54
EJB modules, 54, 642
resource adapter modules, 54, 1022
web modules

See web modules
Java EE platform, 42

JMS and, 898
Java EE security model, 49
Java EE servers, 50
Java EE transaction model, 49
Java Generic Security Services, 773
Java GSS-API, 773
Java Message Service (JMS) API

message-driven beans.
See message-driven beans

Java Naming and Directory Interface, See JNDI
Java Persistence API query language, See query language
Java Secure Sockets Extension, 773
Java Servlet technology, 58

See also servlets
Java Transaction API, See JTA
Java type mapping, 543
JavaBeans Activation Framework, See JAF
JavaBeans components, 45, 167

creating in JSP pages, 169

Index

1105

JavaBeans components (Continued)
design conventions, 167
Duke’s Bank, 1070
in WAR files, 82
methods, 167
properties, 167, 168

retrieving in JSP pages, 171
setting in JSP pages, 169

using in JSP pages, 168
JavaMail API, 59
JavaMail resources, See mail sessions
JavaServer Faces, 59
JavaServer Faces application development roles

application architects
custom converters, 395
error message registration, 400
navigation rules, 374
registering custom UI components, 420
responsibilities, 439

application developers, 302, 383
responsibilities, 381

page authors, 400
ActionListener registration, 363
component rendering model, 302
custom converters, 395
custom objects, 376-380
responsibilities, 321

JavaServer Faces core tag library, 324
action attribute, 338
actionListener tag, 327, 363-364, 413
attribute tag, 327
convertDateTime tag, 327, 359
convertDateTime tag attributes, 360
converter tag, 327, 358, 376
converterId attribute, 358
convertNumber tag, 327, 358, 360
convertNumber tag attributes, 361-362
facet tag, 327, 328, 345
jsf_core TLD, 324, 328
loadBundle tag, 327, 328
param tag, 327, 328, 336, 369
parseLocale attribute, 359
selectItem tag, 304, 328, 347, 349
selectitem tag, 327, 350

JavaServer Faces core tag library (Continued)
selectItems tag, 304, 328, 347, 349
selectitems tag, 327, 350
subview tag, 326, 327, 328
type attribute, 363
validateDoubleRange tag, 328, 365
validateLength tag, 328, 365
validateLongRange tag, 328, 365, 366
validator tag, 307, 328

custom objects, 376
custom validator tags, 404
custom validators, 400

validator tags
See validator tags

valueChangeListener tag, 327, 362
verbatim tag, 328
view tag, 325, 327, 328

JavaServer Faces expression language
method-binding expressions

See method binding
method-binding expressions, 308

JavaServer Faces standard HTML render kit
library, 457

JavaServer Faces standard HTML Render Kit library,
html_basic TLD, 436

JavaServer Faces standard HTML render kit tag
library, 303, 324
html_basic TLD, 324
UI component tags

See UI component tags
JavaServer Faces standard UI components, 300, 411

UIColumn component, 343
UICommand component, 337, 338, 363
UIComponent component, 397
UIData component, 343, 384
UIForm component, 331
UIGraphic component, 343
UIInput component, 333, 334, 384
UIOutput component, 328, 331, 333
UIPanel component, 343
UISelectBoolean component, 385
UISelectItem component, 386, 387
UISelectItems component, 350, 386, 387
UISelectMany component, 327, 349, 350, 385

Index

The Java EE 5 Tutorial • October 20081106

JavaServer Faces standard UI components (Continued)
UISelectOne component, 327, 349, 350
UISelectOne properties, 386
UIViewRoot component, 415

JavaServer Faces tag libraries
JavaServer Faces core tag library, 327

See JavaServer Faces core tag library
JavaServer Faces standard HTML render kit tag

library
See JavaServer Faces standard HTML render kit

tag library
taglib directives, 324, 376

JavaServer Faces technology, 147, 285-319
advantages of, 286
component rendering model

See component rendering model
configuring applications

See configuring JavaServer Faces applications
conversion model

See conversion model
event and listener model

See event and listener model
FacesContext class, 315, 380, 393

apply request values phase, 316
custom converters, 396
image maps, 415
performing encoding, 425
process validations phase, 316
update model values phase, 317
Validator interface, 401, 409

FacesServlet class, 461
jsf-api.jar file, 468
jsf-impl.jar file, 468
lifecycle

See lifecycle of a JavaServer Faces page
UI component behavioral interfaces

UI component behavioral interfaces, 301
UI component classes

See UI component classes
UI component tags

See UI component tags
UI components

See JavaServer Faces standard UI components

JavaServer Faces technology (Continued)
validation model

See validation model
JavaServer Pages (JSP) technology, 58

See also JSP pages
JavaServer Pages Standard Tag Library

See JSTL
JavaServer Pages technology, 133

See also JSP pages
javax.activation.DataHandler class, 604, 605
javax.servlet.http package, 99
javax.servlet.jsp.tagext package, 256, 278
javax.servlet package, 99
javax.xml.bind.annotations package, 498
javax.xml.namespace.QName class, 595
javax.xml.soap package, 587
javax.xml.transform.Source interface, 602
JAX-WS, 60

defined, 481
service endpoint interfaces, 482
specification, 489

JAXB, 61, 491-550
binding process, 492-493
customization, 497-503

Java-to-schema, 498-503
overview, 517-528
schema-to-Java, 497

examples
base files, 504
Create Marshal, 539-540
Customize Inline, 528-533
customizing bindings, 516-538
Datatype Converter, 533-534
External Customize, 538
Java-to-schema, 538-550
Modify Marshal, 513-514
overview, 503-512
schema-derived JAXB classes, 510-512
Unmarshal Validate, 514-516
XmlAccessorOrder, 540-542
XmlAdapter Field, 542-545
XmlAttribute Field, 545-546
XmlRootElement, 546-547
XmlSchemaType Class, 547-548

Index

1107

JAXB, examples (Continued)
XmlType, 548-550

processing model, 491-494
schema compiler, 492
schema generator, 492, 507
version 2.0 features, 491
XJC compiler, 505-507

JAXB data reading and writing, with XmlAdapter

interface, 543
JAXB data type special processing, using the

@XmlJavaTypeAdapter annotation, 543
JAXBElement objects, 496
JAXM specification, 587
JAXP, 60
JAXR, 61
JCE, 773
JDBC API, 62, 1012
JMS

achieving reliability and performance, 937-956
architecture, 899
basic concepts, 898-902
client applications, 913-937
definition, 896
introduction, 895-898
Java EE examples, 677-684, 965-997, 972-980,

981-987, 987-997
Java EE platform, 898, 956-962
messaging domains, 900-902
programming model, 902-912

JMS API, 59
JMS API., See Java Message Service (JMS) API
JMSCorrelationID message header field, 910
JMSDeliveryMode message header field, 910
JMSDestination message header field, 910
JMSException class, 912
JMSExpiration message header field, 910
JMSMessageID message header field, 910
JMSPriority message header field, 910
JMSRedelivered message header field, 910
JMSReplyTo message header field, 910
JMSTimestamp message header field, 910
JMSType message header field, 910
JNDI, 62, 1011

data source naming subcontexts, 63

JNDI (Continued)
enterprise bean naming subcontexts, 63
environment naming contexts, 63
jms naming subcontext, 904
namespace for JMS administered objects, 903-905
naming and directory services, 62
naming contexts, 62
naming environments, 62
naming subcontexts, 63

jsp:attribute element, 231, 232
jsp:body element, 232
jsp:declaration element, 195
JSP declarations, 276
jsp:directive.include element, 192
jsp:directive.page element, 192
jsp:doBody element, 242
JSP documents, 185-200

alternative syntax for EL operators, 194
creating dynamic content, 194
creating static content, 193

preserving white space, 193
declaring namespaces, 190
declaring tag libraries, 190-191
generating a DTD, 198-200
generating tags, 195
generating XML declarations, 197-198
identifying to the web container, 200
including directives, 191
including JSP pages in standard syntax, 193
scoping namespaces, 191
scripting elements, 195
validating, 197

jsp:element element, 195
jsp:expression element, 196
JSP expression language

functions
using, 165

JSP expressions, 277
jsp:fallback element, 177
jsp:forward element, 176
JSP fragments, 229
jsp:getProperty element, 171
jsp:include element, 175
jsp:invoke element, 242

Index

The Java EE 5 Tutorial • October 20081108

jsp:output element, 196
JSP pages, 133

compilation errors, 142
compilation into servlets, 142
compiling, 654
controlling translation and execution, 142
converting to JSP documents, 188-200
creating and using objects, 146
creating dynamic content, 145
creating static content, 144
deactivating EL expression, 180
declarations

See JSP declarations
default mode for EL expression evaluation, 180
defining preludes and codas, 181
disabling scripting, 275
Duke’s Bank, 1068
error pages

forwarding to, 143
precedence over web application error page, 144
specifying, 143

examples, 652
Duke’s Bookstore, 136, 201, 226
Hello application, 81

execution, 143
expressions

See JSP expressions
finalizing, 276
forwarding to other web components, 176
implicit objects, 145
importing classes and packages, 275
importing tag libraries, 172
including applets or JavaBeans components, 176
including JSP documents, 193
initial response encoding, 476
initializing, 276
JavaBeans components

creating, 169
from constants, 170
from request parameters, 170
from runtime expressions, 170
retrieving properties, 171
setting properties, 169, 170
using, 168

JSP pages (Continued)
life cycle, 142
page directives, 143, 144
page encoding, 476
preludes and codas, 175
reusing other web resources, 175
scripting elements

See JSP scripting elements
scriptlets

See JSP scriptlets
setting buffer size, 143
setting page encoding, 145
setting page encoding for group of, 181
setting properties for groups of, 179
setting response encoding, 145
setting the request encoding, 475
shared objects, 146
specifying scripting language, 275
standard syntax, 133
transitioning to JSP documents, 185
translation, 142

enforcing constraints for custom tag
attributes, 257

translation errors, 142
translation of page components, 142
URLs for running, 656
using custom tags, 172
XML syntax, 133

jsp:param element, 176, 177
jsp:plugin element, 176
JSP property groups, 179
jsp:root element, 196
JSP scripting elements, 273

creating and using objects in, 273
example, 273

jsp:scriptlet element, 195
JSP scriptlets, 277
jsp:setProperty element, 169
JSP template, Duke’s Bank, 1071
jsp:text element, 193
JspContext interface, 256, 279
jspDestroy method, 276
jspInit method, 276
JSSE, 773

Index

1109

JSTL, 58, 201
core tags, 205

catch tag, 211
choose tag, 207
conditional, 207
flow control, 206
forEach tag, 208
if tag, 207
import tag, 210
otherwise tag, 207
out tag, 211
param tag, 210
redirect tag, 210
remove tag, 206
set tag, 205
url tag, 210
variable support, 205
when tag, 207

functions, 222
length function, 222

internationalization tags, 215
bundle tag, 217
formatDate tag, 217
formatNumber tag, 217
localization context, 216
message tag, 217
outputting localized strings, 217
param tag, 217
parseDate tag, 217
parseNumber tag, 217
parsing and formatting, 217
requestEncoding tag, 216
setBundle tag, 217
setLocale tag, 216

SQL tags, 218
query tag, 218
setDataSource tag, 218
update tag, 218

XML tags, 211
core, 213
flow control, 214
forEach tag, 214
out tag, 213
param tag, 215

JSTL, XML tags (Continued)
parse tag, 213
set tag, 213
transform tag, 215
transformation, 215

JTA, 59
See also transactions, JTA

JTS API, 1006

K
Kerberos, 773
Kerberos tickets, 774
key pairs, 790
keystores, 774, 790-794

managing, 791
keytool utility, 791

L
LDAP, 62
life cycle of a JavaServer Faces page, 314-318

action and value-change event processing, 306
apply request values phase, 316, 426
custom converters, 396, 397
immediate attribute, 417
invoke application phase, 317
process validations phase, 316
render response phase, 318

getRendererType method, 431
performing encoding, 424
tag handler, 432
Validator interface, 402

renderResponse method, 315, 316, 317
responseComplete method, 315, 316, 317
restore view phase, 315, 430
saving state, 428
updateModels method, 317
views, 315

listener classes, 103
defining, 103
examples, 103

listener interfaces, 103

Index

The Java EE 5 Tutorial • October 20081110

listeners
HTTP, 779
IIOP, 779

local interfaces, defined, 640
local names, 597
local transactions, JMS, 949-956
localization, 469-477
login modules, 834-835

M
mail sessions, creating, 1018
managed bean creation facility, 418, 441

initializing properties with managed-property

elements, 443-449
managed bean declarations

See managed bean declarations
managed bean declarations, 299, 418

key-class element, 446
list-entries element, 444
managed-bean element, 441-443, 448
managed-bean-name element, 312, 442
managed-bean-scope element, 443
managed-property element, 443-449
map-entries element, 444, 445
map-entry element, 445
message-bean-name element, 368
null-value elements, 444
property-name element, 312, 368
value element, 444

MapMessage interface, 911
mapping of Java types, 543
mapping XML content into/out of custom

Hashmap, 543
marshalling content, 494
message acknowledgment, JMS

bean-managed transactions, 962
introduction, 938-942
message-driven beans, 958

message bodies, JMS, 910-911
message consumers, JMS, 907-909
message consumption, JMS

asynchronous, 902, 922-928
introduction, 902

message consumption, JMS (Continued)
synchronous, 902, 913-922

message-driven beans, 57, 636-638
accessing, 637
coding, 679-680, 969, 975, 990
defined, 636
examples, 677-684, 966-972, 972-980, 981-987,

987-997
garbage collection, 646
introduction, 958-960
onMessage method, 637, 679-680
requirements, 679-680
transactions, 1000, 1005, 1006

message headers, JMS, 909-910
message IDs, JMSMessageID message header field, 910
Message interface, 911
message listeners, JMS, 636
message listeners, JMS

examples, 924, 974-975, 989-990
introduction, 908

message producers, JMS, 906-907
message properties, JMS, 910
message security, 779
message selectors, JMS, introduction, 909
MessageConsumer interface, 907-909
MessageFactory class, 593-594
MessageListener interface, 908
MessageProducer interface, 906-907
messages

creating messages with the MessageFactory
class, 393-394

FacesMessage class, 393
getMessage(FacesContext, String,

Object), 402
getMessage(FacesContext, String, Object)

method, 393
integrity, 865
localizing messages, 393-394
message factory pattern, 393
MessageFactory class, 393, 402
MessageFormat pattern, 327, 336
outputFormat tag, 336
param tag, 336

Index

1111

messages (Continued)
parameter substitution tags

See JavaServer Faces core tag library
param tag, 327

queueing messages, 409, 450
securing, 776
security, 779
using the FacesMessage class to create a

message, 394
messages, JMS

body formats, 910-911
browsing, 911-912
definition, 899
delivery modes, 942
expiration, 943
headers, 909-910
introduction, 909-911
persistence, 942
priority levels, 943
properties, 910

messages, SAAJ
accessing elements, 594-595
adding body content, 595-599
attachments, 590-591
creating, 593-594
getting the content, 600
overview, 588-591

messaging, definition, 895-896
messaging domains, JMS, 900-902

common interfaces, 902
point-to-point, 900-901
publish/subscribe, 901

metadata annotations
security, 777-778

web applications, 841
method binding, 334

method-binding expressions, 308, 334, 456
method expressions, 373, 374, 399, 426
MethodBinding class, 427

method element, 811
method expressions, 148, 306
method-permission element, 810-813, 818
method permissions, 806

annotations, 809-810

method permissions (Continued)
deployment descriptor, 810-813
specifying, 809-813

MIME, headers, 591
mutual authentication, 795-797
MVC architecture, 138

N
Name interface, 595
names

fully qualified, 595
local, 597

namespaces, 595
navigation model, 296, 308-309

action attribute, 373, 374
and backing bean methods, 373
and commandButton tag, 295
and JSP pages, 417
and UICommand component, 338
invoke application phase, 318

action methods, 406, 453
ActionEvent class, 374
configuring navigation rules, 453-456
logical outcome, 406, 453

commandButton tag, 338
referencing backing bean methods, 374

navigation rules, 296, 338, 374, 453
NavigationHandler class, 309, 318, 407
referencing methods that perform navigation, 374,

406
writing a backing bean method to perform

navigation processing, 406-408
NDS, 62
NetBeans IDE, 69, 71-72
NIS, 62
nodes, SAAJ and, 588
NON_PERSISTENT delivery mode, 942
non-repudiation, 772

O
ObjectMessage interface, 911

Index

The Java EE 5 Tutorial • October 20081112

objects, administered (JMS), 903-905
onMessage method

introduction, 908
message-driven beans, 637, 679-680, 958

P
package-appclient tool, 64
page directive, 275
page navigation, See navigation model
PageContext interface, 279
permissions, policy, 779
persistence

BLOBs, 720-721
cascade operations, 720
CLOBs, 720-721
configuration, 703-704
context, 698
enterprise beans, 713-733
JMS messages, 942
many-to-many, 728-729
one-to-many, 715
one-to-one, 714-715
persistence units, 703-704, 706-707
primary keys, 690-691

compound, 716-719
queries, 701-703, 722-723

See also query language
parameters, 702

query language, 693
relationships, 713-715
scope, 703-704
self-referential relationships, 714
session beans, 635
temporal types, 721
web tier, 705-712

persistence units
query language, 735, 749

PERSISTENT delivery mode, 942
persistent entities, JMS example, 972-980
pluggable audit modules, 779
pluggable authorization providers, 779
point-to-point connection, SAAJ, 599
point-to-point messaging domain, 900-901

point-to-point messaging domain (Continued)
See also queues

policy files, 774
prerequisites, 29
primary keys, 715

compound, 716-719
defined, 690-691
examples, 690

principal, 783
default, 821-822

PrintWriter class, 112
priority levels, for messages, 943

JMSPriority message header field, 910
programmatic login, 779
programmatic security, 768, 778, 799, 841
programming model, JMS, 902-912
properties., See message properties, JMS
providers, JMS, 899
proxies, 481
public key certificates, 865
public key cryptography, 790
publish/subscribe messaging domain

See also topics
durable subscriptions, 944-948
introduction, 901

pull parsing, 552-553

Q
Quality of Service (QOS), 772
query language

ABS function, 759-760
abstract schemas, 735, 736, 749
ALL expression, 758
ANY expression, 758
arithmetic functions, 758-760
ASC keyword, 763
AVG function, 762
BETWEEN expression, 741, 755
boolean literals, 753
boolean logic, 760
collection member expressions, 750, 757
collections, 750, 757
compared to SQL, 738, 748, 751

Index

1113

query language (Continued)
comparison operators, 741, 755
CONCAT function, 759
conditional expressions, 740, 753, 754, 761
constructors, 763
COUNT function, 762
DELETE expression, 742
DELETE statement, 736-737
DESC keyword, 763
DISTINCT keyword, 737
domain of query, 735, 747, 749
duplicate values, 737
enum literals, 754
equality, 760
ESCAPE clause, 756
examples, 737-742
EXISTS expression, 758
FETCH JOIN operator, 751
FROM clause, 736, 747-751
grammar, 742-764
GROUP BY clause, 736, 764
HAVING clause, 736, 764
identification variables, 736, 747, 749-751
identifiers, 748
IN operator, 751, 755-756
INNER JOIN operator, 750
input parameters, 739, 754
IS EMPTY expression, 741
IS FALSE operator, 761
IS NULL expression, 740-741
IS TRUE operator, 761
JOIN statement, 738, 739, 750-751
LEFT JOIN operator, 751
LEFT OUTER JOIN operator, 751
LENGTH function, 759
LIKE expression, 740, 756
literals, 753-754
LOCATE function, 759
LOWER function, 759
MAX function, 762
MEMBER exression, 757
MIN function, 762
MOD function, 759-760
multiple declarations, 749

query language (Continued)
multiple relationships, 739
named parameters, 738, 754
navigation, 738-740, 740, 750, 752-753
negation, 761
NOT operator, 761
null values, 756-757, 760
numeric comparisons, 760
numeric literals, 753
operator precedence, 754-755
operators, 754-755
ORDER BY clause, 736, 763-764
parameters, 737
parentheses, 754
path expressions, 735, 751-753
positional parameters, 754
range variables, 749-750
relationship fields, 736
relationships, 735, 738, 739
return types, 761
scope, 735
SELECT clause, 736, 761-763
setNamedParameter method, 738
SIZE function, 759-760
SQRT function, 759-760
state fields, 736
string comparison, 761
string functions, 758-760
string literals, 753
subqueries, 757-758
SUBSTRING function, 759
SUM function, 762
syntax, 742-764
TRIM function, 759
types, 752, 760
UPDATE expression, 736-737, 742
UPPER function, 759
WHERE clause, 736, 753-761
wildcards, 756

Queue interface, 904-905
QueueBrowser interface, 911-912

JMS client example, 928-932
queues

browsing, 911-912, 928-932

Index

The Java EE 5 Tutorial • October 20081114

queues (Continued)
creating, 904-905, 917
injecting resources, 678
introduction, 904-905
temporary, 943-944, 974-975

R
RAR files, 1022
Read-and-Write, StAX example, 580-582
realms, 780, 781-782

admin-realm, 782
certificate, 782

adding users, 784
configuring, 779
file, 781

recover method, 939
redelivery of messages, 939

JMSRedelivered message header field, 910
referencing backing bean methods, 373-376

for handling action events, 374-375, 408
for handling value-change events, 375-376
for performing navigation, 374, 406
for performing validation, 375, 409

registering custom converters, 453
converter element, 453

registering custom renderers, 429, 457-459
render-kit element, 457
renderer element, 457

registering custom UI components, 420, 459
component element, 459

registering custom validators, 452
validator element, 452

registering messages, 450-451
message-bundle element, 450

relationship fields, query language, 736
relationships

direction, 692
unidirectional, 715

release method, 282
reliability, JMS

advanced mechanisms, 944-956
basic mechanisms, 938-944
durable subscriptions, 944-948

reliability, JMS (Continued)
local transactions, 949-956
message acknowledgment, 938-942
message expiration, 943
message persistence, 942
message priority levels, 943
temporary destinations, 943-944

remote interfaces, defined, 639
Remote Method Invocation (RMI), and

messaging, 895-896
request/reply mechanism

JMSCorrelationID message header field, 910
JMSReplyTo message header field, 910
temporary destinations and, 944

request-response messaging, 591-592
RequestDispatcher interface, 122
requests, 110

See also HTTP requests
appending parameters, 176
customizing, 117
getting information from, 110
retrieving a locale, 470

Required transaction attribute, 962
resource adapter, security, 837-838
resource adapters, 61, 1021

application contracts, 1023
archive files

See RAR files
CCI, 1026
connection management contract, 1025
importing transactions, 1026
life-cycle management contract, 1023
messaging contract, 1025
security management contract, 1025
system contracts, 1023
transaction management contract, 1025
work management contract, 1024

resource bundles, 469
resources, 1011-1020

See also data sources
creating, 1011
injecting, 1012
JMS, 957

responses, 112

Index

1115

responses (Continued)
See also HTTP responses
buffering output, 112
customizing, 117
setting headers, 110

Result interface, 220
role-link element, 808
role-name element, 805, 806
roles, 782

anonymous, 822
application

mapping to Application Server, 786
declaring, 843-846
defining, 843
development

See development roles
mapping to groups, 786
mapping to users, 786
referencing, 803, 804, 843
security, 803-805, 806, 843-846

See security roles
declaring, 805
setting up, 784-785

rollback method, 1005, 1006, 1007
rollback method (JMS), 949-956
rollbacks, See transactions, rollbacks
run-as element, 816, 818
run-as identity, 814-817

S
SAAJ, 61, 587-629, 687-704

examples, 615-628
messages, 588-591
overview, 588-592
specification, 587
tutorial, 592-615

SASL, 773
schema, deployment descriptors, 776-777
schemagen tool, 65, 507
secure connections, 787-797
Secure Socket Layer (SSL), 787-797
security

annotations, 777-778, 799, 841

security, annotations (Continued)
enterprise beans, 817, 842

anonymous role, 822
application, 774

characteristics of, 772-773
application client tier

callback handlers, 834-835
callback handlers, 834
clients, 834-835
constraints, 856-859
container, 768-773
container trust, 817
containers, 776-778
declarative, 768, 776-777, 799, 841
default principal, 821-822
deploying enterprise beans, 821-822
deployment descriptor

enterprise beans, 818
EIS applications, 836-839

component-managed sign-on, 836-837
container-managed sign-on, 836

end-to-end, 776
enterprise beans, 800-822
example, 768-771
functions, 771-772
groups, 782
implementation mechanisms, 773-776
interoperability, 819-821
introduction, 767-798
IOR, 819-821
JAAS login modules, 835
Java EE

mechanisms, 774-776
Java SE, 773-774
linking roles, 807-808
login forms, 834
login modules, 834-835
mechanisms, 771-772
message-layer, 776
method permissions, 806

annotations, 809-810
deployment descriptor, 810-813
specifying, 809-813

policy domain, 783

Index

The Java EE 5 Tutorial • October 20081116

security (Continued)
programmatic, 768, 778, 799, 841
programmatic login, 779
propagating identity, 814-817
realms, 781-782
resource adapter, 837-838
role names, 803-805, 843-846
role reference, 804
roles, 782, 805, 806, 843-846

declaring, 843-846
defining, 843
setting up, 784-785

run-as identity, 814-817
annotation, 816

single sign-on, 779
specifying run-as identity, 814-817
transport-layer, 775, 787-797
users, 782, 843
view

defining, 806-817
web applications, 841

overview, 842
web components, 841

security constraint, 785
security-constraint element, 785
security constraints, 856-859
security domain, 783
security identity

propagating, 814-817
specific identity, 815

security-role element, 806, 818
security-role-mapping element, 786
security-role-ref element, 818, 844

security
role references, 803, 843

security role references, 848
linking, 807-808
mapping to security roles, 849

security roles, 784-785, 806
Duke’s Bank, 1065

security view, defining, 806-817
send method, 906-907
server, authentication, 865
servers, certificates, 790-794

servers, Java EE
deploying on more than one, 981-987, 987-997
running JMS clients on more than one, 933-937

Servlet interface, 99
ServletContext interface, 124
ServletInputStream class, 110
ServletOutputStream class, 112
ServletRequest interface, 110
ServletResponse interface, 112
servlets, 99

binary data
reading, 110
writing, 112

character data
reading, 110
writing, 112

examples, 81
finalization, 128
initialization, 109

failure, 109
life cycle, 102-105
life-cycle events

handling, 103
service methods, 110

notifying, 129
programming long running, 130

tracking service requests, 129
session beans, 57, 635-636

activation, 644
clients, 635
databases, 1005
Duke’s Bank, 1061, 1062
examples, 648, 659-676, 966-972
passivation, 644
requirements, 660
stateful, 635, 636
stateless, 635, 636
transactions, 1000, 1005, 1006
web services, 641, 668-669

Session interface, 906
sessions, 125

associating attributes, 126
associating with user, 127
invalidating, 127

Index

1117

sessions (Continued)
notifying objects associated with, 126

sessions, JMS
introduction, 906
managing in Java EE applications, 957

setAttribute method, 261
setContent method, 602, 604
setDynamicAttribute method, 258
setRollbackOnly method, 961
sign-on

component-managed, 836
container-managed, 836

Simple Authentication and Security Layer, 773
simple tags

See also tag files
attributes

dynamic, 230
fragment, 230
simple, 229

examples, 265, 267
expression language variables

defining, 232
shared objects, 263-265

example, 263-265
named, 263
private, 263

specifying body of, 232
tag handlers, 225, 256

defining scripting variables, 261
how invoked, 256
supporting deferred value and deferred method

attributes, 259
supporting dynamic attributes, 258
with attributes, 257
with bodies, 260

variables
providing information about, 254, 262-263

with bodies, 232
SimpleTag interface, 256
SimpleTagSupport class, 256
single sign-on, 779
SingleThreadModel interface, 107
SOAP, 481, 489, 587

body, 597

SOAP, body (Continued)
adding content, 595-599
Content-Type header, 604

envelope, 597
headers

adding content, 601
Content-Id, 604
Content-Location, 604
Content-Type, 604
example, 617-619

StAX and, 553
SOAP faults, 611-615

detail, 612
fault actor, 611
fault code, 611
fault string, 611
retrieving information, 614-615
SAAJ example, 626-628

SOAP messages, 52
securing, 776

SOAP with Attachments API for Java
See SAAJ

SOAPBody interface, 589, 597
SOAPBodyElement interface, 595-599
SOAPConnection class, 591-592

getting objects, 599
SOAPElement interface, 596
SOAPEnvelope interface, 588, 595, 597
SOAPFactory class, 595
SOAPFault interface, 611

creating and populating objects, 612-614
detail element, 612
fault actor element, 611
fault code element, 611
fault string element, 611

SOAPHeader interface, 589, 601
SOAPHeaderElement interface, 595, 601
SOAPMessage class, 588, 594
SOAPPart class, 588, 591, 596

adding content, 602
SQL, 62, 738, 748, 751
SQL92, 760
SSL, 775, 787-797, 865

connector, 787

Index

The Java EE 5 Tutorial • October 20081118

SSL (Continued)
connectors

Application Server, 787
specifying, 785
tips, 789-790
verifying support, 789-790

SSL HTTPS Connector, configuring, 787
SSO, 779
standard converters, 305

Converter implementation classes, 357
converter tags, 327, 328, 358
NumberConverter class, 357
using, 357

standard validators
using, 364
validator implementation classes

See validator implementation classes
validator tags

See validator tags
state fields, query language, 736
StAX, 551-585

API, 554-560
choosing, 559-560
cursor, 555
iterator, 555-559

CDATA events, 568
DOM, compared, 551-552
event mapping, 557-559
example code, 569-584

Cursor, 570-573
Cursor-to-Event, 573-575
Event, 575-577
Filter, 577-580
Read-and-Write, 580-582
Writer, 582-584

factory classes, 561-562
XMLEventFactory, 562
XMLInputFactory, 561-562
XMLOutputFactory, 562

overview, 551
pull parsing, 552-553
resources, namespaces, errors, 563
Sun parser implementation, 568-569
use cases, 553

StAX (Continued)
using, 561-567
XML streams, reading, 563-566
XML streams, writing, 566-567
XMLEventReader interface, 565-566
XMLEventWriter interface, 567
XMLStreamReader interface, 563-565
XMLStreamWriter interface, 566-567

Streaming API for XML, See StAX
StreamMessage interface, 911
subscription names, for durable subscribers, 945
substitution parameters, defining, See messages, param

tag
Sun Java System Application Server Platform Edition

9, 64
See also Application Server

synchronous message consumption, 902
JMS client example, 913-922

T
tag files, 225, 233

attribute directive, 237
bodies

evaluating, 242
body-content attribute, 237
customizing behavior, 238
declaring expression language variable, 239
declaring tag attributes, 237
directives, 235
dynamic attributes

example, 246
fragment attributes

evaluating, 242
example, 243
storing evaluation result, 242

location, 235
packaged, 250
simple attributes, 243

example, 243
specifying body content type, 237
tag directive, 236-237
unpackaged, 249

implicit TLD, 250

Index

1119

tag files (Continued)
variable directive, 239
variable synchronization with calling page, 239-240
variables

example, 243
tag handlers, 225

classic, 225
See also tag handlers

making available to web applications, 256
simple

See also tag handlers
simple tags, 225

Tag interface, 278
tag libraries

accessing implementation from web
applications, 174

referencing TLD directly, 173
referencing TLD indirectly, 173
referencing via absolute URI, 174

tag library descriptors, 235, 247
attribute element, 252
body-content, 237
body-content element, 252, 278
filenames, 173
listener element, 249
tag element, 251-252

subelements, 251-252
tag-file element, 249
taglib

subelements, 247
taglib element, 247
validator element, 248
variable, 254

TagData class, 263
TagExtraInfo, 257
TagExtraInfo class, 262
taglib directive, 172
TagSupport class, 278
tei-class element, 263
temporary JMS destinations, 943-944

examples, 974-975, 989-990
TextMessage interface, 911
Thawte certificate authority, 790
timer service, 671-676

timer service (Continued)
cancelling timers, 672
creating timers, 671
examples, 673-674
exceptions, 672
getInfo method, 672
getNextTimeout method, 672
getTimeRemaining method, 672
getting information, 672
saving timers, 672
transactions, 672-673

timestamps, for messages, JMSTimestamp message
header field, 910

Topic interface, 904-905
topics

creating, 904-905, 917
durable subscriptions, 944-948
introduction, 904-905
temporary, 943-944, 989-990

transactions, 999-1009
attributes, 1000-1004
bean-managed, 961, 1005-1007
boundaries, 1000, 1005
business methods

See business methods, transactions
commits, 999, 1005
container-managed, 961, 1000-1005, 1007
default transaction demarcation, 1000
defined, 999
distributed, JMS, 960-962
examples, 951-956
exceptions

See exceptions transactions
invoking in web components, 109, 711
JDBC, 1007
JMS and Java EE applications, 957-958
JTA, 1006
local, JMS, 949-956
managers, 1003, 1006, 1007, 1008
message-driven beans, 637

See message-driven beans, transactions
nested, 1000, 1006
Required attribute, 962
rollbacks, 999, 1004, 1005, 1006

Index

The Java EE 5 Tutorial • October 20081120

transactions (Continued)
scope, 1000
session beans

See session beans, transactions
timeouts, 1007
timer service, 672-673
web components, 1009
XA, 1025

transport-guarantee element, 785
transport-layer security, 775, 787-797
truststores, 790-794

managing, 791

U
UDDI, 52, 61
UI component behavioral interfaces, 301

ActionSource interface, 301, 421
action and actionListener attributes, 373
action events, 306, 397
MapComponent class, 432

ActionSource2 interface, 301, 421
ConvertibleValueHolder interface, 301, 421
EditableValueHolder interface, 301, 421
NamingContainer interface, 301, 421
StateHolder interface, 301, 421, 428
ValueHolder interface, 301, 421

UI component classes, 300, 302, 412
javax.faces.component package, 421
SelectItem class, 349, 352, 387
SelectItemGroup class, 387
UIColumn class, 300
UICommand class, 300, 302
UIComponent class, 299, 302
UIComponentBase class, 300, 421, 424
UIData class, 300
UIForm class, 300
UIGraphic class, 300
UIInput class, 300, 306
UIMessage class, 300
UIMessages class, 300
UIOutput class, 300, 305
UIPanel class, 300
UIParameter class, 300

UI component classes (Continued)
UISelectBoolean class, 300, 346
UISelectItem class, 300, 349
UISelectItems class, 300, 349
UISelectMany class, 300, 348
UISelectOne class, 300, 302, 347
UIViewRoot class, 300, 325

UI component properties, See backing bean properties
UI component renderers

Grid renderer, 344
Group renderer, 344
Hidden renderer, 333
Label renderer, 333
Link renderer, 333
Message renderer, 333
Secret renderer, 333
Table renderer, 343
Text renderer, 333, 334
TextArea renderer, 333

UI component tag attributes, 329
action attribute, 406, 417
actionListener attribute, 373, 399, 408

and backing bean methods, 373
and JSP pages, 417
and UICommand component, 338
handling events of custom UI components, 431

alt attribute, 343, 417
attributes referencing backing bean methods

See attributes referencing backing bean methods
basename attribute, 354, 451
binding attribute, 329, 331

external data sources, 367
to a bean property, 371
value expressions, 313

columns attribute, 345
converter attribute, 358-359

custom converters, 377
custom objects, 376
text components, 334

first attribute, 343
for attribute, 335, 353
id attribute, 329
immediate attribute, 329, 330, 417
locale attribute, 325

Index

1121

UI component tag attributes (Continued)
redisplay attribute, 337
rendered attribute, 329, 330, 371
rows attribute, 343
style attribute, 329, 331, 343, 353
styleClass attribute, 329, 331
validator attribute, 409

text components, 334
value attribute, 329, 331

backing beans, 298
binding to a backing-bean property, 368-369,

382
commandButton tag, 338
external data sources, 367
graphicImage tag, 343
model data, 418
outputFormat tag, 336
outputLabel tag, 335
selectItems tag, 351
text fields, 293

valueChangeListener attribute, 334, 375, 409
var attribute

alias to the ResourceBundle class, 354
graphicImage tag, 343
referencing static localized data, 355
registering static localized text, 451
retrieving localized messages, 473

UI component tags, 303, 306, 329, 382
attributes

See UI component tag attributes
column tag, 303
commandButton tag, 295, 303, 338
commandLink tag, 303, 339, 363
dataTable tag, 303, 343, 384
form tag, 303, 332
graphicImage tag, 303, 417
inputHidden tag, 303, 333
inputSecret tag, 303, 333, 337
inputText tag, 303, 333

text components, 333
text fields, 292, 334

inputTextarea tag, 303, 333
message tag, 303, 352
messages tag, 295, 303, 352

UI component tags (Continued)
outputFormat tag, 304, 336, 339
outputLabel tag, 304, 333, 335
outputLink tag, 304, 333, 336
outputMessage tag, 333
outputText tag, 304, 333, 335, 384

text fields, 334
panelGrid tag, 304, 344
panelGroup tag, 304, 343, 344
selectBooleanCheckbox tag, 304, 346, 385
selectItems tag, 387
selectManyCheckbox tag, 304, 348, 385
selectManyListbox tag, 304, 348
selectManyMenu tag, 304
selectOneListbox tag, 304, 347
selectOneMenu tag, 304, 347, 386, 387
selectOneRadio tag, 304, 347

UI components
buttons, 303
check boxes, 304
combo boxes, 304
custom UI components

See custom UI components
data grids, 303
hidden fields, 303
hyperlinks, 303
labels, 304
list boxes, 304
password fields, 303
radio buttons, 304
table columns, 303
tables, 304
text areas, 303
text fields, 303

UnavailableException class, 109
unchecked element, 811
unified expression language, 146, 312

deactivating expression evaluation, 157
deferred evaluation expressions, 148
deferred method expressions, 238
deferred value expressions, 237
expression examples, 164
expression language resolvers, 161
functions, 165

Index

The Java EE 5 Tutorial • October 20081122

unified expression language, functions (Continued)
defining, 166

immediate evaluation expressions, 148
implicit objects, 162, 163
literal expressions, 154, 158
literals, 152
lvalue expressions, 148, 150
method expressions, 154
operators, 163
reserved words, 163
resolving expressions, 160
rvalue expressions, 148, 150
type conversion during expression evaluation, 154
value expressions, 148, 150

unmarshalling XML data, 494
use-caller-identity element, 816
user data constraint, 785
user-data-constraint element, 785
users, 782, 843

adding to Application Server, 783-784
managing, 783-784

UserTransaction interface, 1005, 1006, 1007, 1009
message-driven beans, 961

utility classes, 642

V
validate method, 258
validating input, See validation model
validating XML documents, 494
validation model, 299, 307

referencing a method that performs validation, 375
validator attribute, 373, 409

and backing bean methods, 373
referencing backing bean methods, 375
text components, 334

Validator class, 404, 406
Validator implementation, 307

custom validators, 378
Validator interface, 307, 408-409

custom validator tags, 404
implementing, 401
validator classes, 365

validation model (Continued)
validator tag

custom objects, 376
validators

See validators
writing a backing bean method to perform

validation, 408-409
Validator implementation classes, 307, 365

DoubleRangeValidator class, 328, 365
LengthValidator class, 328, 365
LongRangeValidation implementation, 295
LongRangeValidator class, 328, 365, 366

validator tags, 328
validateDoubleRange tag, 365
validateLength tag, 365
validateLongRange tag, 365, 366
validator tag, 307, 404

validators, 286, 299, 315
custom validators, 328, 378

value binding, 367, 382
a component instance to a bean property

See component binding
a component value to a backing-bean

property, 368-369
a component value to an implicit object, 369-371
acceptable types of component values, 383
component values and instances to external data

sources, 367-371
value attribute

backing beans, 298
binding to a backing-bean property, 368-369,

382
commandButton tag, 338
external data sources, 367
graphicImage tag, 343
model data, 418
outputFormat tag, 336
outputLabel tag, 335
selectItems tag, 351
text fields, 293

value-binding expressions, 368
value expressions, 291, 371, 384, 426

value-change events, 306, 362, 397

Index

1123

value-change events (Continued)
processValueChange(ValueChangeEvent)

method, 398
processValueChangeEvent(ValueChangeEvent)

method, 409
referencing methods that handle value-change

events, 375-376
type attribute, 363
ValueChangeEvent class, 363, 397, 398
valueChangeListener attribute, 334, 373, 409
ValueChangeListener class, 362, 397, 409
ValueChangeListener implementation, 398
valueChangeListener tag, 327, 362, 413
writing a backing bean method to handle

value-change events, 409-410
value expressions, 313

ValueExpression class, 313
verifier tool, 64
VeriSign certificate authority, 790

W
W3C, 481, 489
WAR file, 460
WAR files, JavaBeans components in, 82
web applications, 81

accessing databases from, 97, 705-712
accessing tag library implementations, 174
configuring, 79, 89, 842
establishing the locale, 470
internationalizing

Java EE Blueprints, 477
internationalizing and localizing, 469
maintaining state across requests, 125
making tag handlers available to, 256
parsing and formatting localized dates and

numbers, 473
presentation-oriented, 77
providing localized messages, 470
retrieving localized messages, 472
securing, 841
security

overview, 842
service oriented, 77

web applications (Continued)
setting the resource bundle, 471
specifying initialization parameters, 92-93
specifying welcome files, 91

web clients, 44, 77-98
Duke’s Bank, 1068, 1071

custom tags, 1071
JavaBeans components, 1070
request processing, 1073
running, 1080

examples, 652
web components, 46, 77

See also Java EE components
accessing databases from, 107
applets bundled with, 47
concurrent access to shared resources, 106
encoding of requests delivered to, 475
forwarding to other web components, 124
including other web resources, 122
invoking other web resources, 122

Web components, JMS and, 962
web components

mapping exceptions to error screens, 93
mapping filters to, 119
response encoding, 476
scope objects, 105
securing, 841
setting the request encoding, 475
setting the response encoding, 476
sharing information, 105
specifying aliases, 89
specifying initialization parameters, 92
transactions, 109, 711, 1009
types, 46
utility classes bundled with, 47
web context, 124

web containers, 50
loading and initializing servlets, 102
mapping URLs to web components, 89

web modules, 54, 81
deploying, 84

packaged, 84, 85
dynamic reloading, 87, 88
undeploying, 88

Index

The Java EE 5 Tutorial • October 20081124

web modules (Continued)
updating, 86

packaged, 86
viewing deployed, 86

web resource collection, 785
web-resource-collection element, 785
web resources, 81

Duke’s Bank
protecting, 1075

mapping filters to, 119, 121, 122
unprotected, 857

web services, 51
EJB.

See enterprise beans, web services
endpoint implementation classes, 668
example, 1031-1058
examples, 482, 667

web.xml file, 870, 880, 890-891
work flows, 636
Writer, StAX example, 582-584
writing backing bean methods, 406-410

for handling action events, 408
for handling value-change events, 409-410
for performing navigation, 406-408
for performing validation, 408-409

writing backing-bean methods, for performing
validation, 334

WSDL, 52, 481, 489
wsgen tool, 65, 483
wsimport tool, 65

X
xjc tool, 64, 505-507
XML, 51, 481

documents, and SAAJ, 588
elements in SOAP messages, 588
parser API summary, 554
Streaming API (StAX), 551-585
streams, reading, 563-566
streams, writing, 566-567
Sun parser implementation, 568-569

XML documents, JSP documents, 185-200
XML namespaces, 189

XML schema
Java representation of, 494
mappings of Java classes to XML data

types, 496-497
mappings to Java data types, 495-496
XML-to-Java bindings, 495-497

XML schema element ordering
@XmlType annotation, 540-541
using the @XmlAccessorOrder annotation, 540

XML schema element ordering algorithm
alphabetical, 540
undefined, 540

XmlAdapter interface, 542-545
XMLEventAllocator interface, 573
XMLEventFactory class, 562
XMLEventReader interface, 565-566
XMLEventWriter interface, 567
XMLInputFactory class, 561-562
XMLOutputFactory class, 562
XMLStreamReader interface, 563-565
XMLStreamWriter interface, 566-567

Index

1125

1126

	The Java EE 5 Tutorial
	Preface
	Before You Read This Book
	How This Book Is Organized
	Application Server Documentation Set
	Related Documentation
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Introduction
	Overview
	Java EE Application Model
	Distributed Multitiered Applications
	Security
	Java EE Components
	Java EE Clients
	Web Clients
	Applets
	Application Clients
	The JavaBeansTM Component Architecture
	Java EE Server Communications

	Web Components
	Business Components
	Enterprise Information System Tier

	Java EE Containers
	Container Services
	Container Types

	Web Services Support
	XML
	SOAP Transport Protocol
	WSDL Standard Format
	UDDI and ebXML Standard Formats

	Java EE Application Assembly and Deployment
	Packaging Applications
	Development Roles
	Java EE Product Provider
	Tool Provider
	Application Component Provider
	Enterprise Bean Developer
	Web Component Developer
	Application Client Developer

	Application Assembler
	Application Deployer and Administrator

	Java EE 5 APIs
	Enterprise JavaBeans Technology
	Java Servlet Technology
	JavaServer Pages Technology
	JavaServer Pages Standard Tag Library
	JavaServer Faces
	Java Message Service API
	Java Transaction API
	JavaMail API
	JavaBeans Activation Framework
	Java API for XML Processing
	Java API for XML Web Services (JAX-WS)
	Java Architecture for XML Binding (JAXB)
	SOAP with Attachments API for Java
	Java API for XML Registries
	J2EE Connector Architecture
	Java Database Connectivity API
	Java Persistence API
	Java Naming and Directory Interface
	Java Authentication and Authorization Service
	Simplified Systems Integration

	Sun Java System Application Server Platform Edition 9
	Tools

	Using the Tutorial Examples
	Required Software
	Tutorial Bundle
	Java Platform, Standard Edition
	Sun Java System Application Server 9.1
	Application Server Installation Tips

	NetBeans IDE
	Apache Ant

	Starting and Stopping the Application Server
	Starting the Admin Console
	Starting and Stopping the Java DB Database Server
	Building the Examples
	Building the Examples Using NetBeans IDE
	Building the Examples on the Command-Line Using Ant

	Tutorial Example Directory Structure
	Debugging Java EE Applications
	Using the Server Log
	Using a Debugger

	The Web Tier
	Getting Started with Web Applications
	Web Applications
	Web Application Life Cycle
	Web Modules
	Packaging Web Modules
	Deploying a WAR File
	Setting the Context Root
	Deploying a Packaged Web Module
	Deploying with the Admin Console
	Deploying with asadmin
	Deploying with Ant
	Deploying with NetBeans IDE

	Testing Deployed Web Modules
	Listing Deployed Web Modules
	Updating Web Modules
	Updating a Packaged Web Module
	Dynamic Reloading

	Undeploying Web Modules

	Configuring Web Applications
	Mapping URLs to Web Components
	Setting the Component Alias

	Declaring Welcome Files
	Setting Initialization Parameters
	Mapping Errors to Error Screens
	Declaring Resource References
	Declaring a Reference to a Resource
	Declaring a Reference to a Web Service

	Duke’s Bookstore Examples
	Accessing Databases from Web Applications
	Populating the Example Database
	Creating a Data Source in the Application Server

	Further Information about Web Applications

	Java Servlet Technology
	What Is a Servlet?
	The Example Servlets
	Troubleshooting Duke's Bookstore Database Problems

	Servlet Life Cycle
	Handling Servlet Life-Cycle Events
	Defining the Listener Class
	Specifying Event Listener Classes

	Handling Servlet Errors

	Sharing Information
	Using Scope Objects
	Controlling Concurrent Access to Shared Resources
	Accessing Databases

	Initializing a Servlet
	Writing Service Methods
	Getting Information from Requests
	Constructing Responses

	Filtering Requests and Responses
	Programming Filters
	Programming Customized Requests and Responses
	Specifying Filter Mappings

	Invoking Other Web Resources
	Including Other Resources in the Response
	Transferring Control to Another Web Component

	Accessing the Web Context
	Maintaining Client State
	Accessing a Session
	Associating Objects with a Session
	Notifying Objects That Are Associated with a Session

	Session Management
	Session Tracking

	Finalizing a Servlet
	Tracking Service Requests
	Notifying Methods to Shut Down
	Creating Polite Long-Running Methods

	Further Information about Java Servlet Technology

	JavaServer Pages Technology
	What Is a JSP Page?
	A Simple JSP Page Example

	The Example JSP Pages
	The Life Cycle of a JSP Page
	Translation and Compilation
	Execution
	Buffering
	Handling JSP Page Errors

	Creating Static Content
	Response and Page Encoding

	Creating Dynamic Content
	Using Objects within JSP Pages
	Using Implicit Objects
	Using Application-Specific Objects
	Using Shared Objects

	Unified Expression Language
	Immediate and Deferred Evaluation Syntax
	Immediate Evaluation
	Deferred Evaluation

	Value and Method Expressions
	Value Expressions
	Referencing Objects Using Value Expressions
	Referring to Object Properties Using Value Expressions
	Where Value Expressions Can Be Used

	Method Expressions

	Defining a Tag Attribute Type
	Deactivating Expression Evaluation
	Literal Expressions
	Resolving Expressions
	Process of Expression Evaluation
	EL Resolvers

	Implicit Objects
	Operators
	Reserved Words
	Examples of EL Expressions
	Functions
	Using Functions
	Defining Functions

	JavaBeans Components
	JavaBeans Component Design Conventions
	Creating and Using a JavaBeans Component
	Setting JavaBeans Component Properties
	Retrieving JavaBeans Component Properties

	Using Custom Tags
	Declaring Tag Libraries
	Including the Tag Library Implementation

	Reusing Content in JSP Pages
	Transferring Control to Another Web Component
	jsp:param Element

	Including an Applet
	Setting Properties for Groups of JSP Pages
	Deactivating EL Expression Evaluation
	Declaring Page Encodings
	Defining Implicit Includes
	Eliminating Extra White Space

	Further Information about JavaServer Pages Technology

	JavaServer Pages Documents
	The Example JSP Document
	Creating a JSP Document
	Declaring Tag Libraries
	Including Directives in a JSP Document
	Creating Static and Dynamic Content
	Using the jsp:root Element
	Using the jsp:output Element
	Generating XML Declarations
	Generating a Document Type Declaration

	Identifying the JSP Document to the Container

	JavaServer Pages Standard Tag Library
	The Example JSP Pages
	Using JSTL
	Tag Collaboration

	Core Tag Library
	Variable Support Tags
	Flow Control Tags
	Conditional Tags
	Iterator Tags

	URL Tags
	Miscellaneous Tags

	XML Tag Library
	Core Tags
	Flow Control Tags
	Transformation Tags

	Internationalization Tag Library
	Setting the Locale
	Messaging Tags
	The setBundle and bundle Tags
	The message Tag

	Formatting Tags

	SQL Tag Library
	query Tag Result Interface

	JSTL Functions
	Further Information about JSTL

	Custom Tags in JSP Pages
	What Is a Custom Tag?
	The Example JSP Pages
	Types of Tags
	Tags with Attributes
	Simple Attributes
	Fragment Attributes
	Dynamic Attributes
	Deferred Value
	Deferred Method
	Dynamic Attribute or Deferred Expression
	jsp:attribute Element

	Tags with Bodies
	jsp:body Element

	Tags That Define Variables
	Communication between Tags

	Encapsulating Reusable Content Using Tag Files
	Tag File Location
	Tag File Directives
	Declaring Tags
	body-content Attribute
	Declaring Tag Attributes in Tag Files
	Declaring Tag Variables in Tag Files
	Variable Synchronization
	Synchronization Examples

	Evaluating Fragments Passed to Tag Files
	Custom Tag Examples
	Simple Attribute Example
	Simple and Fragment Attribute and Variable Example
	Dynamic Attribute Example

	Tag Library Descriptors
	Top-Level Tag Library Descriptor Elements
	validator Element
	listener Element

	Declaring Tag Files
	tag-file TLD Element
	Unpackaged Tag Files
	Packaged Tag Files

	Declaring Tag Handlers
	body-content Element

	Declaring Tag Attributes for Tag Handlers
	Declaring Tag Variables for Tag Handlers

	Programming Simple Tag Handlers
	Including Tag Handlers in Web Applications
	How Is a Simple Tag Handler Invoked?
	Tag Handlers for Basic Tags
	Tag Handlers for Tags with Attributes
	Defining Attributes in a Tag Handler
	Attribute Validation
	Setting Dynamic Attributes
	Setting Deferred Value Attributes and Deferred Method Attributes

	Tag Handlers for Tags with Bodies
	Tag Handler Does Not Manipulate the Body
	Tag Handler Manipulates the Body

	Tag Handlers for Tags That Define Variables
	TagExtraInfo Class

	Cooperating Tags
	Tag Handler Examples
	An Iteration Tag
	JSP Page
	Tag Handler

	A Template Tag Library
	JSP Pages
	Tag Handlers

	Scripting in JSP Pages
	The Example JSP Pages
	Using Scripting
	Disabling Scripting
	JSP Declarations
	Initializing and Finalizing a JSP Page

	JSP Scriptlets
	JSP Expressions
	Programming Tags That Accept Scripting Elements
	TLD Elements
	Tag Handlers
	How Is a Classic Tag Handler Invoked?

	Tags with Bodies
	Tag Handler Does Not Manipulate the Body
	Tag Handler Manipulates the Body
	doInitBody Method
	doAfterBody Method
	release Method

	Cooperating Tags
	Tags That Define Variables

	JavaServer Faces Technology
	JavaServer Faces Technology User Interface
	JavaServer Faces Technology Benefits
	What Is a JavaServer Faces Application?
	A Simple JavaServer Faces Application
	Steps in the Development Process
	Mapping the FacesServlet Instance
	Creating the Pages
	Declaring the Tag Libraries
	Adding the view and form Tags
	Adding a Label Component
	Adding an Image
	Adding a Text Field
	Registering a Validator on a Text Field
	Adding a Custom Message
	Adding a Button
	Displaying Error Messages

	Defining Page Navigation
	Configuring Error Messages
	Developing the Beans
	Adding Managed Bean Declarations

	User Interface Component Model
	User Interface Component Classes
	Component Rendering Model
	Conversion Model
	Event and Listener Model
	Validation Model

	Navigation Model
	Backing Beans
	Creating a Backing Bean Class
	Configuring a Bean
	Using the Unified EL to Reference Backing Beans

	The Life Cycle of a JavaServer Faces Page
	Restore View Phase
	Apply Request Values Phase
	Process Validations Phase
	Update Model Values Phase
	Invoke Application Phase
	Render Response Phase

	Further Information about JavaServer Faces Technology

	Using JavaServer Faces Technology in JSP Pages
	The Example JavaServer Faces Application
	Setting Up a Page
	Using the Core Tags
	Adding UI Components to a Page Using the HTML Component Tags
	UI Component Tag Attributes
	The id Attribute
	The immediate Attribute
	The rendered Attribute
	The style and styleClass Attributes
	The value and binding Attributes

	Adding a Form Component
	Using Text Components
	Rendering a Text Field with the inputText Tag
	Rendering a Label with the outputLabel Tag
	Rendering a Hyperlink with the outputLink Tag
	Displaying a Formatted Message with the outputFormat Tag
	Rendering a Password Field with the inputSecret Tag

	Using Command Components for Performing Actions and Navigation
	Rendering a Button with the commandButton Tag
	Rendering a Hyperlink with the commandLink Tag

	Using Data-Bound Table Components
	Adding Graphics and Images with the graphicImage Tag
	Laying Out Components with the UIPanel Component
	Rendering Components for Selecting One Value
	Displaying a Check Box Using the selectBooleanCheckbox Tag
	Displaying a Menu Using the selectOneMenu Tag

	Rendering Components for Selecting Multiple Values
	The UISelectItem, UISelectItems, and UISelectItemGroup Components
	Using the selectItems Tag
	Using the selectItem Tag

	Displaying Error Messages with the message and messages Tags

	Using Localized Data
	Loading a Resource Bundle
	Referencing Localized Static Data
	Referencing Error Messages

	Using the Standard Converters
	Converting a Component’s Value
	Using DateTimeConverter
	Using NumberConverter

	Registering Listeners on Components
	Registering a Value-Change Listener on a Component
	Registering an Action Listener on a Component

	Using the Standard Validators
	Validating a Component’s Value
	Using the LongRangeValidator

	Binding Component Values and Instances to External Data Sources
	Binding a Component Value to a Property
	Binding a Component Value to an Implicit Object
	Binding a Component Instance to a Bean Property

	Binding Converters, Listeners, and Validators to Backing Bean Properties
	Referencing a Backing Bean Method
	Referencing a Method That Performs Navigation
	Referencing a Method That Handles an Action Event
	Referencing a Method That Performs Validation
	Referencing a Method That Handles a Value-change Event

	Using Custom Objects
	Using a Custom Converter
	Using a Custom Validator
	Using a Custom Component

	Developing with JavaServer Faces Technology
	Writing Bean Properties
	Writing Properties Bound to Component Values
	UIInput and UIOutput Properties
	UIData Properties
	UISelectBoolean Properties
	UISelectMany Properties
	UISelectOne Properties
	UISelectItem Properties
	UISelectItems Properties
	Properties for SelectItems Composed of SelectItem Instances
	Properties for SelectItems Composed of SelectItemGroup Instances

	Writing Properties Bound to Component Instances
	Writing Properties Bound to Converters, Listeners, or Validators

	Performing Localization
	Creating a Resource Bundle
	Localizing Dynamic Data
	Localizing Messages
	Creating a Message with a Message Factory
	Using FacesMessage to Create a Message

	Creating a Custom Converter
	Implementing an Event Listener
	Implementing Value-Change Listeners
	Implementing Action Listeners

	Creating a Custom Validator
	Implementing the Validator Interface
	Creating a Custom Tag
	Writing the Tag Handler
	Writing the Tag Library Descriptor

	Writing Backing Bean Methods
	Writing a Method to Handle Navigation
	Writing a Method to Handle an Action Event
	Writing a Method to Perform Validation
	Writing a Method to Handle a Value-Change Event

	Creating Custom UI Components
	Determining Whether You Need a Custom Component or Renderer
	When to Use a Custom Component
	When to Use a Custom Renderer
	Component, Renderer, and Tag Combinations

	Understanding the Image Map Example
	Why Use JavaServer Faces Technology to Implement an Image Map?
	Understanding the Rendered HTML
	Understanding the JSP Page
	Configuring Model Data
	Summary of the Application Classes

	Steps for Creating a Custom Component
	Creating Custom Component Classes
	Specifying the Component Family
	Performing Encoding
	Performing Decoding
	Enabling Component Properties to Accept Expressions
	Saving and Restoring State

	Delegating Rendering to a Renderer
	Creating the Renderer Class
	Identifying the Renderer Type

	Handling Events for Custom Components
	Creating the Component Tag Handler
	Retrieving the Component Type
	Setting Component Property Values
	Getting the Attribute Values
	Setting the Component Property Values
	Setting Value Expressions on Component Properties
	Setting Method Expressions on Component Properties

	Providing the Renderer Type
	Releasing Resources

	Defining the Custom Component Tag in a Tag Library Descriptor

	Configuring JavaServer Faces Applications
	Application Configuration Resource File
	Configuring Beans
	Using the managed-bean Element
	Initializing Properties Using the managed-property Element
	Referencing a Java Enum Type
	Referencing an Initialization Parameter
	Initializing Map Properties
	Initializing Array and List Properties
	Initializing Managed Bean Properties

	Initializing Maps and Lists

	Registering Custom Error Messages
	Registering Custom Localized Static Text
	Registering a Custom Validator
	Registering a Custom Converter
	Configuring Navigation Rules
	Registering a Custom Renderer with a Render Kit
	Registering a Custom Component
	Basic Requirements of a JavaServer Faces Application
	Configuring an Application with a Deployment Descriptor
	Identifying the Servlet for Life Cycle Processing
	Specifying a Path to an Application Configuration Resource File
	Specifying Where State Is Saved
	Encrypting Client State
	Restricting Access to JavaServer Faces Components
	Turning On Validation of XML Files
	Verifying Custom Objects

	Including the Required JAR Files
	Including the Classes, Pages, and Other Resources

	Internationalizing and Localizing Web Applications
	Java Platform Localization Classes
	Providing Localized Messages and Labels
	Establishing the Locale
	Setting the Resource Bundle
	Retrieving Localized Messages

	Date and Number Formatting
	Character Sets and Encodings
	Character Sets
	Character Encoding
	Request Encoding
	Page Encoding
	Response Encoding

	Further Information about Internationalizing Web Applications

	Web Services
	Building Web Services with JAX-WS
	Setting the Port
	Creating a Simple Web Service and Client with JAX-WS
	Requirements of a JAX-WS Endpoint
	Coding the Service Endpoint Implementation Class
	Building, Packaging, and Deploying the Service
	Building, Packaging, and Deploying the Service Using NetBeans IDE
	Building, Packaging, and Deploying the Service Using Ant
	Undeploying the Service
	The all Task

	Testing the Service without a Client
	A Simple JAX-WS Client
	Coding the Client
	Building and Running the Client
	Building and Running the Client in NetBeans IDE
	Building and Running the Client Using Ant

	Types Supported by JAX-WS
	Web Services Interoperability and JAX-WS
	Further Information about JAX-WS

	Binding between XML Schema and Java Classes
	JAXB Architecture
	Architectural Overview
	The JAXB Binding Process
	More about Unmarshalling
	More about Marshalling
	More about Validation

	Representing XML Content
	Java Representation of XML Schema

	Binding XML Schemas
	Simple Type Definitions
	Default Data Type Bindings
	Schema-to-Java Mapping
	JAXBElement Object
	Java-to-Schema Mapping

	Customizing Generated Classes and Java Program Elements
	Schema-to-Java
	Java-to-Schema

	JAXB Examples
	JAXB Compiler Options
	JAXB Schema Generator Option
	About the Schema-to-Java Bindings
	Schema-Derived JAXB Classes
	Comment Class
	Items Class
	ObjectFactory Class
	PurchaseOrder Class
	PurchaseOrderType Class
	USAddress Class

	Basic JAXB Examples
	Modify Marshal Example
	Building and Running the Modify Marshal Example Using NetBeans IDE
	Building and Running the Modify Marshal Example Using Ant

	Unmarshal Validate Example
	Building and Running the Unmarshal Validate Example Using NetBeans IDE
	Building and Running the Unmarshal Validate Example Using Ant

	Customizing JAXB Bindings
	Why Customize?
	Customization Overview
	Inline and External Customizations
	Inline Customizations
	External Binding Customization Files
	Binding Customization File Format
	Passing Customization Files to the JAXB Binding Compiler
	Restrictions for External Binding Customizations

	Scope, Inheritance, and Precedence
	Customization Syntax
	Global Binding Declarations
	Schema Binding Declarations
	Class Binding Declarations
	Property Binding Declarations
	javaType Binding Declarations
	Typesafe Enumeration Binding Declarations
	javadoc Binding Declarations

	Customization Namespace Prefix

	Customize Inline Example
	Building and Running the Customize Inline Example Using NetBeans IDE
	Building and Running the Customize Inline Example Using Ant
	Customized Schema
	Global Binding Declarations
	Schema Binding Declarations
	Class Binding Declarations
	Property Binding Declarations
	MyDatatypeConverter Class

	Datatype Converter Example
	Building and Running the Datatype Converter Example Using NetBeans IDE
	Building and Running the Datatype Converter Example Using Ant

	Binding Declaration Files
	JAXB Version, Namespace, and Schema Attributes
	JAXB Version Number
	Namespace Declarations
	Schema Name and Schema Node

	Global and Schema Binding Declarations
	Class Declarations

	External Customize Example
	Building and Running the External Customize Example Using NetBeans IDE
	Building and Running the External Customize Example Using Ant

	Java-to-Schema Examples
	Create Marshal Example
	Building and Running the Create Marshal Example Using NetBeans IDE
	Building and Running the Create Marshal Example Using Ant

	XmlAccessorOrder Example
	Using the @XmlAccessorOrder Annotation to Define Schema Element Ordering
	Using the @XmlType Annotation to Define Schema Element Ordering
	Schema Content Ordering in the Example
	Building and Running the XmlAccessorOrder Example Using NetBeans IDE
	Building and Running the XmlAccessorOrder Example Using Ant

	XmlAdapter Field Example
	Building and Running the XmlAdapter Field Example Using NetBeans IDE
	Building and Running the XmlAdapter Field Example Using Ant

	XmlAttribute Field Example
	Building and Running the XmlAttribute Field Example Using NetBeans IDE
	Building and Running the XmlAttribute Field Example Using Ant

	XmlRootElement Example
	Building and Running the XmlRootElement Example Using NetBeans IDE
	Building and Running the XmlRootElement Example Using Ant

	XmlSchemaType Class Example
	Building and Running the XmlSchemaType Class Example Using NetBeans IDE
	Building and Running the XmlSchemaType Class Example Using Ant

	XmlType Example
	Building and Running the XmlType Example Using NetBeans IDE
	Building and Running the XmlType Example Using Ant

	Further Information about JAXB

	Streaming API for XML
	Why StAX?
	Streaming versus DOM
	Pull Parsing versus Push Parsing
	StAX Use Cases
	Comparing StAX to Other JAXP APIs

	StAX API
	Cursor API
	Iterator API
	Iterator Event Types
	Example of Event Mapping

	Choosing between Cursor and Iterator APIs
	Development Goals
	Comparing Cursor and Iterator APIs

	Using StAX
	StAX Factory Classes
	XMLInputFactory Class
	XMLOutputFactory Class
	XMLEventFactory Class

	Resources, Namespaces, and Errors
	Resource Resolution
	Attributes and Namespaces
	Error Reporting and Exception Handling

	Reading XML Streams
	Using XMLStreamReader
	Reading Properties, Attributes, and Namespaces
	XMLStreamReader Methods
	Instantiating an XMLStreamReader

	Using XMLEventReader
	Reading Attributes
	Reading Namespaces

	Writing XML Streams
	Using XMLStreamWriter
	Using XMLEventWriter
	Attributes, Escaping Characters, Binding Prefixes

	Sun’s Streaming XML Parser Implementation
	Reporting CDATA Events
	Streaming XML Parser Factories Implementation

	Example Code
	Example Code Organization
	Example XML Document
	Cursor Example
	Stepping through Events
	Returning String Representations
	Building and Running the Cursor Example Using NetBeans IDE
	Building and Running the Cursor Example Using Ant

	Cursor-to-Event Example
	Instantiating an XMLEventAllocator
	Creating an Event Iterator
	Creating the Allocator Method
	Building and Running the Cursor-to-Event Example Using NetBeans IDE
	Building and Running the Cursor-to-Event Example Using Ant

	Event Example
	Creating an Input Factory
	Creating an Event Reader
	Creating an Event Iterator
	Getting the Event Stream
	Returning the Output
	Building and Running the Event Example Using NetBeans IDE
	Building and Running the Event Example Using Ant

	Filter Example
	Implementing the StreamFilter Class
	Creating an Input Factory
	Creating the Filter
	Capturing the Event Stream
	Filtering the Stream
	Returning the Output
	Building and Running the Filter Example Using NetBeans IDE
	Building and Running the Filter Example Using Ant

	Read-and-Write Example
	Creating an Event Producer/Consumer
	Creating an Iterator
	Creating a Writer
	Returning the Output
	Building and Running the Read-and-Write Example Using NetBeans IDE
	Building and Running the Read-and-Write Example Using Ant

	Writer Example
	Creating the Output Factory
	Creating a Stream Writer
	Writing the Stream
	Returning the Output
	Building and Running the Writer Example Using NetBeans IDE
	Building and Running the Writer Example Using Ant

	Further Information about StAX

	SOAP with Attachments API for Java
	Overview of SAAJ
	SAAJ Messages
	The Structure of an XML Document
	What Is in a Message?
	Messages with No Attachments
	Messages with Attachments

	SAAJ and DOM

	SAAJ Connections
	SOAPConnection Objects

	SAAJ Tutorial
	Creating and Sending a Simple Message
	Creating a Message
	Parts of a Message
	Accessing Elements of a Message
	Adding Content to the Body
	Getting a SOAPConnection Object
	Sending a Message
	Getting the Content of a Message

	Adding Content to the Header
	Adding Content to the SOAPPart Object
	Adding a Document to the SOAP Body
	Manipulating Message Content Using SAAJ or DOM APIs
	Adding Attachments
	Creating an AttachmentPart Object and Adding Content
	Accessing an AttachmentPart Object

	Adding Attributes
	Header Attributes
	The actor Attribute
	The role Attribute
	The mustUnderstand Attribute
	The relay Attribute

	Using SOAP Faults
	Overview of SOAP Faults
	Creating and Populating a SOAPFault Object
	Retrieving Fault Information

	Code Examples
	Request Example
	Header Example
	Building and Running the Header Example

	DOM and DOMSource Examples
	Examining the DOMExample Class
	Examining the DOMSrcExample Class
	Building and Running the DOM and DOMSource Examples

	Attachments Example
	Building and Running the Attachments Example

	SOAP Fault Example
	Building and Running the SOAP Fault Example

	Further Information about SAAJ

	Enterprise Beans
	Enterprise Beans
	What Is an Enterprise Bean?
	Benefits of Enterprise Beans
	When to Use Enterprise Beans
	Types of Enterprise Beans

	What Is a Session Bean?
	State Management Modes
	Stateful Session Beans
	Stateless Session Beans

	When to Use Session Beans

	What Is a Message-Driven Bean?
	What Makes Message-Driven Beans Different from Session Beans?
	When to Use Message-Driven Beans

	Defining Client Access with Interfaces
	Remote Clients
	Local Clients
	Deciding on Remote or Local Access
	Web Service Clients
	Method Parameters and Access
	Isolation
	Granularity of Accessed Data

	The Contents of an Enterprise Bean
	Naming Conventions for Enterprise Beans
	The Life Cycles of Enterprise Beans
	The Life Cycle of a Stateful Session Bean
	The Life Cycle of a Stateless Session Bean
	The Life Cycle of a Message-Driven Bean

	Further Information about Enterprise Beans

	Getting Started with Enterprise Beans
	Creating the Enterprise Bean
	Coding the Enterprise Bean
	Coding the Business Interface
	Coding the Enterprise Bean Class

	Compiling and Packaging the converter Example
	Compiling and Packaging the converter Example in NetBeans IDE
	Compiling and Packaging the converter Example Using Ant

	Creating the converter Application Client
	Coding the converter Application Client
	Creating a Reference to an Enterprise Bean Instance
	Invoking a Business Method
	ConverterClient Source Code

	Compiling the converter Application Client

	Creating the converter Web Client
	Coding the converter Web Client
	Compiling the converter Web Client

	Deploying the converter Java EE Application
	Deploying the converter Example Using NetBeans IDE
	Deploying the converter Example Using Ant

	Running the converter Application Client
	Running the converter Application Client Using NetBeans IDE
	Running the converter Application Client Using Ant

	Running the converter Web Client
	Modifying the Java EE Application
	Modifying a Class File

	Session Bean Examples
	The cart Example
	The Business Interface
	Session Bean Class
	Life-Cycle Callback Methods
	Business Methods

	The Remove Method
	Helper Classes
	Building, Packaging, Deploying, and Running the cart Example
	Building, Packaging, and Deploying the cart Example Using NetBeans IDE
	Running the cart Application Client Using NetBeans IDE
	Building, Packaging, and Deploying the cart Example Using Ant
	Running the cart Application Client Using Ant
	The all Task

	Undeploying the cart Example

	A Web Service Example: helloservice
	The Web Service Endpoint Implementation Class
	Stateless Session Bean Implementation Class
	Building, Packaging, Deploying, and Testing the helloservice Example
	Building, Packaging, and Deploying the helloservice Example Using NetBeans IDE
	Building, Packaging, and Deploying the helloservice Example Using Ant
	Testing the Service without a Client

	Using the Timer Service
	The Timeout Method
	Creating Timers
	Canceling and Saving Timers
	Getting Timer Information
	Transactions and Timers
	The timersession Example
	Building, Packaging, Deploying, and Running the timersession Example
	Building, Packaging, Deploying, and Running the timersession Example Using NetBeans IDE
	Building, Packaging, and Deploying the timersession Example Using Ant
	Running the timersession Application Client Using Ant

	Handling Exceptions

	A Message-Driven Bean Example
	simplemessage Example Application Overview
	The simplemessage Application Client
	The Message-Driven Bean Class
	The onMessage Method

	Packaging, Deploying, and Running the simplemessage Example
	Creating the Administered Objects for the simplemessage Example
	Building, Deploying, and Running the simplemessage Application Using NetBeans IDE
	Building, Deploying, and Running the simplemessage Application Using Ant
	Removing the Administered Objects for the simplemessage Example

	Creating Deployment Descriptors for Message-Driven Beans

	Persistence
	Introduction to the Java Persistence API
	Entities
	Requirements for Entity Classes
	Persistent Fields and Properties in Entity Classes
	Persistent Fields
	Persistent Properties

	Primary Keys in Entities
	Primary Key Classes

	Multiplicity in Entity Relationships
	Direction in Entity Relationships
	Bidirectional Relationships
	Unidirectional Relationships
	Queries and Relationship Direction
	Cascade Deletes and Relationships

	Entity Inheritance
	Abstract Entities
	Mapped Superclasses
	Non-Entity Superclasses
	Entity Inheritance Mapping Strategies
	The Single Table per Class Hierarchy Strategy
	The Table per Concrete Class Strategy
	The Joined Subclass Strategy

	Managing Entities
	The Persistence Context
	The EntityManager Interface
	Container-Managed Entity Managers
	Application-Managed Entity Managers
	Finding Entities Using the EntityManager
	Managing an Entity Instance’s Life Cycle
	Persisting Entity Instances
	Removing Entity Instances
	Synchronizing Entity Data to the Database

	Creating Queries
	Named Parameters in Queries
	Positional Parameters in Queries

	Persistence Units
	The persistence.xml File

	Persistence in the Web Tier
	Accessing Databases from Web Applications
	Defining the Persistence Unit
	Creating an Entity Class
	Obtaining Access to an Entity Manager
	Accessing Data from the Database
	Updating Data in the Database

	Persistence in the EJB Tier
	The order Application
	Entity Relationships in the order Application
	Self-Referential Relationships
	One-to-One Relationships
	One-to-Many Relationship Mapped to Overlapping Primary and Foreign Keys
	Unidirectional Relationships

	Primary Keys in the order Application
	Generated Primary Keys
	Compound Primary Keys

	Entity Mapped to More Than One Database Table
	Cascade Operations in the order Application
	BLOB and CLOB Database Types in the order Application
	Temporal Types in the order Application
	Managing the order Application’s Entities
	Creating Entities
	Finding Entities
	Setting Entity Relationships
	Using Queries
	Removing Entities

	Building and Running the order Application
	Creating the Database Tables in NetBeans IDE
	Creating the Database Connection
	Creating the Tables
	Deleting the Tables

	Creating the Database Tables Using Ant
	Building, Packaging, Deploying, and Running order In NetBeans IDE
	Building, Packaging, Deploying, and Running order Using Ant
	The all Task
	Undeploying order

	The roster Application
	Relationships in the roster Application
	The Many-To-Many Relationship in roster

	Entity Inheritance in the roster Application
	Automatic Table Generation in the roster Application
	Building and Running the roster Application
	Building, Packaging, Deploying, and Running roster in NetBeans IDE
	Building, Packaging, Deploying, and Running roster Using Ant
	The all Task
	Undeploying order

	The Java Persistence Query Language
	Query Language Terminology
	Simplified Query Language Syntax
	Select Statements
	Update and Delete Statements

	Example Queries
	Simple Queries
	A Basic Select Query
	Eliminating Duplicate Values
	Using Named Parameters

	Queries That Navigate to Related Entities
	A Simple Query with Relationships
	Navigating to Single-Valued Relationship Fields
	Traversing Relationships with an Input Parameter
	Traversing Multiple Relationships
	Navigating According to Related Fields

	Queries with Other Conditional Expressions
	The LIKE Expression
	The IS NULL Expression
	The IS EMPTY Expression
	The BETWEEN Expression
	Comparison Operators

	Bulk Updates and Deletes
	Update Queries
	Delete Queries

	Full Query Language Syntax
	BNF Symbols
	BNF Grammar of the Java Persistence Query Language
	FROM Clause
	Identifiers
	Identification Variables
	Range Variable Declarations
	Collection Member Declarations
	Joins

	Path Expressions
	Examples of Path Expressions
	Expression Types
	Navigation

	WHERE Clause
	Literals
	String Literals
	Numeric Literals
	Boolean Literals
	Enum Literals

	Input Parameters
	Conditional Expressions
	Operators and Their Precedence
	BETWEEN Expressions
	IN Expressions
	LIKE Expressions
	NULL Comparison Expressions
	Empty Collection Comparison Expressions
	Collection Member Expressions
	Subqueries
	EXISTS Expressions
	ALL and ANY Expressions

	Functional Expressions
	NULL Values
	Equality Semantics

	SELECT Clause
	Return Types
	Aggregate Functions in the SELECT Clause

	The DISTINCT Keyword
	Constructor Expressions

	ORDER BY Clause
	The GROUP BY Clause
	The HAVING Clause

	Services
	Introduction to Security in the Java EE Platform
	Overview of Java EE Security
	A Simple Security Example
	Step 1: Initial Request
	Step 2: Initial Authentication
	Step 3: URL Authorization
	Step 4: Fulfilling the Original Request
	Step 5: Invoking Enterprise Bean Business Methods

	Security Functions
	Characteristics of Application Security

	Security Implementation Mechanisms
	Java SE Security Implementation Mechanisms
	Java EE Security Implementation Mechanisms
	Application-Layer Security
	Transport-Layer Security
	Message-Layer Security

	Securing Containers
	Using Deployment Descriptors for Declarative Security
	Using Annotations
	Using Programmatic Security

	Securing the Application Server
	Working with Realms, Users, Groups, and Roles
	What Are Realms, Users, Groups, and Roles?
	What Is a Realm?
	What Is a User?
	What Is a Group?
	What Is a Role?
	Some Other Terminology

	Managing Users and Groups on the Application Server
	Adding Users to the Application Server
	Adding Users to the Certificate Realm

	Setting Up Security Roles
	Mapping Roles to Users and Groups

	Establishing a Secure Connection Using SSL
	Installing and Configuring SSL Support
	Specifying a Secure Connection in Your Application Deployment Descriptor
	Verifying SSL Support
	Tips on Running SSL

	Working with Digital Certificates
	Creating a Server Certificate
	Signing Digital Certificates
	Obtaining a Digitally Signed Certificate

	Using a Different Server Certificate with the Application Server
	Miscellaneous Commands for Certificates

	Enabling Mutual Authentication over SSL
	Creating a Client Certificate for Mutual Authentication

	Further Information about Security

	Securing Java EE Applications
	Securing Enterprise Beans
	Accessing an Enterprise Bean Caller’s Security Context
	Declaring Security Role Names Referenced from Enterprise Bean Code
	Declaring Security Roles Using Annotations
	Declaring Security Roles Using Deployment Descriptor Elements

	Defining a Security View of Enterprise Beans
	Defining Security Roles
	Linking Security Role References to Security Roles

	Specifying an Authentication Mechanism
	Specifying Method Permissions
	Specifying Method Permissions Using Annotations
	Specifying Method Permissions Using Deployment Descriptors

	Mapping Security Roles to Application Server Groups
	Propagating Security Identity
	Configuring a Component’s Propagated Security Identity
	Trust between Containers

	Using Enterprise Bean Security Annotations
	Using Enterprise Bean Security Deployment Descriptor Elements
	Configuring IOR Security
	Deploying Secure Enterprise Beans
	Accepting Unauthenticated Users
	Accessing Unprotected Enterprise Beans

	Enterprise Bean Example Applications
	Example: Securing an Enterprise Bean
	Annotating the Bean
	Setting Runtime Properties
	Building, Deploying, and Running the Secure Cart Example Using NetBeans IDE
	Building, Deploying, and Running the Secure Cart Example Using Ant

	Example: Using the isCallerInRole and getCallerPrincipal Methods
	Modifying ConverterBean
	Modifying Runtime Properties for the Secure Converter Example
	Building, Deploying, and Running the Secure Converter Example Using NetBeans IDE
	Building, Deploying, and Running the Secure Converter Example Using Ant
	Troubleshooting the Secure Converter Application

	Discussion: Securing the Duke’s Bank Example

	Securing Application Clients
	Using Login Modules
	Using Programmatic Login

	Securing EIS Applications
	Container-Managed Sign-On
	Component-Managed Sign-On
	Configuring Resource Adapter Security
	Mapping an Application Principal to EIS Principals

	Securing Web Applications
	Overview of Web Application Security
	Working with Security Roles
	Declaring Security Roles
	Specifying Security Roles Using Annotations
	Specifying Security Roles Using Deployment Descriptor Elements

	Mapping Security Roles to Application Server Groups

	Checking Caller Identity Programmatically
	Declaring and Linking Role References
	Declaring Roles Using Annotations
	Declaring Roles Using Deployment Descriptor Elements

	Defining Security Requirements for Web Applications
	Declaring Security Requirements Using Annotations
	Using the @DeclareRoles Annotation
	Using the @RunAs Annotation

	Declaring Security Requirements in a Deployment Descriptor
	Specifying Security Constraints
	Specifying Separate Security Constraints for Different Resources

	Specifying a Secure Connection
	Specifying an Authentication Mechanism
	HTTP Basic Authentication
	Form-Based Authentication
	Using Login Forms

	HTTPS Client Authentication
	Mutual Authentication

	Digest Authentication

	Examples: Securing Web Applications
	Example: Using Form-Based Authentication with a JSP Page
	Creating a Web Client for Form-Based Authentication
	Creating the Login Form and the Error Page
	Specifying a Security Constraint
	Protecting Passwords with SSL

	Adding Authorized Roles and Users
	Mapping Application Roles to Application Server Groups
	Building, Packaging, and Deploying the Form-Based Authentication Example Using NetBeans IDE
	Building, Packaging, and Deploying the Form-Based Authentication Example Using Ant
	Testing the Form-Based Authentication Web Client

	Example: Basic Authentication with a Servlet
	Declaring Security Roles
	Specifying the Security Constraint
	Protecting Passwords with SSL

	Adding Authorized Roles and Users
	Mapping Application Roles to Application Server Groups
	Building, Packaging, and Deploying the Servlet Basic Authentication Example Using NetBeans IDE
	Building, Packaging, and Deploying the Servlet Basic Authentication Example Using Ant
	Running the Basic Authentication Servlet
	Troubleshooting the Basic Authentication Example

	Example: Basic Authentication with JAX-WS
	Annotating the Service
	Adding Security Elements to the Deployment Descriptor
	Linking Roles to Groups
	Building and Deploying helloservice with Basic Authentication Using NetBeans IDE
	Building and Deploying helloservice with Basic Authentication Using Ant
	Building and Running the helloservice Client Application with Basic Authentication Using NetBeans IDE
	Building and Running the helloservice Client Application with Basic Authentication Using Ant

	The Java Message Service API
	Overview of the JMS API
	What Is Messaging?
	What Is the JMS API?
	When Can You Use the JMS API?
	How Does the JMS API Work with the Java EE Platform?

	Basic JMS API Concepts
	JMS API Architecture
	Messaging Domains
	Point-to-Point Messaging Domain
	Publish/Subscribe Messaging Domain
	Programming with the Common Interfaces

	Message Consumption

	The JMS API Programming Model
	JMS Administered Objects
	JMS Connection Factories
	JMS Destinations

	JMS Connections
	JMS Sessions
	JMS Message Producers
	JMS Message Consumers
	JMS Message Listeners
	JMS Message Selectors

	JMS Messages
	Message Headers
	Message Properties
	Message Bodies

	JMS Queue Browsers
	JMS Exception Handling

	Writing Simple JMS Client Applications
	A Simple Example of Synchronous Message Receives
	Writing the Client Programs for the Synchronous Receive Example
	Starting the JMS Provider
	Creating JMS Administered Objects for the Synchronous Receive Example
	Compiling and Packaging the Clients for the Synchronous Receive Example
	Running the Clients for the Synchronous Receive Example

	A Simple Example of Asynchronous Message Consumption
	Writing the Client Programs for the Asynchronous Receive Example
	Compiling and Packaging the AsynchConsumer Client
	Running the Clients for the Asynchronous Receive Example

	A Simple Example of Browsing Messages in a Queue
	Writing the Client Program for the Queue Browser Example
	Compiling and Packaging the MessageBrowser Client
	Running the Clients for the Queue Browser Example

	Running JMS Client Programs on Multiple Systems
	Creating Administered Objects for Multiple Systems
	Editing, Recompiling, Repackaging, and Running the Programs
	Deleting the Connection Factory and Stopping the Server

	Creating Robust JMS Applications
	Using Basic Reliability Mechanisms
	Controlling Message Acknowledgment
	A Message Acknowledgment Example

	Specifying Message Persistence
	Setting Message Priority Levels
	Allowing Messages to Expire
	Creating Temporary Destinations

	Using Advanced Reliability Mechanisms
	Creating Durable Subscriptions
	A Durable Subscription Example

	Using JMS API Local Transactions
	A Local Transaction Example

	Using the JMS API in a Java EE Application
	Using @Resource Annotations in Java EE Components
	Using Session Beans to Produce and to Synchronously Receive Messages
	Resource Management
	Transactions

	Using Message-Driven Beans to Receive Messages Asynchronously
	Managing Distributed Transactions
	Using the JMS API with Application Clients and Web Components

	Further Information about JMS

	Java EE Examples Using the JMS API
	A Java EE Application That Uses the JMS API with a Session Bean
	Writing the Application Components for the clientsessionmdb Example
	Coding the Application Client: MyAppClient.java
	Coding the Publisher Session Bean
	Coding the Message-Driven Bean: MessageBean.java

	Creating Resources for the clientsessionmdb Example
	Building, Deploying, and Running the clientsessionmdb Example Using NetBeans IDE
	Building, Deploying, and Running the clientsessionmdb Example Using Ant

	A Java EE Application That Uses the JMS API with an Entity
	Overview of the clientmdbentity Example Application
	Writing the Application Components for the clientmdbentity Example
	Coding the Application Client: HumanResourceClient.java
	Coding the Message-Driven Beans for the clientmdbentity Example
	Coding the Entity Class for the clientmdbentity Example

	Creating Resources for the clientmdbentity Example
	Building, Deploying, and Running the clientmdbentity Example Using NetBeans IDE
	Building, Deploying, and Running the clientmdbentity Example Using Ant

	An Application Example That Consumes Messages from a Remote Server
	Overview of the consumeremote Example Modules
	Writing the Module Components for the consumeremote Example
	Creating Resources for the consumeremote Example
	Using Two Application Servers for the consumeremote Example
	Building, Deploying, and Running the consumeremoteModules Using NetBeans IDE
	Building, Deploying, and Running the consumeremote Modules Using Ant

	An Application Example That Deploys a Message-Driven Bean on Two Servers
	Overview of the sendremote Example Modules
	Writing the Module Components for the sendremote Example
	Coding the Application Client: MultiAppServerClient.java
	Coding the Message-Driven Bean: ReplyMsgBean.java

	Creating Resources for the sendremote Example
	Using Two Application Servers for the sendremote Example
	Building, Deploying, and Running the sendremote Modules Using NetBeans IDE
	Building, Deploying, and Running the sendremote Modules Using Ant

	Transactions
	What Is a Transaction?
	Container-Managed Transactions
	Transaction Attributes
	Required Attribute
	RequiresNew Attribute
	Mandatory Attribute
	NotSupported Attribute
	Supports Attribute
	Never Attribute
	Summary of Transaction Attributes
	Setting Transaction Attributes

	Rolling Back a Container-Managed Transaction
	Synchronizing a Session Bean’s Instance Variables
	Methods Not Allowed in Container-Managed Transactions

	Bean-Managed Transactions
	JTA Transactions
	Returning without Committing
	Methods Not Allowed in Bean-Managed Transactions

	Transaction Timeouts
	Updating Multiple Databases
	Transactions in Web Components

	Resource Connections
	Resources and JNDI Naming
	DataSource Objects and Connection Pools
	Resource Injection
	Field-Based Injection
	Method-Based Injection
	Class-Based Injection
	Declaring Multiple Resources

	The confirmer Example Application
	Running the confirmer Example Application
	Creating a Mail Session
	Building, Packaging, and Deploying confirmer in NetBeans IDE
	Building, Packaging, and Deploying confirmer Using Ant
	Running the confirmer Client in NetBeans IDE
	Running the confirmer Client Using Ant

	Further Information about Resources

	Connector Architecture
	About Resource Adapters
	Resource Adapter Contracts
	Management Contracts
	Life-Cycle Management
	Work Management Contract

	Outbound Contracts
	Inbound Contracts
	Messaging Contracts
	Transaction Inflow

	Common Client Interface
	Further Information about the Connector Architecture

	Case Studies
	The Coffee Break Application
	Overview of the Coffee Break Application
	Common Code
	JAX-WS Coffee Supplier Service
	Service Implementation

	SAAJ Coffee Supplier Service
	SAAJ Client
	Sending the Request
	Extracting the Price List

	Ordering Coffee
	Creating the Order
	Retrieving the Order Confirmation

	SAAJ Service
	Returning the Price List
	Returning the Order Confirmation

	Coffee Break Server
	JSP Pages
	The orderForm Page
	The checkoutForm Page
	The checkoutAck Page

	JavaBeans Components
	The RetailPriceList JavaBeans Component
	The ShoppingCart JavaBeans Component
	The OrderConfirmations JavaBeans Component
	The CheckoutFormBean JavaBeans Component
	The CoffeeBreakBean JavaBeans Component

	The RetailPriceListServlet Servlet
	Resource Configuration

	Building, Packaging, Deploying, and Running the Coffee Break Application
	Setting the Port
	Building, Packaging, and Deploying the JAX-WS Coffee Supplier Service
	Building, Packaging, and Deploying the SAAJ Coffee Supplier Service
	Building, Packaging, and Deploying the Coffee Break Server
	Running the Coffee Break Client
	Removing the Coffee Break Application

	The Duke’s Bank Application
	Overview of the Duke’s Bank Application
	Enterprise Beans
	Session Beans
	The AccountControllerBean Session Bean
	The CustomerControllerBean Session Bean
	The TxControllerBean Session Bean

	Java Persistence Entities
	Helper Classes
	Database Tables
	Tables Representing Business Entities

	Protecting the Enterprise Beans

	Application Client
	The Classes and Their Relationships
	BankAdmin Class
	The BankAdmin Constructor
	Class Methods

	Web Client
	Design Strategies
	Client Components
	Request Processing
	Protecting the Web Client Resources

	Building, Packaging, Deploying, and Running the Duke's Bank Application
	Setting Up the Servers
	Starting the Application Server
	Creating the Bank Database in NetBeans IDE
	Creating the Bank Database Using Ant
	Adding Users and Groups to the File Realm

	Building, Packaging, and Deploying Duke’s Bank Using NetBeans IDE
	Building, Packaging, and Deploying Duke’s Bank Using Ant
	Running the Duke's Bank Application Client Using NetBeans IDE
	Running the Duke's Bank Application Client Using Ant
	Running the Duke's Bank Web Client

	Appendixes
	Java Encoding Schemes
	Further Information about Character Encoding

	Preparation for Java EE Certification Exams
	CX-310-083: Sun Certified Web Component Developer
	SL-351–EE5: Business Component Development with Enterprise JavaBeansTM Technology

	About the Authors

	Index

