The Java EE 5 Tutorial

For Sun Java System Application Server 9.1

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 819-3669-11
October 2008

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN LETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

081104@21288

Partl

Contents

PREFACE ...ttt sttt 29
INEFOAUCHION ..o s 39
OVEIVIEW ...ttt ettt bbbttt eataees 41
Java EE Application MOc.cucuiiiueiicieiiiciricieneciscie ettt 42
Distributed Multitiered APPIICAIONSc.evvvuevriiuririririeieieeeie sttt sae s eassessaes 42
SECUTTLY 1utveuiteieieeeiertet ettt ettt ettt b et bbbt b ettt e b et s b e s et e b et eb e st b ese e ebenenteneasenen 43
Java EE COMPONEINLS ...vvvvivieiiiiriririeieicicittnteteteteseseattte sttt eseseee sttt se bbbt seesene 44
Java EE Clients
WED COMPONENLS ..ottt ettt ss s esssssssesesessssssasasassesssssenen 46
Business COMPONEILSc.cciiririririeieiiiiiiniiiereeseittte ettt ssse s e esesessenene 47
Enterprise Information SYStem TIETcoceureiueurieurineeeinieieineeieeee et sseeesseneans 48
JAVA EE CONTAINETS ...viiviivievieiieetiereeetecte e et cveeteetrestseseeteeseesaesseesseseesseseessensesssessesseessenseessensesssensenses 48
CONLAINET SETVICES ...euiirieeereieieirtririeeet ettt sttt bbbttt b bttt esene 49
CONLANET TYPES .ttt ettt ettt ettt be ettt esne

Web Services Support ...

KIVIL ottt et b bbbttt
SOAP Transport PIOtOCOLc.ccueiiuierieieirieieieeis sttt seassesanans 52
WSDL Standard FOIMALc.cvuvuierienieiireieierenieneeeiesieese e saessessssssessssse e ssessessessssssns 52
UDDI and ebXML Standard FOIMatsccoeeeueerecirineeeineneieinecinieeseeeeeseseieesesessesesessesesseseans 52
Java EE Application Assembly and Deploymentcccvceeueerieinincieinicinencieineeieeeeeseeeeeseeenseenes 52
Packaging Applications
Development Rolesc........
Java EE Product Provider
TOOL PLOVIAET ettt sttt sttt 55
Application Component PrOVIAETcoocuruiueuriieirieisinieineietneeieeeietseeie et sseaesees 55

Contents

ApPPlICation ASSEMDIETcucuiiiieirieieicieieecie ettt ettt 56
Application Deployer and AdminiStratorc.ococeueeeeueereeireneieeseneieeseeeseeeesee e sseasaeeseans 56
JAVA EE 5 APIS oottt ettt ettt ettt ete et ebe et a et e eas e ssestenteessenbesbsensenteeabeereensereenes 57
Enterprise JavaBeans TeChNOlOZYcocovieeuriririririieeeiesr et 57
Java Servlet TEChNOLOZYc.ccovieeriririeiriiiceeiee ettt asesssesenes 58
JavaServer Pages Technology .58
JavaServer Pages Standard Tag LIDIarycccccccvcencoenineciniceneesrcieseeieisesesseesesseseeseenes 58
JAVASEIVET FACES ...vcuviveeiicteceeteetetecte ettt ettt et et bbbt e ebseseebeesbesbsessessessenseessensensens 59
Java Message SETVICE APT ..ottt e 59
Java Transaction AP ...ttt et sttt aea e re e benee 59
JAVAMAIL AP ...ttt ettt s et es et s s essesese s et ensesenssesenseneaen 59
JavaBeans Activation Framework ... 60
Java API fOr XIML PTOCESSING ...ucucuemeeeirieciriiieirieteieeeisteietseseieeesetseesessesesesesessesesesseassssesesseacs 60
Java API for XML Web Services (JAX-WS) ..ot esssensenenes 60
Java Architecture for XML Binding (JAXB)cccereueureneirenieinieeiseeieeseie et teeesessessaeesenas 61
SOAP with Attachments APTfOr JAVAcvieuiuereieiiiecereee et 61
Java API fOr XIML REZISIIIEScuevimiueiiiciriiieirieieieieisteietsese ettt se st eeesesseaes

J2EE Connector Architecture
Java Database Connectivity API

JaAVA PerSISTENCE API ...ttt ettt b e be s aeeae b e ebsenbesaeenseebeeasensensees 62
Java Naming and Directory INtErfaceccceuvioeurereeeircsiriieieieeiree et sesaeseans 62
Java Authentication and Authorization SEIVICEooeevieeeieverieeeeeeeeeeeeeeeeee e 63
Simplified Systems INTEZIationc.c.eecueueecueerieirineeeireeieiree ettt ettt eeeaebseeaeeeaes 63
Sun Java System Application Server Platform Edition 9 .64
TOOLS ettt ettt 64

2 UsingtheTutorial EXamPIescooiiiririiiieeees ettt eeas 67
Required Software .. 67
TULOTTAl BUINALE ...ttt et 67

Java Platform, Standard EAItiONccceeeeiieueveieiiiieeeeeeseee e 68

Sun Java System Application SErver 9.1cocuricueineneurinieirieiereetseseie et seseseeeaes 68
NetBeans IDE ...ttt ettt 69

APACRE AT oottt ettt et en 69

Starting and Stopping the Application Server
Starting the Admin CONSOLEc.cuvirueiiririieireie ettt snaas 70

4 The Java EE 5 Tutorial « October 2008

Contents

Partll

Starting and Stopping the Java DB Database SEIVercccevieurineueuriieeinieirineie et 71
Building the EXAMPLEScuoiiueiieirieieieiece sttt bbb eseans 71
Building the Examples Using NetBeans IDEcccccoeueeiniieeeieieiniieeeesieeseseeessseseeeens 71
Building the Examples on the Command-Line Using ANtccocceveeurinceerrenereeneeinenerenneenne 72
Tutorial Example DIireCtOry STIUCTUTEccueuviueuriieeirecieireeeie ettt ettt s seaeseeaeans 73
Debugging Java EE APPLICATIONS ...c.cuiueuruririririiceieeeieiririr ettt et esesenene 73
USING the SETVET LOEZ ...voveviieiereeieieieieiriieseeieiesees et sses s ssssssasssesssssssssssssssssssnssssesesns 73
USING @ DEDUGZET ..ottt bbbttt 74
TREWEBTIEK ... s 75
Getting Started with Web Applicationscocoooiieeiiiccce s 77
TWED APPLICATIONS .vuevrieiiriieieieieiiete sttt ettt s s s st sess s s et esnsesennsanes 77
Web APpPLication Life CYCLeovovvrieiriiicceieiesr et ess s asesssssssenes 80
WED MOAUIES ...ttt ettt ettt 81
Packaging Web MOAUIESc.ccuriiueiriiieirieieieeis ettt ettt 83
Deploying @ WAR FIle ...t tseese et ssesesesseacssensaes 84
Testing Deployed Web ModUIESccueuiuiiriieiniciriicirecneeeeeseeee et 85
Listing Deployed Web MOAULESc.ccueuiuririiieiricieinceisieieiseeieeee et 86
Updating Web MOAUIES ..ottt sttt seassessnans
Undeploying Web Modules
Configuring Web APPLICAtIONScueveuiueiriieirieieireeietreieteeeietseeeetseae ettt tsese et seaebe e seseaes
Mapping URLS t0 Web COMPONENTSccvuvriuiueerincieiceeireeeeiseeieeesessesessseasseeesessesssesscssssesans 89
Declaring Welcome FIlesc.uceircieinicninieinicieiccsecnecieeetseesesseseseeseeessesesesseacssessaes 91
Setting InitialiZation PArameterscoovcvoveeieieirireerreesesesess e ssssaesesssssssssssssssssssssssssnens 92
Mapping Errors to EITOI SCTEEISc.cueueuiviririririeieiiiicininieiercieicitttstetesesesesttteseseseseseseseseseenens 93

Declaring Resource References

Duke’s BOOKSTOre EXAMPLEScvuvuvuivieeiiiriieieireeeieirciseieiset sttt et ese et sessssessesesasssessssenans

Accessing Databases from Web APPLCAtiONsSoccuveeueureeeirinieiricieiecrencieseeeeeeeseeiesseieiseenes 97
Populating the Example Databasec.ccoceurerueinieirincieinieieinee et tseesesseneans 97
Creating a Data Source in the Application SETVETccveevueurieirineeirieinireeeeeeeseeeseeeieeeens 98

Further Information about Web APPLICAtIONScccvvieerreereiinirieieississseesssssessssssssssessssssssnens 98

Contents

4

Java Servlet TEChNOIOGY ...ttt 99
WRAL IS @ SETVIEL? ...ttt sttt bbbt ennas 99
The EXamMPLe SEIVIELSoueuiureeiriiiieeieieieiets ettt ss st s s e enens

Troubleshooting Duke's Bookstore Database Problems
SETVIEE LA CYCLE .ttt bbbttt
Handling Servlet Life-Cycle EVENTSccvvveuriurierieiriirieieirieeiseiee et ssessssenns
Handling SErvIEt EXTOTSccoviieeririeiriiiessieisesiiessssae st essssssssessssasssssssssssesessssassssssseses
Sharing INfOrMAtIONc.ceieueiricieieiciricieeet ettt bbbttt
Using Scope Objects
Controlling Concurrent Access to Shared RESOUICEScvueuivreeeiriirieeeineeieineeie e
ACCESSING DALADASEScvveeiincieieicirieierce ettt
INItIAlIZING @ SETVIET ..ottt
WItING SETVICE MENOMS ..vovuieiireiieincieiieieiee ettt snaes
Getting Information from REQUESESccveurireeirieieiinisieiessesessseessssssesssesssssssesssssessssssssns

Constructing RESPOMSESc.cueiriririiiiieiiiiiiiireeeieetttee ettt enes

Filtering Requests and RESPOIISEScccueureueuritueurieieiiieirieietsiaeteeeietsesseesseae e sssaesseassessssssessssesseans
Programming FIILETSccoieueiiueiieieisieiesisisee sttt sse st sssssssssssessssssessssnssnans

Programming Customized Requests and Responses

Specifying FAlter MapPinNgsc.cevceurieueiniueinineieireietseeietseete e sstese st esese s sessssesseaes
INVOKING Other Web RESOUICESc.euiururiieeiierieiieisieieisesietsee sttt ssss et neans
Including Other Resources in the RESPONSEccucureueurerieciricueineecinireieneecieieeeereesesseeesseeaes
Transferring Control to Another Web COMPONENTvucuueecvreeeeineeerricieinecieeneeeisecieenenes 124
AcCCeSSING the WED CONEEXT ...cuviuieiiiniieirieietreie ettt ettt bbb eaeaes 124
Maintaining CHENE STALEc.eveuierieeireiriieieireieicieieeie ettt sese bbb seen 125
ACCESSING @ SESSION ..uvivuiriniieieteieieieetrtete ettt sttt sttt ettt st b bbbttt et esene 125
Associating Objects With @ SESSIONc.eueueuriiiririeinieereire et 126

Session Management ...

SESSION TTACKIING ...vvevevrieriieisiiriieieieieiseiee sttt bttt
FINAlIZING @ SETVIET ..ttt
Tracking Service REQUESESc.cucueiiueiriucieieieirieie ettt ettt 129
Notifying Methods to SHUt DOWIccuuirieiicirieieircsie ettt eeneees 129
Creating Polite Long-Running Methodsccoceveierieirinininieeeeeseee e 130
Further Information about Java Servlet Technologyccouccvcenecininceniceneesecseeeenes 131

The Java EE 5 Tutorial « October 2008

Contents

5

JavaServer Pages TEChNOIOGY ..ot 133
WHRAL IS @ JSP PAZET ...ttt sttt 133
A Simple JSP Page Example

The EXaMPLe JSP PAEScuovuiueiriiieiieieicieis ettt sttt seeasses
The Life Cycle of a JSP Page
Translation and COMPILATIONc.eeeeeieierierieieirieieire et ene 142
EXECULION ottt 143
Creating Static COMLENToueveveueiiiririeieieieiee sttt ettt ettt st enes 144
Response and Page ENCOINGcovvvviiirrieieieiiiccsesie st asssssesssssssssssssssssssesssssssenns 145
Creating Dynamic Content
Using Objects Within JSP Paescccveeuriiuriieinicieiricieieieiseeie ettt sseseseessans 145
Unified EXPression LANGUAZEc.cocueureiuriricurinieeiseeietsesete sttt st ssssesesessesesscsssssseassees 146
Immediate and Deferred Evaluation SYNtaxc.ccoveeueneeireneueincsineneeereeieeceeseesessesesseeans 148
Value and Method EXPIeSSIONSc.ecueureiueuresieiiieirisieiseeeieeeieeseetesseae et sseaesessssessesssssssssseen 150

Defining a Tag Attribute Type
Deactivating Expression Evaluation
Literal EXPIESSIONS ...cuevevevieireereeieieieiriieesesiseesesessesssssssssesssessssessssssssssssssesessssssssssssssssssnsnssssssesns
RESOIVING EXPIESSIONS ..cvuvuiuirinceiiuciriiaeisiaeteiesetsteae s seeesetsesebesesessesese s et sess e sesesesesasans
TIMPIICIE ODJECES w.vrvrievinieeiieieieeeie ettt ettt b e s e seseaas
Operators
RESEIVEA WOTAS ...vueviiriiiicieice ettt sttt
Examples Of EL EXPIESSIONSc.cuiurureiueiricieiieeisicietseaeteeeie ettt esesstsesssessssssessessenssssssans
FUNCHIONS ettt ettt
JavaBeans COMPOIENLScccouvuviruereriueeririririeieieieieetststse sttt st sese ettt st sebesesesesessesesesesesenen

JavaBeans Component Design Conventions

Creating and Using a JavaBeans COMPONENTceurueeieeririeinerieieeeiseeieeeesseesessessseeeans 168

Setting JavaBeans Component Propertiescocooeeeeereviririnerieieeeieninineseseeeeesesssesesenenes 169

Retrieving JavaBeans Component Propertiescccccvvrreeeecccnnnneeccccsenneenenenenes 171
USING CUSLOIM TAZS .vevvviiniiriririeieicicctnt ettt sttt sttt ns

Declaring Tag Libraries

Including the Tag Library Implementationc.ccoecenecerecueinceininceeinecieieeeeneesessesesneenes 174
Reusing Content in JSP Pagescccovriiiiieininnriniiecceirrirtsieeicectstsese st seseeenns 175
Transferring Control to Another Web COMPONENLc..cevueuierieeiierieeieincieieeneeseieeeesese s 176

jsp:param Element
Including an Appletc.oveueuveirinicineereceree e
Setting Properties for Groups of JSP Pages

Contents

Deactivating EL Expression EValuation ..o 180

Further Information about JavaServer Pages Technologyc.cccocevrieivennnsnenccceeneeeennes 183

JavaServer Pages Documents

The Example JSP Documentccocoeeeneeeurinsennnennene
Creating @ JSP DOCUIMENTc.cioiiriririieieiiceinir ettt tates et s e sessenenes
Declaring Tag LIDIAriescovecereeiricieinecinineieneciseeetsecte s essesessescsessesessessaessenes
Including Directives in @ JSP DOCUMENLc.viuririuririiieirieieieieieeeie e seessiesseaas 191
Creating Static and Dynamic CONEENTccovereererreririreririeeeeeiseseseeesseseseesssesaesssseseees 193
Using the jsp: root EIEMENtcoiueiiiiiieireieceicie ettt 196
Using the jsp: output EIEMENTccovuevieruriieirieieiceisee ettt ssessesssesees 196
Identifying the JSP Document to the CONTAINETcccueureeerireuciricieirecirireeeieeeieesesetsesesesseseeeeaes 200
JavaServer Pages Standard Tag Libraryccocoomiiicennncceeeee e 201
The EXamPle JSP PAZESouiuiiriiieiricieiceis ettt sttt ettt 201
USING JSTL ottt 203
Tag COlIADOTAtION .ueirieiicieiiecieicie ettt ettt ettt 204
Core Tag Library
Variable SUPPOIT TAZS ...cvevevriieiereeeieiririiieeeteisesee s sae st et ssssasssssssssesesessssssssssnseses
FLOW CONEIOL TAZS ..vvueuvireieirineieireieteieie sttt sttt ettt ettt eeassesenans
URL TAS cettttteieieieeirtet sttt sttt ettt ettt et et bbbttt sttt be b nenes
MISCEIIANEOUS TAZS ..vuvueuvireeiincieieieieicie ettt sttt ettt sttt st
XML TAZ LIDTATY evrierveiiieirieieiieieieie ettt ettt sessssssess e ssssssessssesessssessssssessssssssssenns
COTE TAZS vttt sttt ettt ettt bbbt b ettt etataeienen
FLOW CONETOLTAZS ..vevvreeeircieiiecieiriie ettt ettt s essse s sassenssansenans

Transformation Tags
Internationalization Tag Library
Setting the LOCALEc.ceueieieiiiceeeee ettt snnnene
MESSAZING TAGS ..eecucevvieieirieeceieieiets sttt ettt sttt ettt eaeaesebe
FOrmatting Ta@S ...c.coceueurerueueueeieieirieieteeectestete ettt ettt bbb ees
SQL TAZ LIDTATY 1.ttt ettt sttt sttt
query Tag Result INTEITACEceuieurieeirieieireete ettt
JSTL FUNCHONS .veveeveeveviereetereeeeereereerereeere e evevenens
Further Information about JSTL

The Java EE 5 Tutorial « October 2008

Contents

8 CUStOMTAGSINJSPPAGES ...ttt bbb s s sn st 225
WHhat Is @ CUSTOM TAZT ...ttt ettt 226
The EXamPLe JSP PAEScooviueiriiieiieieicieirceieiseie ettt sttt seeasses
TYPES OF TAZS vttt es e ae et ss s s s s s ess s s s anse s nsnsesasanes

Tags with Attributes

Tags With BOGIEScuveiuieeiricieiceciricec ettt
Tags That Define Variablesc.ooceciriienineiniceinecieseesicie ettt sseseseseaes 232
Communication DEtWEEN TAZSceveueurieueirieieicieirecieeree ettt 233
Encapsulating Reusable Content Using Tag Filesccceovierriririeirineereneereseeeeeseeeeeseeeaes 233
TaG FILE LOCALION ..ucevieiiicieicieie ettt ettt st ensssennans
TG FIle DIFECHIVES .ttt tsecse ettt st sttt seacs
Evaluating Fragments Passed t0 Tag Filescocouviirrreiriniiieeeesreceeeeisesssseesssseenens
Custom Tag EXAMPIESc.ccurieeirieiirieiciricieieictstcie ettt ettt sesebeeaeaes
Tag Library Descriptorsc.ccoveeuveneeerrencunenes
Top-Level Tag Library Descriptor Elements
Declaring TaG FIlEScccvcueureecuriniieiriciricieireceeeeectsecie et eseasese et esesesseacseeneacs
Declaring Tag Handlersocceeniciriceeniencesecisesceiseie ettt sseseseseaes
Declaring Tag Attributes for Tag Handlersccveenieirineiencnereereseeeeeseeieseee e
Declaring Tag Variables for Tag HandIErscoccevueuririnirieeenississssssieisssssssessssssesnens

Programming Simple Tag Handlersc.ccoirenninniercnicieccscie s
Including Tag Handlers in Web APPLCAtiONSc.cveeueerieirisieinerieeeeeeeieeeeseeiesseesieeeans 256
How Is a Simple Tag Handler INVOKEA?covoeieieririrrerieceeeee s 256
Tag Handlers for Basic Tags
Tag Handlers for Tags with Attributes

Tag Handlers for Tags With BOAIesc.ccceueureeurincueiniiininiciricicsccereecreeieeseeseeseseaeseeae 260
Tag Handlers for Tags That Define Variablesccooveurienirnnicreeenceireeeseeeeeans 261
COoOPEIAtINg TAGS ...cevriiiiiicceie ettt 263
Tag Handler EXAMPIESccvieueurieirieieiricieieietsicietseseieeeietsesete e esseese sttt sseseseeneans 265

9 Scriptingin JSP Pages
The Example JSP Pages
USING SCIIPLING ettt ettt bbb ns
DiSADlING SCIIPHIEG w..voveveieieieieieieri ettt sttt s s sa e snssse s s sesessenenees
J IS B =Tel 0 Vs To) s T

Initializing and FINalizing @ JSP PAZEccceuviruririueirieireeie et ssessseesans 276

Contents

10

10

JSP SCIIPHIELS .eeviriiiecteicieie ettt ettt bbbttt 277
JSP EXPIESSIONS .ottt ettt ettt sttt ettt es 277
Programming Tags That Accept Scripting EIEmMentscocovoveeueireeirinireecsieeeseseeeeeeeeeeens 278
TLD ELEIMENLS .ttt st sttt bttt 278
TAG HANAIETS ..ottt ettt 278
Tags With BOGIES ...vuveeeieeiriiieieiecieir ettt sassenaas 280
COOPETALING TAZS ..veueuiiririeieieieitiirteie ettt ettt ettt ettt sttt bttt ssebebebesenenes 282
Tags That Define Variablesc.cveriienicerecisicesecieeie et sseaes 284
JavaServer Faces TEChNOIOGY ..ot 285
JavaServer Faces Technology User INterfaceccocurvcueureeunineciricieinecinineseneceseessssesesseaenees 285
JavaServer Faces Technology BENEfILScoceuriiuririeiriniieinicieiree e eeaeaes 286
What Is a JavaServer Faces APPLICAtiON?c.eucueureueuniinieeieineieieineesisciseesesesessesessesses s ssssesesaees 287

A Simple JavaServer Faces Application

Steps in the Development Process
Mapping the FAacesServiet INSANCEcoiererueenieiricieireeieeees ettt seeeeeaes
Creating the PAZEScvcurveiririeeieicieieiire ettt et
Defining Page Navigationccccveurecueinecininceeineeieecietseeiesseeesseese e sesese s ssesessesssesseaes
COonfIGUIING EITOT MESSAZEScevvuiuiineieieieirieieiseaetsitieesesebe i etsese st esssesseseseenssessaes
Developing the BEANSc.cceurieiueirieieieieieeie ettt ettt eeaas
Adding Managed Bean Declarationseeceveeueveueeririneeseeeeeieesiseeeeesesessesesesssssesessenes
User Interface Component Modelcccvueiriirinicinicienceereesieeireeesesese et seeesees
User Interface Component CIASSEScocueuerurireueirecueireeisieiesseseseeseee e sesesesseesessesssessans
Component Rendering Model
ConVersion MOAEL ..o naes
Event and LiStener MOdelcoveiiiiinieiniceneeineceseie sttt
Validation MOGELcucvcuiuieciriiiecicintirietneireicret ettt e
INAVIZAtION MOAEL ..ecvrviieiriieicirie ettt bbb
BaCKING BEANS ...ouvuiiriiiiicireciec ettt
Creating a Backing Bean Classcoccurueueirereuriniieiniceinceisieie ettt sseseseseans
The Life Cycle of a JavaServer FACES PAZEcoueueuieuriieeirieierieieieetsesie et ssaes
ReSLOre VIEW PRASEoueieiicicicccic s

Further Information about JavaServer Faces Technology

The Java EE 5 Tutorial « October 2008

Contents

11

Using JavaServer Faces Technology in JSPPagescccocooviiieeenenrineseeeee s
The Example JavaServer Faces APPICAtION ...c.c.ocueureurueiriuciriieeiresieirce sttt eseeaeees
Setting UP @ PAZE ...ttt et
USING the COTE TAZS ...evieeeeiieieieieireeieetete ettt ettt ettt sas s easaes
Adding UI Components to a Page Using the HTML Component Tagscccoeeeureereuerreerenee
UI Component Tag AtrIDULEScoveeurieueinecirireeinecienectnecie et tseseseseeesseesesseacseensaes
Adding a FOrm COMPONENTovveeueeeieieieiririieeieieieteietseessesesesessssessssssssesesesssssssssssssesessssenes
USINg TeXt COMPONENLSuvvveueriiriririeieieieieertststsieieseseeestst et seseseesestssetesesesesesssesesesesesesenen
Using Command Components for Performing Actions and Navigationc.ccececeveueene
Using Data-Bound Table COMPONENLSc.cceueuieueireueiriniieirieieineeeisiesetseseseseseeseesessesesseeaes
Adding Graphics and Images with the graphicImage Tagccooouvrrrerrncenerceneneeerneeens
Laying Out Components with the UTPanel COMPONENLccuveueerireeeireerrinieerieeeineecineeans
Rendering Components for Selecting One Valuecccceuveeueinerneneeinecinieesceeseeeeeans
Rendering Components for Selecting Multiple Valuesccceceuvneeeinecinininneneenceeeeens
The UISelectItem, UISelectItems,and UISelectItemGroup Components
Displaying Error Messages with the message and messages Tagscccoeoeuveveererecirenenenenns
USIiNg LOCAIZEA DALAeeeeeeieiiiceeeesiere ettt st sesesenens
Loading a Resource BUNAIEcccouiiiriiieiniiincciiceeccinecie et
Referencing Localized Static Data
Referencing Error Messages ...
Using the Standard CONVEITErSccveurireueineeeiriiciriete ettt sttt aeseseeaesees
Converting a COMPONENTS VAIUEc.cuuriiueirieieieieireciereetsieie ettt seeasaes
Using DateTimeCONVEITEr .ot
USING NUMDEICONVETTET ittt ettt ettt ettt et aenenees
Registering Listeners on Components
Registering a Value-Change Listener on a COMPONENTc..crueurererieeeereeenieeeerieeesseesiseeens
Registering an Action Listener on a COMPONENTc.eueueveririrereruereueeriririreseeeseeesessseseseesenes
Using the Standard Validatorscceerirceineininencieceeeieee ettt sseaeaees
Validating a Component’s VAIUEcocoeureerueurieurinieeinieieeneeisieie et sseassees
Using the LongRangeValidator
Binding Component Values and Instances to External Data SOurcescccoueeveveeeencncerinencnnee
Binding a Component Value to @ PrOPEILYcococueurecurenieirieieinceieineieseeieeeieeseeiesseaeieeeans
Binding a Component Value to an Implicit ODJECTvcuvueeeucrrieriernienicirerrcereseee e
Binding a Component Instance to @ Bean Propertycococeeeveereriririsssennisereesssenennns

Binding Converters, Listeners, and Validators to Backing Bean Propertiesccccocoevuncuenee

Referencing a Backing Bean Methodcccueuvieuriieinisieinceiececeeeeeis e eaeaes

Contents

12

12

13

Referencing a Method That Performs Navigationcceccceeceeineeinenceeineeenineeeneeieenenes

Referencing a Method That Handles an Action EVENtcccoeuveieirieireieninieieeeieeeeeeens

Referencing a Method That Performs Validationc..cccceveenireirisiensnisissssssssssnsnens

Referencing a Method That Handles a Value-change Event
Using Custom Objects

Using a CUStOM CONVETTET ...coveuerieriirieinteienieeeestesentesetseeessesestesesestesessesestssesessesesessesessenesesen

Using @ CUStOmM Validatoroc.cuevieurieieieeieieieseetetce st essse st senaes

Using a Custom COMPONENLTcccouviriiuiueiiiiininiiteieieeitieeeerereeseststssese oo sestesessesesesesesens

Developing with JavaServer Faces Technology ... 381
WTiting Bean PrOPEITIesceueueueiiririniriiiciccttiirtececiettetet ettt et enes 381
Writing Properties Bound to Component Valuesccccoeeeererirerrnnneeneseeeseeseenens 382
Writing Properties Bound to Component INStANCESccceurereueureururereeirieeeineeeseneeensenenes 390
Writing Properties Bound to Converters, Listeners, or Validatorsccceceeccvencucuneecnnes 391
Performing LOCAIZAIONc.euvicueiiieiricieireetei ettt ettt
Creating a Resource BUNAIE ..ottt esssnssee
Localizing DYNamic DAtacoccueerieuricieinieieieieseei ettt seesssessnans
LOCAlZING IMESSAZES ...vvrvverrerierereeeeseeresiisesssssssessasesessssssssssssssssssssssssssessssssssssssssesesessssssssseseses
Creating @ CUSOM CONVEITET ...c.couviririrueuereueiriririreeteieseieeststrt sttt se sttt st sesesesessaesnnes
Implementing an Event Listenerc.cooecevecunence
Implementing Value-Change Listeners
Implementing ACtiON LISENETSc.evevviieireeirieiriiieeeeseeestssseesssssssssssasessssssssssssssssessssssseses
Creating a Custom ValIdAtoroceueieueinieieiieireeieicetstset ettt
Implementing the Validator INterfacecoocevecurenieinicinnccrccereceeceneceeesecieeeaes
Creating a Custom Tagccccceevevvrieeccencnennnn
Writing Backing Bean Methodsccveurieiinicininicnicecciereceerecieesceee e eeeies
Writing a Method to Handle Navigationccceveeueeeenisinineeseeesee e ieeneees
Writing a Method to Handle an Action EVentcceeeneceninceeinencinnecneceneeeseseseisenenes
Writing a Method to Perform Validationccceeceueeeinineinineieeeeeree e ieeneees
Writing a Method to Handle a Value-Change Event

Creating Custom Ul Components

Determining Whether You Need a Custom Component or Rendererccccoeeveneurenenunencnns
When to Use a Custom Component

When to Use a CUStOmM RENAETETcuoviviieieiceeeceeecee ettt nes

The Java EE 5 Tutorial « October 2008

Contents

14

Component, Renderer, and Tag Combinationsccuceureeueunceeireneeeineeusieeeeseesesseeeseeeans 414

Understanding the Image Map EXampPIecc.cvirureieinieieinieiecerie et sseaesees 415
Why Use JavaServer Faces Technology to Implement an Image Map?ccccoevevurerennnnee 415
Understanding the Rendered HTMLcoceuvinieiniinieeieininieieiseeie e esseseens 415
Understanding the JSP Page

Configuring Model Dataccocceveveevnecinnccncrcnnenennes
Summary of the Application Classes
Steps for Creating a Custom Component
Creating Custom COmMPONENt CLASSESc.cueueurerrururieiriieeiriseeeseaeteeeeeesessssssssssessssessesssessesesessens
Specifying the Component FAMIlYccocvenirieiniinieienircnireeseeesee e
Performing Encoding
Performing Decoding
Enabling Component Properties to Accept Expressions
Saving and ReStOTING STALEc.c.cvriiueiieiricieireeiercie ettt
Delegating Rendering to a RENAETETcc.viiueiriuririiieiriieiceeieeeie ettt eaesees
Creating the Renderer Classccoeuricueinicinincieinecniieinectesseeesseeseaseseseesesesseessssesessessans
Identifying the RENderer TYPEccovcuriiueinicerineieineeieineieisiete et sesesesseese s seseaes
Handling Events for Custom Components
Creating the Component Tag Handlercooovieeeierinninicecieeiee e seaeeeenes
Retrieving the COMPONENt TYPEc.cveucuriiueinieirieieiricieereetseeie ettt
Setting Component Property VAIUESccveeurrieeireririnieirieie et aessessseesans
Providing the ReNderer TYPEcccoveeeeicrrieiririieeeeeseessieesss s asssssesesssssssessssssssssesssssssnens

RELEASING RESOUICEScueevririinceiicieieie ettt bttt ettt

Defining the Custom Component Tag in a Tag Library Descriptor

Configuring JavaServer Faces Applicationsc.ccooveeireieinciceccceee e 439
Application Configuration ReSOUICe Filecviuiueieiniirimciniirieeireieieseieeseiseiesessese e sseseeaens 439
Configuring Beans
Using the managed-bean ElemMentc.cococurieiriiirinieincieceieece et 441
Initializing Properties Using the managed-property Elementcccooecocvencenecrnenceenencs 443
Initializing Maps and LISESc.oc.cureeueirieirieieireeisireietsecieeseset et ssese et seseaes

Registering Custom Error MESSAZEScvurveueveueeriniririreeieicicientntstseeeeseseseesestsesteseseseseessesssesesesenes
Registering Custom Localized Static Text
Registering a Custom Validator

Registering a Custom CONVEITETc.covririrueuemeuierintririreeieseiecstst st seeseseseseests st stese s eseseesesesesesenen

Contents

14

15

Partlil

16

Configuring Navigation RULEScccvcuririeuriieirieieintietseeiei sttt ettt et sseaas 453
Registering a Custom Renderer with a Render Kitc.ccooeurieirriieiniiininiersieceseeisceeeeeas 457
Registering a Custom COMPONENLcccoururerueuiuiiiriririeieieseeeestst sttt sese b s esesessesesesesesenes 459
Basic Requirements of a JavaServer Faces APPliCAtioncoccuvcueuneecerinceeinecieeneeineeieiseeeeenes 460
Configuring an Application with a Deployment Descriptorcooeeveeueenieereneeeinesneneans 461
Including the Required JAR FILESc.oviueiiririiieiricieiceiseeie et seesssssenes 468
Including the Classes, Pages, and Other RESOUICEScovvererreuriririririieeeesisesereesseeeenns 468
Internationalizing and Localizing Web Applicationscccooeeeiieieccereeeeenas 469
Java Platform Localization CLASSESceeueveeiieiererererereseieeeeeeeeesesesesesssesesssesessssssssssesssesesessasans 469
Providing Localized Messages and Labelscocureeininerinicinienecnncceecieneeseeseseeieenenes 470
Establishing the LOCAlec.eviuiiriieiriieier ettt 470
Setting the Resource BUNAIEc.occuirieeiiiniinicincieecis e saees 471
Retrieving LoCaliZed MESSAZESc.evvvviimiurerrririririiissseiesstsistsesssssssssssaessssssssssssssssssssssseses 472

Date and Number Formatting
Character Sets and Encodings

CRATACTET SELS vttt ettt ettt a et et ese e s e st e s entesesassse st ensensenessessessensensenseressennan

Character ENCOINGc.cuicieiieiiricieirecieieieirecte ettt sese et see e

Further Information about Internationalizing Web Applicationsccccoveeeueenierrencueinccunenenes 477

WED SEIVICES ...ttt ettt ae s es e sessenesenseseasesene s esensesensenetens 479

Building Web Services With JAX-WS ...ttt
SEUNG ThE POTT ..eieuiritieietriieetret ettt sttt sttt st
Creating a Simple Web Service and Client with JAX-WS
Requirements of a JAX-WS ENAPOINE ...uuiuuiiuririciriieinieieiciesceie et sseseieeeaes
Coding the Service Endpoint Implementation Class
Building, Packaging, and Deploying the Service
Testing the Service Without @ CHENtcccccviveurirecirinieinicieiecse e
A SIMPIE JAX-WS CHENT .ottt et
Types SUPPOITEd DY JAX-WS L.ttt
Web Services Interoperability and JAX-WS ..ottt sesenens
Further Information about JAX-WWS ...ttt st ev et sesenenan

The Java EE 5 Tutorial « October 2008

Contents

17 Binding between XML Schemaand Java Classescccocooviieeeinnirireeeeeeeeeeesee s 491
JAXB ATCRITECTULE ...ttt ettt st es st esssae st sne st esenssseresssseneans
ATChItECTUIAl OVEIVIEWooveeeieiieieieieccceceeie ettt b et be b s s anasaetenes
The JAXB Binding PrOCESSc.vueueeiueeriueirieieirieisireieiseseesesstessesessesssssssss e sssssssssssssssnsssssans

More about Unmarshalling

More about Marshallingcoveeeeeueueieiriririiceeiee ettt eaes
More about Validationc.cccuiuiciniiieinciiicneieece e
Representing XIML CONEENT ...ccveveveveueuiririririeieieieieietrtstseeieie ettt sttt et tsss b s esesse st besesenen
Java Representation of XIML SCHEmacccvurieieiieiercrieieeiccceee et sesesessssesenes 494
Binding XML Schemas
Simple TYPE DEfINITIONScucuuueeeiiiieieieirieieireetstreie sttt sese st seseaes
Default Data Type Bindings
Customizing Generated Classes and Java Program Elementscccccveoeureneeenecinenccinenceennennns 497
Schema-to-Java
Java-to-Schema
JAXB EXAIMPLES .oovvieiiiieieicieieieie sttt sttt s st ess et sassesasanes
JAXB COMPILEr OPLIONS ..oeeeieieiriiieireeieieieistseseeeeeseseas s esesssssssssssssseesssssssssesssssessssssssssssens 505
JAXB Schema Generator OPHONcccveeueieeeirincueireieiseeieesesete st sseseseesesessesessseseseeaeans 507
About the Schema-to-Java BIindingscceeeueurieuriniueineeieinieiseieseeeesee et sseneeees 507
Schema-Derived JAXB Classes ..
Basic JAXB EXAIMPIES ...cvuviuieeiriierieiciricieiscctsieee ettt ettt ettt eaebees
Modify Marshal EXAMPIEccocueuriuiiriieirieieieeiscie ettt
Unmarshal Validate EXamPLec.cveurieinirieiineicniseseiseeeseiese et sesseseens

Customizing JAXB BINAINgSccceurururiirereeieieiriniieeseessssssisssssssssesessssssssssssssssssssssssssssssessssssnes
Why Customize?
Customization OVEIVIEWcccccciuiiiiiiiiiiiiiiiniicceeese e
Customize Inline EXAmPIeccocveieiriiieieinieeiccceeieieie et essssssssnens
Datatype Converter EXamPIeccoveirieiriieiniceineceeeieineeiecietseeee et ssese e
Binding Declaration FALEScceiueurieiriiieirieiereeieeeeescets ettt
External Customize Example

Java-to-Schema EXQAmPIESc.coveuririuciriiieinicirici ettt ettt saeieen
Create Marshal EXamPIeooc.cuviiuriieinieieces ettt
XmlAccessorOrder EXAMPLEc.c.eeeeeiiiniciniirieieireieicineiseieee ettt seeseene
XmlAdapter Field Example
XmlAttribute Field Example ...
XmIROOtEIeMENt EXAMPIEeuiuieiieriricieirieieice ettt e sen

Contents

16

18

19

XmlSchemaType Class EXAMPLEc.c.veeueuriririnieinicieireeieereeiseeie ettt seeaeaes 547

XMITYPE EXAMPILE ..ottt ettt ettt nes 548
Further Information abOUt JAXBcvoieveiierieeeeeceeeteeeeetee ettt er e esesensesesessesenseseneenenn 550
Streaming APIFOr XIVILc.cooieieieicicceeetee ettt 551
WRY SEAX? ottt ettt ettt 551

Streaming Versus DOMc.cccvvriririiiiiciiiinineeicetttste ettt sttt senes

Pull Parsing versus Push Parsing
StAX USE CaSES .euvrevvrereneeiriririererencieenerereeeenenes
Comparing StAX to Other JAXP APIScooeerreriiieeeieerireeee ettt seassssseesssssseees 553
SEAX AP ottt 554
CUISOT AP . 555
TEETALOT AP .ottt 555
Choosing between Cursor and Iterator APIScccevvreeireeeeerinirriceeeeeeseseseessseseens 559
USINE SEAX ettt bbbttt bbbttt bbbttt sttt
SEAX FACLOTY CLASSES ...uvvveeeieeereeieieieiiiseseeseesessesetssesssssssessssessssssssssssssssssssssssssssessssssaensssssseses
Resources, Namespaces, aNd EITOTSc.coceuriiurinieiriieinicie et seessaeeseaas
REAAING XIVIL STIEAINLS ...veveveieeererieeeeeeiiiseesesssssaseseesessssssssssssssssessssssssssssssssssssssssssssesssssssssssseses
WIiting XIML STIEAIMScueiririieieieiciiririetetereieiettsestee ettt sa e
Sun’s Streaming XML Parser Implementation
Reporting CDATA EVENLSc.ceiririririeieicieitiniieieeecietttete et seaestseseseese et eseesesesesesenes
Streaming XML Parser Factories Implementationccoeeeeeereeerereririsseseninssesesesssesenns 568
EXAMPLE COAE ..ottt ettt ettt eaes 569
Example Code Organizationcoecurceeunecurineueineeeeineetsiesesesessesesessesesessesesssesessescssseaes 569

Example XML Document

CUISOT EXAIMPLE ..ottt st ettt
Cursor-t0-Event EXAMPLEccviiueiriiirieieirieieircie sttt et sessans
EVENt EXAMIPLE ..ottt ettt
FAItEr EXAMPLE ..ottt sttt
Read-and-Write Example
WILEr EXAMPLE w..ouvieieiieceeiete ettt enes
Further Information about SEAXc.oveueireiriciniiriceiree ettt ssesessessesesaennes

SOAP with Attachments API for Java
OVEIVIEW OF SAAT ettt ettt ettt s s st e s et st e st st sse st saest st ensasenensssenesanin

The Java EE 5 Tutorial « October 2008

Contents

PartIV

20

SAAT MESSAZES ...cvvueueiriririerereieueentststsseseseseattstst st se ettt et st eb bbbt et bebese ettt et enenesesenn
SAAJ CONNECHIONS ..voviieririieiitieteceeeeteereete et eeteeseesteeseesteeseessesseessesssessesesssesesssessessesssesseessensenes
SAAT TULOTIAL ...ttt ettt ettt ettt s s eeese s e s eseesese s essnsesesesesenseseneenenen
Creating and Sending a Simple Message
Adding Content to the Headercccceveeureneeerrcnenenee
Adding Content to the SOAPPart Object
Adding a Document to the SOAP Body

Manipulating Message Content Using SAAJ or DOM APIScocoeueuveveenercrricreeneceneneeenns 603
Adding AttaChMENTSveeeiiee ettt aes 603
AdING ATIDULES ...ovueeiieeeiricteieierece ettt ettt eeaebeen 606
USING SOAP FAUILS ...ttt bbb 611
COAE EXAMPIES ...ttt ettt bttt ettt 615
ReQUESE EXAMPIE ...ttt 615
Header EXAMPLEc.cuiiiiiiciriciciccieicicsecieieeet ettt ettt 617
DOM and DOMSOUICE EXAMPLESucuvriuririieeiririeirieeieieieeseeie et ssessssssesssessssesesasans 620
Attachments Example
SOAP Fault Example
Further Information aDOUL SAAT ..ottt s st tess et s erenens 629
ENTEIPriS@BEANSc.coeeeeeee ettt ettt bbbttt an s s s senas 631
ENTEIrPriS@ BEANSoimieieiiiei ettt en 633
What Is an Enterprise BEANTc.cvccueiieirincieinicieenceseie ettt eaeseen 633

Benefits of Enterprise Beans ...

When to Use Enterprise Beans
Types Of ENLErPrise BEANSc.vvueuiuieeiniiiieieieirieieistie ettt ssseaens
What Is @ SESSION BEANTiuiuiiiiieiricieieeis ettt ettt aesees 635
State Management MOAEScevurureririierieieieieiriieeeieseaeeseeeese st esessss e sessssssesesssssssesns

When to Use Session Beans ...
What Is a Message-Driven BEAN?cccocoiierurieiriniiieeeeieeiseseeesesesesses e esesssesssssssssssessssssssseses 636
What Makes Message-Driven Beans Different from Session Beans?ccocccoeveveurncunnee 637
When to Use Message-Driven Beans

Defining Client Access With INtErfacesocuvuviueureiieinieirincieireeer ettt ses
Remote Clients
LOCAL CHEMLS ..uieeerieteiciee ettt ettt bttt bbbt

Contents

21

22

18

Deciding on Remote Or LOCAl ACCESSeueueureeurireuciniiieirieieieie et ssessassseaes
WWED SEIVICE CIIENES ..ueuveiuiiriueieieieirieiees ettt ettt ettt ettt naeseensaes
Method Parameters and ACCESSccueemeuieemerniirienieseenei e e esesseesssesenns
The Contents of an ENterprise BEAnccovcueureiirinieirincieinicierceeicieiseeieesese et seeeaes

Naming Conventions for Enterprise Beans

The Life Cycles of ENterprise BEANSccccvuvvririeeeeeeiriririsiieseeieiessessssssssessssssssssssssssesessssssssssees
The Life Cycle of a Stateful Session BEancvceueeiririsirinieieieereeeeeis e
The Life Cycle of a Stateless Session Banc.cvccreeueurecirineeeineneeneeieeeenecesesesesseeseenenes
The Life Cycle of a Message-Driven BEanccoccceieurieurinieinenseseeeeeeiseeeeeseessesasesenns

Further Information about Enterprise Beanscococevecurinecirincienecinineeeineeieeseeesiesesseesesnenes

Getting Started with Enterprise Beansccoooeerieeinniiiieeeeecee e 647

Creating the ENterprise BEAMccccuviurinieiriieireieicieircieiss ettt 647
Coding the ENterprise BEAMcocouviiierueiririririieeeisieisess sttt sessasessssssseses 648
Compiling and Packaging the converter EXampleccccooviinienicnnieineerceeeceees 649

Creating the converter Application CIENtcccvveeeieriririeeeeeee s eeeeeees 650
Coding the converter Application CHENTc.ooceurerueirieireeeireeieee et 650
Compiling the converter Application CHENtcoeeeeeeeereienirireeesieee s 652

Creating the converter Web CHENTcocccueieirieieireeircei ettt
Coding the converter Web Client

Compiling the converter Web Client

Deploying the converter Java EE APPlICAtION ...c.ccveueeeirieiccereeineieieieessesesissesseeseesssesesessenens 654

Deploying the converter Example Using NetBeans IDEccccooveoiurnieininsinnecinencenenas 654

Deploying the converter Example Using Ant

Running the converter Application Client

Running the converter Application Client Using NetBeans IDEcccccoveveeunerrennnnn. 655
Running the converter Application Client Using ANtccceveeureeureneeinenseeneeiseneeenenas 655
Running the converter Web CHENTcocvieiricirineeirieeniceecrecieseie ettt sneaes 656
Modifying the Java EE APPIICAtION ...cueuiieriiecirieieirieieieie ettt ettt easaes 656

Modifying a Class File

SesSioN Bean EXAMIPIEScooooioiiiieiiieecee ettt
The Cart EXAMPLE ...c.cucueiieeiricieiseeteece sttt bbbt
The Business Interface

SESSION BEAN CLASS ...ttt ettt ettt st s st e s saenesese s esenssseneas

The Java EE 5 Tutorial « October 2008

Contents

23

PartV

24

The ReMOVE MEhOMevimiiiieciricieirceecie ettt ettt 664
HEIPET CLASSES .vvverveiiacieieieirieieiee ettt ettt ettt 664
Building, Packaging, Deploying, and Running the cart Exampleccccoocoeeeunenecnrcrnennce 664
Undeploying the cart EXAMPLEcccovcveerueiriririiiceeeieiee et sessssssesessssssssseens

A Web Service Example: hel10Serviceccoeveecerereecnnee.
The Web Service Endpoint Implementation Class

Stateless Session Bean Implementation Classccceceeeeeereeereininisiirsssesseseseessssenennns

Building, Packaging, Deploying, and Testing the helloservice Exampleccccoecuueee. 669
USING the TIMET SEIVICE ..uvvuieiriniieiriicieieieisicie ettt ettt ettt eeaeseen

The Timeout Method

Creating TIMETS ...c.c.ceueuririeirccieieieieirtr ettt ettt ettt ettt st esebene

Canceling and SaVING TIMETSccoceurieuriiueurieieireei ettt esesseaeseeeans 672
Getting Timer Information

Transactions aNd TIIIETS ...c.ccevcieieeiiieeeieeeeeeeee ettt ae st se st e s se st sae e esesesaeneasenan

The timersession Example
Building, Packaging, Deploying, and Running the timersession Example............ccc...... 674
Handling EXCEPHONS ...uvurueeeiririiiieeieieeeisi ettt sss ettt asesssssssesesesssessssnsnses 676

A Message-Driven Bean EXamplleccooviiiieieieeeecccse et sesnens
simplemessage Example Application Overview
The simplemessage APPlication CHENTc.coceueerieirineeeirieieiree ettt eeaeaees
The Message-Driven Bean CLassccccerieuririueireniueinieieineeeiseeeetsee et essessseesssessssssssssassees
The 0nMeSsSAge MEthOdc.ouieiiieeereteteteeeeetee ettt r et et as s asaee
Packaging, Deploying, and Running the simplemessage Exampleccccocoevrrnivenineninennne 680

Creating the Administered Objects for the simplemessage Exampleccccocveveerreenenncn. 681

Building, Deploying, and Running the simplemessage Application Using NetBeans
IDE .ottt bbbt b b a bbb s e b e bbb s s anananaetas

Building, Deploying, and Running the simplemessage Application Using Ant

Removing the Administered Objects for the simplemessage Examplecccocoveurerunennee

Creating Deployment Descriptors for Message-Driven Beansccocveeveeneereceneeneeeeneeneennnes

PRISISTEINCE ...ttt s ettt s s et et e s e e e se s esessesesessessnsesenssnetens 685

Introduction to the Java Persistence API

EIIEIEIES vttt ettt e e et e eae e e b e eebe e e b e e beeeabeebeeeaeeebe e aeeeareeataeerreereeenes

Contents

20

Accessing Databases from Web Applications

Requirements fOr ENtity CLASSEScvceurieueurieurincieiricieineetsieie ettt ssessseeseans 687
Persistent Fields and Properties in Entity Classescoceeeririeerriniriniriiseesseseseessenenens 688
Primary Keys in ENtITIESoccvviiviiicirieiieeicccecceeceeeee et 690
Multiplicity in Entity Relationshipsc.ccoceeereeeirecininieinieieeeseeeseeieeceiseesessesesseseiesseaes 691
Direction in Entity RelationsShipsccovoveerieirriniieeeeee et 692
ENtity INNETTTANCE ..eurueieceriecieiececiei ettt
Managing ENEIIESc.cvciiriririiiiieiiiininiictceettcen ettt ees
The Persistence Context
The EntityManager INTEITACEcoooveviieveeieeieeeeeereeeeeeeeeee ettt s e sene e 698
PersisteniCe UIILSc.coiiiiiiiiiniiiiiciicctccet ettt 703
25 PersistenceintheWeb Tier ... eaes

Defining the Persistenice ULccocvueueiriirreeieiririisseseessssesessssssssessssssssssssssessssssssassssssseses
Creating an BNty CLASSc.evcueueiieeiricieieeirieieice sttt seseaas
Obtaining Access to an Entity Managercococeeeeeeeurueererereieeeieesesesiessessssssssesesssssssenns
Accessing Data from the Databasec.ccceureeueinieirinieinieieice e
Updating Data in the Databasec..cccevecurrceinicininienceecseeenecieeceseesesseseseescaesneaes

26 PersistenCeINTREEIBTIENcooooeeeeieeee ettt aens
The 0rder APPLCALION ...c.ciueeeeeieieirieiiceeie ettt se s s ess s sesssnnnens

Entity Relationships in the order Applicationccccccveerceinneeneceneeseieee e
Primary Keys in the order APpliCationcocceueereriiririsieieseice s sssesseessssssnnns
Entity Mapped to More Than One Database Tablecccoveuenininecinincencncercceeenes
Cascade Operations in the order APPlicCationccccceveeeeeuririeireeireeieeeeisesee e
BLOB and CLOB Database Types in the order Application
Temporal Types in the order APPIICATIONcccuveeiurerieiricieireee et
Managing the order Application’s ENEItIESsccoeveverruerririririeeeeieissseeee e eeseseessnseenes
Building and Running the order APPliCAtioNc.ccoceureeueinieineneereeieineeiseeie et

The roSter APPLCAtIONcceueueiririeiriceieieteiee ettt et seseeen

Relationships in the roster ApplicCationccvcerecurinceenecnreeceeeseeie e
Entity Inheritance in the roster APpliCAtioNccevieurereieuririeerierieeereeis e

Automatic Table Generation in the roster Applicationccceceeeeeerereeeeerennenes

Building and Running the roster APplCAtioncccveueurceurneeirieieeneeiseeie e

The Java EE 5 Tutorial « October 2008

Contents

27

PartVI

28

The Java Persistence QUEry Languageccccoeuriiueinicirinieineeieineeie et sseses e seeaeses 735

Query Language TermMinOLOZYcceeeeurereururierurieeeirieieisessstssessesssessssssessssssssssessssessssssessssssessens 735

Simplified Query Language SYNTAXccoevcereereirnrriesesssssisesssssssessssssssssssssssesssssssssssssesssessssssns 736
SElECt STALEIMENLSeveeuiiircieicecteecie ettt ettt ettt

Update and Delete Statements

EXQMPLE QUETIES w..vuveveeeeieieieieieiicceetetes sttt sttt sss s st ssassasssssssesesessssssssssssssesesesnsnsnsnses
SIMPLE QUETIES .veeerieeiieeieecaeirieee ettt ettt sttt s e sa et eas e s et assesensaeseans
Queries That Navigate to Related ENtIitiesccoocueuveeeurenieineciriceeneceereesecieeseeeseesenseaenns 738
Queries with Other Conditional EXPreSsionscoceveoeueerieirineeeiseserineeisisieeseesseseeessenens 740
Bulk Updates and DEletesc.coueieurieueinecinineieinecieeneieiseeiesesessssesessesesessesesssesessesessseaes 742

Full Query Language SYNTAXcoccuerieurieieirieeieeeieesieieteessstssessesssessesessesssessssssessssessssssessssssesnsans 742
BNTF SYIMDOLS ..oeneetieieiiieiricieisee ettt sttt sttt ettt 742
BNF Grammar of the Java Persistence Query Languagec.coceeeeeeeereeeurinsenerenseseseeennenens 743
FROM CLAUSE ..vevreeviniiiriacieieeeieeeie ettt stese bbbttt bbbttt b s
Path Expressions
WHERE Clause

SELECT Clause

ORDER BY CLAUSE ..uecvuiuiiriuieieietrieietseie e teietseese sttt st ses bttt ettt seteaes 763

The GROUP BY CLAUSE ...evueueririeriineeriiaeieieesssiseesseasisssassstsssessssssessssesssssssssssssesssssssssssesssssessnns 764
SEIVICES ...ttt sttt 765
Introduction to Security in the Java EE Platformccccoovviiiicccee e 767

Overview of Java EE SECUTtYcccocoverrirerrrieirienrisieirneenns
A Simple Security Example

SeCUTTLY FUNCHOMNS ...ouiuiiiieieicicccirtreecec ettt ettt
Characteristics of APPliCAtion SECUTILYc.eueueurieuririeeirieieireeieieiets ettt sese e
Security Implementation MeChaniSImSccovueerieeereeieiririieeeieeieee et seseseeenes
Java SE Security Implementation Mechanisms

Java EE Security Implementation Mechanisms

SeCUIING CONTAMELS ...cuvriiiiereicieiiririeteier ettt ettt sttt sttt a b atnnes
Using Deployment Descriptors for Declarative SECUTItYcocvvrrireerreeieirsrisesssnssennens 776
USING ANNOTATIONS ..cuiiiiieeieiciiiinirtrteee ettt ettt bbbttt bbb ns

Using Programmatic Security ...

Securing the APPLICAtION SEIVETcoicuriiueuriuiieiieirieietree ettt ettt eneaas

21

Contents

22

29

Working with Realms, Users, Groups, and ROIEScceurerurinieiriiininicinncerecieseeiecie e 779
What Are Realms, Users, Groups, and ROLES?ccccviririririneririeeireeieieeiseeiesee s 780
Managing Users and Groups on the Application SErverccoceevvrirereerrnnereseseseennns
Setting Up SECUTItY ROLESc.uvuiriiieiicieicciricicectsecesete ettt
Mapping Roles to USers and GIOUPScccceuveeurureueireiueerieieieeeiseseesseaeieeesessesssessesessessassseans

Establishing a Secure Connection USING SSLc.cvvueuiuriurieiniirieeiniereieieiseieiesseesesesessesessessesessens
Installing and Configuring SSL SUPPOTT ...c.cvuevevririirrreieiririeeeeeesisesteeseseasssesaessssssenns
Specifying a Secure Connection in Your Application Deployment Descriptor
Verifying SSL Support
Working with Digital CertifiCateseemuririneurerreeineirieineireeseesesseessessessee e ssessssenns
Enabling Mutual Authentication 0Ver SSLc.cooccuvirnicininceencceneceecieneeseeesesseaeieeenes

Further Information about SECUTILYc.cucueuieiueirieieicieircieisee ettt

Securing Java EE APPHICAtionsc.oooiiiiirieie et nes 799

Securing Enterprise Beans

Accessing an Enterprise Bean Caller’s Security Context

Declaring Security Role Names Referenced from Enterprise Bean Codecccoceuveunennee. 803
Defining a Security View of Enterprise Beanscccceveeurireueuneneeninecineneeeineceneesesseeieenenes 806
Using Enterprise Bean Security ANNOtationscccocoeeeveeerireererceninninenerereeeeneneseesenenenenens 817
Using Enterprise Bean Security Deployment Descriptor Elementsccccccveveeurernennens 818
Configuring IOR SECUTILY ...cvvurveririeirieiririeiiessisesssisssssssssesssssssssssessssssesssssssssssesssssssssssessses
Deploying Secure ENterprise BEANScccvcueireueininieeinicinineieseeiesese e ssesessesesesseaes
Enterprise Bean Example APPICAtIONSc.occueuriururinieiricieincecieieieisce et seaesees

Example: Securing an Enterprise Bean
Example: Using the isCallerInRole and getCallerPrincipal Methods
Discussion: Securing the Duke’s Bank EXamplecocoeuvereuneirieineineeieineeenesee e
Securing APPlICAtiON CHENLSc.cvururiierieeeieiririsieeeie ettt se et sseessasassesesssesnes
USIing LOGIN MOAUIESovveieieierieieieieiiicceeieiss ettt s s assssnnsenes
Using Programmatic LOZINcccoeuecirieiiniiinirieirieeeeireeeteesesseeseseses et se e seeenen
Securing EIS APPIICATIONS ...c.cveueuiuieciricieireieieitietseeteteietsteset st eeese st sese ettt seseseesaesseae
Container-Managed SIZN-OMNccveueinierineieinerieeneeie ettt ssese e sseaes
Component-Managed SIZN-OMNcoccueeerireueinieieiieinieieeie sttt sseaes
Configuring Resource Adapter Security

Mapping an Application Principal to EIS Principalsccccecoeeeenienicininceniercereceeeaes

The Java EE 5 Tutorial « October 2008

Contents

30

31

Securing Web APPlIications ... eas 841
Overview of Web AppliCation SECUTILYc.cvieureriueurieieirisieieieisesie sttt seeaeans 842
Working wWith SECUTILY ROLEScveuiueiiiriricieirieieieeie ettt 843
Declaring SecUrity ROLESc.ccvcucureiueiriciricieinicirineieisecieeneictseseie et esese e eaessesesessescseessaes 843
Mapping Security Roles to Application SErver GrOUPScovverereereeeerereenereseesessesssessesens 846

Checking Caller Identity Programmatically

Declaring and Linking Role References

Defining Security Requirements for Web Applicationscoceeveeureneeeeneneisincciseeieeseeeeeneaenes 850
Declaring Security Requirements Using ANNOTAtiONSc.vveueureererereeeiresinieeeereeeesseesieeeens 851
Declaring Security Requirements in a Deployment Descriptorcccveureeunerneeeererneenene 853
Specifying a SECUre CONMECTIONcuevveevrirreriirieieeeteiseieessssssssseessssssesssssssssssesssssssssssessssssesssans

Specifying an Authentication Mechanism

Examples: Securing Web APPLCAtIONSc.occureeueiriueirinicirieieireeietreieisteeeiseessesesessesesessesesssseseses
Example: Using Form-Based Authentication with a JSP Pageccccooveeurniinncnnccnenenns 870
Example: Basic Authentication with @ Servletocceieniiirniensereeecercesee e 879
Example: Basic Authentication with JAX-WScccoviiiirccncrneciceenecsseesesseeeans 888

The JavaMessage SErviCe@ APl ...ttt s s 895
OVErVIEW OF the JTIMS APT ...ttt ettt es s sttt esesensnssnnas 895
WHhat IS MESSAZINGT ...eveuieiiueirieieireeietseieistese ettt bttt ettt ettt esebeeaeseen 895
WHhat Is the JIMS API? ..ottt ettt et 896
When Can You Use the JIMS API? ...ttt ses et esensenenen 896
How Does the JMS API Work with the Java EE Platform?cocovvveiveeeeveieeeeeeennes 898
Basic JIMS APT CONCEPLS ..ucvererireereiiiiiiririeiee ettt ettt bbbttt se st b bt se e s nenenin
JIMS APT ATCRITECTULE ...ttt ettt ess et seae e sene e sse s enenenenen
MesSaGING DOIMIAINS ...cuvvvrirvevereiiieiriririeteiei ettt ettt ettt sttt ettt b bbb ns
Message CONSUMPLIONecuiuiueiiiiiiiiieieieieiei et es et sesenen
The JMS API Programming Model
JMS AdMINIStEred ODJECES ...uvurvviuririiueirieieieeieieieiseee ettt sae et sseseseeasans
JIMIS CONNECHIONS ..evvvevieriereieieieteeteeteeteteeeseeteetesteseesseseesessessesseseeseesensessessesessessensensessessesenseneen
JIVIS SESSIONS ..veuveerririiitiereereereiteeteeereeteesesseeseeebeessesseeseeseeseessesseessesesssessesssensenssessensaesseseessensanes
JIMS MESSAZE PTOAUCETSceveieeiiecieiiieieieieiseete ettt et seeanans
JIMIS MESSAZE CONSUITIETSvuveveeuenitrireeieieseueaetrtsesseseseseseseststsesseseseseassesesssesesesensssssssssesesesesenen
JMS Messages

JIMS QUEUE BIOWSEL'S ...ttt ettt ettt te et te e eseebesseeae e esseseebessessenseseesessensensenean

23

Contents

24

32

JMS Exception Handlingc.ceceuricirincieinieinnceieecisescieiseie e tseae et seeseseneaes
Writing Simple JMS Client APPLICAtIONSccueueurureiueirieieireeeieieieisie ettt teeeesseeaesseaesees

A Simple Example of Synchronous Message RECEIVESc.ocrueuierurineeriresininiieereeieiseeeeeeens
A Simple Example of Asynchronous Message CONSUMPLIONc.cuvrrererenreririeeerereeeireeieenenns
A Simple Example of Browsing Messages in a Queue
Running JMS Client Programs on Multiple Systems
Creating RObust JMS APPLICATIONSvvueureeeeieirieiiiecieieieieietceesse et sssse s sssesesses
Using Basic Reliability MEChaniSIMScccveurureririirrrieinirisiieeeeisesesiesesssssssssssasessssssenns
Using Advanced Reliability MEChanisSmscccouevvrrueeririririssenieesesiissssessssssssesssssssenns
Using the JMS API in a Java EE Application
Using @Resource Annotations in Java EE Componentsccccovvveuereevcnennnneeecreccenes
Using Session Beans to Produce and to Synchronously Receive Messagesccoceuvenee
Using Message-Driven Beans to Receive Messages Asynchronouslyc.cccoeecencceeneaee
Managing Distributed TTanSactionsccccceceeueureeueenieirieieireieseeee et sseseseesesesseaas
Using the JMS API with Application Clients and Web Componentsccceeue.e.

Further Information abDOUL JIVISoiiiuiieeieeceeeeceeeeeee ettt ettt senan

Java EE Examples USing the JMS API ...ttt snens
A Java EE Application That Uses the JMS API with a Session Bean
Writing the Application Components for the clientsessionmdb Example
Creating Resources for the clientsessionmdb EXamplec.cccoocoeenienencinnecinenccenencennnes

Building, Deploying, and Running the clientsessionmdb Example Using NetBeans
IDE oottt ettt sttt a e b b s bbb et bbb et e bbb s et bens

Building, Deploying, and Running the clientsessionmdb Example Using Ant
A Java EE Application That Uses the JMS API with an Entitycccceveveeneneenceneenecineneenns

Overview of the clientmdbentity Example Applicationcecoceveveueerecrnenceeenenceenneenne

Writing the Application Components for the clientmdbentity Example

Creating Resources for the clientmdbentity EXamplecccoeenrncninenncnneeneneinennens

Building, Deploying, and Running the clientmdbentity Example Using NetBeans

Building, Deploying, and Running the clientmdbentity Example Using Ant
An Application Example That Consumes Messages from a Remote Serverc.cccceceeuveneuenee
Overview of the consumeremote Example Modulesoeveurerieinienecinernesincneeneeinenene
Writing the Module Components for the consumeremote Examplecccccovevcerineecrnennee

Creating Resources for the consumeremote Exampleccoocoevnienncnncncninccncennes

Using Two Application Servers for the consumeremote Examplecccccvveueririneninnnenes

The Java EE 5 Tutorial « October 2008

Contents

33

34

Building, Deploying, and Running the consumeremoteModules Using NetBeans IDE ... 984

Building, Deploying, and Running the consumeremote Modules Using Ant 985
An Application Example That Deploys a Message-Driven Bean on Two Serversc...... 987
Overview of the sendremote Example ModAUlescccveuriiuencneninecininiencenceeeceenes

Writing the Module Components for the sendremote Example

Creating Resources for the sendremote EXamplec.ccoovvvvveeennnininieeeesssessneenns
Using Two Application Servers for the sendremote Exampleccccoovoeeniennicnccsnenenns
Building, Deploying, and Running the sendremote Modules Using NetBeans IDE 991
Building, Deploying, and Running the sendremote Modules Using Antcccceeeeueeneee 994
TraNSACHIONS ..ot 999
What Is @ TTansactioN?c.coceeiiiereeiiiriereireeecseie e sse e ese e ese e ssessansenns 999
Container-Managed TTANSACTIONS «.....cceureeurureueireiietrieieieesseeeetseas et sesese s ses et sesesecassees 1000
Transaction AIIDULEScoocviiiiciiiccc e 1000
Rolling Back a Container-Managed Transactioncoceveeeeeeneeeereneeeineeueeneeeseseeesseesaes 1004
Synchronizing a Session Bean’s Instance Variablescoceveereiorceeninnneiceeeeeenes 1005
Methods Not Allowed in Container-Managed Transactionsoceveeueeneeeereneesereeennes 1005
Bean-Managed TranSACHIONSccvoveeeriririririieeseeeseeseseesesssssessssssasasesssssesesesssssssssssssesessssssnsnens
JTA TTANSACHIONS vvivieeiiriieiceieticr ettt e e ete e eeteebeebeebeeaseseeaseseeseessebeessenseessenseessensensees
Returning without Committingcoeeeveeerererennnes

Methods Not Allowed in Bean-Managed Transactions

Transaction TIMEOULScceuvururirericcuereieererieeceere ettt s e b s s eseseacae b seneseacaes
Updating Multiple Databasesccceurereueurieireiueirineieireeteesieesesisesese st sssssssessssssssssecsssees
Transactions in Web COMPONENLSc.occuruiucirimiieiricinireieirieieireicisieseseacisesese s ssesessesesesseacsees
ReSOUIce CONNECLIONSccooviuiiiicicic ettt ene 1011
Resources and JNDI NAMING ...c.cvueueuriiuririeieieeeiseeietseietetesesseesessesesesesessesesesessesessssessscsesscsesees 1011
DataSource Objects and Connection POOIScccceeeeiriririiirieieeiee e eeeees 1012

Resource Injection
Field-Based INJECTON ...c.cvevrueeieieeieieieieieieiiccieie ettt ses s e s sesessnes
Method-Based INJECHONccueeuiueiieiricieirecieeee sttt et eeaeies
Class-Based INJECTIONc.ovvveeeeeririeiriririiieeieieteteeeteesessese e sess et sese s asesssssssesesessssenes

The confirmer Example APPICAtION ...cccuvicuriiueirieieirieiscietrceie ettt ees
Running the confirmer Example Application

Further Information about RESOUICESoivvvuiiieieiiieeeieecec ettt ss s saenens

25

Contents

26

35

Part VIl

36

37

ConNNECtOr ArChiteCEUNEc.ccoiiiiii ettt
ADOUL RESOUICE AQAPLETSouviriaiieicieiiieiricte ettt ettt
ReSOUIce Adapter CONEIACESovvvieueeeeeieiririiieeeie ettt sessasesessssse et sessasesssssssssesesessnsnens
Management CONTIACES ...ttt es
OULDOUNA CONLACES ..vvvvvieiecececieieieteieieseses sttt s s s ss e s s s ssssssssssssesesesssaes
INDOUNA CONTIACES ...vereveveieiiieeciseeieieietstesssse e ses et se s s es s sese s s s s ssssssssesessnes

Common Client Interface ...

Further Information about the Connector Architecture

CASE STUIES ...ttt 1029
The Coffee Break APPIICAtioNocoiviviviiiiiiccceeeeeeeee ettt 1031
Overview of the Coffee Break APPIICAtIONc.vvuevieeieiriniisieiceieeseseeessee st enssees 1031
COMIMON COAE ..ttt ettt a s st be bbb as s s b s s s ananassetesesens 1033
JAX-WS Coffee SUPPLHET SETVICEucueirieeiricieieieirieietree ettt et saeees 1033

Service Implementation
SAAJ COffee SUPPLET SEIVICE .evuvvriririiriirieieieieieieeessietetses et seseas et ss s eeesssssssssnsnes
VN [O] 1= SO
SAAJ SEIVICE .uveriitieiietiecrecte et tteeteste et e te e s et e sae e b eebeeta e beeseesesseessesseessensesssessesseensenseessensensenn
COMTEE BIeaK SEIVETvcvviiieceiecteteteteteeee ettt s bbb aetesenens
JOP PAGES .ottt
JavaBeans Components
TheRetailPriceListServlet Servlet

ReSOUICe CONFIZUIATION ...vovveveieieririeieieieieiicceseeeiete et sesssease e esssssssssssesnes
Building, Packaging, Deploying, and Running the Coffee Break Applicationccccueee.e. 1053
SEttNE The POT ..cuvieiiiicicireciei ettt bbbt 1054
Building, Packaging, and Deploying the JAX-WS Coffee Supplier Servicec.ccvuuueuee. 1054
Building, Packaging, and Deploying the SAA]J Coffee Supplier Servicec.cccovevcueureueenee 1055
Building, Packaging, and Deploying the Coffee Break Serverccocoveveveveinecencineeneen. 1055
Running the Coffee Break CHENtcoceuviiueinieiniiieircie ettt seaeies 1056
Removing the Coffee Break APPlICAtIONc.cvueveueieiriiirneeieereeesse e sseseseens 1058

The Duke’s Bank Application
Overview of the Duke’s Bank APPlICAtionc.ceceueurieurinieeireneieinesieeneeesereie st sseeeesseseeees 1059

The Java EE 5 Tutorial « October 2008

Contents

Part VIl

ENterprise BEAMS ...covcvvivieiiiiriricicicccttrt ettt ettt ettt 1060
SESSION BEAIS ...ttt ettt ettt ettt 1061
Java Persistence ENTItIES ...ccvvivvivrieiiiricicieeecr ettt eaesre e ebees b e sre s e saerseneas 1063
HEIPET CLASSESoveveeieieieiriiieeeieie ettt ee s es ettt s e e esesssssesesesessesesssssnsssesssnssnes

Database Tables

Protecting the Enterprise Beans

APPHCALION CHENT ..oceeieieieiecieiieieetetresies ettt sttt s e st enebennsaees
The Classes and Their Relationshipsccceereirieirinieeireienieieieieiseeiesee e eeseaeaes 1067
BankAdmin Class
Web Clientccceuneeee.
Design Strategies
ClIENt COMPONENLS .vuvvviisirereereeieinietsesisesesesesesesssssssesssssesesesessssssssssssssesssesssssesssssssesessssssnes 1071
ReQUESt PIOCESSINE ...veuvreuiieieirietieeiri ettt ettt bttt 1073
Protecting the Web CLENt RESOUICTEScuuueurierimeiiineeireiriieieireiseesetseieese et seeseene 1075
Building, Packaging, Deploying, and Running the Duke's Bank Applicationcccceueee... 1077
Setting UP the SEIVETS ...ttt ettt eeaeses 1077
Building, Packaging, and Deploying Duke’s Bank Using NetBeans IDEccccvcueee. 1078
Building, Packaging, and Deploying Duke’s Bank Using Antc.cccveveeevcunerrecurernennen. 1079
Running the Duke's Bank Application Client Using NetBeans IDEccccovcvevunernennce. 1079
Running the Duke's Bank Application Client Using Antcoeceveeerinecrneneeeenenceeeneeenns 1079
Running the Duke's Bank Web CHENtc.coveeuicurinceeininceniciricereceeneeceeeecesesesesseeenes 1080
APPENIXES ... s 1083
Java ENcoding SChemES ..ottt 1085
Further Information about Character ENCOdingccoveueneeurinieinicieinieincesecieeseeeseneiens 1086
Preparation forJava EE Certification EXamsccccooveiiiiiicicieieieeceee e 1087
CX-310-083: Sun Certified Web Component DeVelOpercccvueeeereerecenieneeeeneeneeenenneenenens 1088

SL-351-EE5: Business Component Development with Enterprise JavaBeans Technology .. 1088

ABOULTREAULROLSoeeeeee ettt et s et st en et enesaenens 1091

27

28

Preface

This tutorial is a guide to developing enterprise applications for the Java™ Platform, Enterprise
Edition 5 (Java EE 5).

This preface contains information about and conventions for the entire Sun Java System
Application Server documentation set.

Before You Read This Book

Before proceeding with this tutorial, you should have a good knowledge of the Java
programming language. A good way to get to that point is to work through The Java Tutorial,
Fourth Edition, Sharon Zakhour et al. (Addison-Wesley, 2006). You should also be familiar with
the Java DataBase Connectivity (JDBC™) and relational database features described in JDBC
API Tutorial and Reference, Third Edition, Maydene Fisher et al. (Addison-Wesley, 2003).

How This Book Is Organized

The Java EE 5 platform is quite large, and this tutorial reflects this. However, you don’t have to
digest everything in it at once. The tutorial has been divided into parts to help you navigate the
content more easily.

This tutorial opens with an introductory chapter, which you should read before proceeding to
any specific technology area. Chapter 1, “Overview,” covers the Java EE 5 platform architecture
and APIs, the Sun Java System Application Server 9.1, and how to use the this tutorial's
examples.

When you have digested the basics, you can delve into one or more of the five main technology
areas listed next. Because there are dependencies between some of the chapters, Figure P-1
contains a roadmap for navigating through the tutorial.

= The web-tier technology chapters in Part II cover the components used in developing the
presentation layer of a Java EE 5 or stand-alone web application:

® Java Servlet
= JavaServer Pages™ (JSP™)
= JavaServer Pages Standard Tag Library (JSTL)

29

Preface

30

= JavaServer™ Faces
= Web application internationalization and localization

The web services technology chapters in Part III cover the APIs used in developing standard
web services:

® The Java API for XML-based Web Services (JAX-WS)
= The Java API for XML Binding (JAXB)

= The Streaming API for XML (StAX)

= The SOAP with Attachments API for Java™ (SAAJ)

The Enterprise JavaBeans™ (EJB™) technology chapters in Part IV cover the components
used in developing the business logic of a Java EE 5 application:

= Session beans
= Message-driven beans

The persistence technology chapters in Part V cover the Java Persistence API, which is used
for accessing databases from Java EE applications:

= Introduction to the Java Persistence API
m Persistence in the Web Tier

m Persistence in the EJB Tier

The Java Persistence Query Language

The platform services chapters in Part VI cover the system services used by all the Java EE 5
component technologies:

= Security

= Java Message Service

= Transactions

= Resource connections

® TheJava EE Connector Architecture

The Java EE 5 Tutorial « October 2008

Preface

l Overview (1) l

Using the

Tutorial Examples

(2)

v v

Getting Started with
Web Applications (3)

Building Web
Services with
JAX-WS (16)

Enterprise

Beans (20-23)

v (vaxs (17))

((saas(19))

' Servlets (4) In
—
STAX (18)

JSP (5-9) j

Persistence
(24-27)

JSF (10-14)

VV V. VY
[Coffee Break
118n and Case Study (36)

]

L10n (15)

FIGUREP-1 Roadmap to This Tutorial

Duke’s Bank
Case Study (37)

Security
(28-30)

[JMS

(31-32)

Transactions
(33)

Resource
Connections
(34)

3

Connectors
(35)

]

After you have become familiar with some of the technology areas, you are ready to tackle the
case studies in Part VII, which tie together several of the technologies discussed in the tutorial.
The Coffee Break Application describes an application that uses the web application and web
services APIs. The Duke’s Bank Application describes an application that employs web
application technologies, enterprise beans, and the Java Persistence APL

Finally, Part VIII contains information about Java encoding schemes and Java EE certification
that may be helpful to the Java EE 5 application developer, and information about the tutorial's

authors.

31

Preface

Application Server Documentation Set

The Application Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for Application Server documentation is
http://docs.sun.com/coll/1343.4. For an introduction to Application Server, refer to the
books in the order in which they are listed in the following table.

TABLE P-1

Books in the Application Server Documentation Set

BookTitle

Description

Documentation Center

Application Server documentation topics organized by task and subject.

Release Notes Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating system, Java
Development Kit (J]DK™), and database drivers.

Quick Start Guide How to get started with the Application Server product.

Installation Guide

Installing the software and its components.

Deployment Planning Guide

Evaluating your system needs and enterprise to ensure that you deploy the Application Server
in a manner that best suits your site. General issues and concerns that you must be aware of
when deploying the server are also discussed.

Application Deployment Guide

Deployment of applications and application components to the Application Server. Includes
information about deployment descriptors.

Developer’s Guide Creating and implementing Java Platform, Enterprise Edition (Java EE platform) applications
intended to run on the Application Server that follow the open Java standards model for Java
EE components and APIs. Includes information about developer tools, security, debugging,
and creating lifecycle modules.

Java EE 5 Tutorial Using Java EE 5 platform technologies and APIs to develop Java EE applications.

Java WSIT Tutorial Developing web applications using the Web Service Interoperability Technologies (WSIT).

Describes how, when, and why to use the WSIT technologies and the features and options
that each technology supports.

Administration Guide

System administration for the Application Server, including configuration, monitoring,
security, resource management, and web services management.

High Availability Administration
Guide

Post-installation configuration and administration instructions for the high-availability
database.

Administration Reference

Editing the Application Server configuration file, domain.xml.

Upgrade and Migration Guide

Upgrading from an older version of Application Server or migrating Java EE applications
from competitive application servers. This guide also describes differences between adjacent
product releases and configuration options that can result in incompatibility with the product
specifications.

32

The Java EE 5 Tutorial « October 2008

http://docs.sun.com/coll/1343.4

Preface

TABLEP-1 Books in the Application Server Documentation Set (Continued)
BookTitle Description
Performance Tuning Guide Tuning the Application Server to improve performance.
Troubleshooting Guide Solving Application Server problems.
Error Message Reference Solving Application Server error messages.
Reference Manual Utility commands available with the Application Server; written in man page style. Includes
the asadmin command line interface.

Related Documentation

Application Server can be purchased by itself or as a component of Sun Java Enterprise System
(Java ES), a software infrastructure that supports enterprise applications distributed across a
network or Internet environment. If you purchased Application Server as a component of
Java ES, you should be familiar with the system documentation at
http://docs.sun.com/coll/1286.3. The URL for all documentation about Java ES and its
componentsishttp://docs.sun.com/prod/entsys.5.

For documentation about other stand-alone Sun Java System server products, go to the
following:

= Message Queue documentation (http://docs.sun.com/coll/1343.4)
= Directory Server documentation (http://docs.sun.com/coll/1224.1)
m Web Server documentation (http://docs.sun.com/coll/1308.3)

A Javadoc™ tool reference for packages provided with the Application Server is located at
http://glassfish.dev.java.net/nonav/javaee5/api/index.html. Additionally, the
following resources might be useful:

® TheJava EE 5 Specifications (http://java.sun.com/javaee/5/javatech.html)
® The Java EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

For information on creating enterprise applications in the NetBeans™ Integrated Development
Environment (IDE), see http://www.netbeans.org/kb/55/index.html.

For information about the Java DB database included with the Application Server, see
http://developers.sun.com/javadb/.

The GlassFish Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The GlassFish Samples are bundled with the Java EE Software
Development Kit (SDK), and are also available from the GlassFish Samples project page at
https://glassfish-samples.dev.java.net/.

33

http://docs.sun.com/coll/1286.3
http://docs.sun.com/prod/entsys.5
http://docs.sun.com/coll/1343.4
http://docs.sun.com/coll/1224.1
http://docs.sun.com/coll/1308.3
http://glassfish.dev.java.net/nonav/javaee5/api/index.html
http://java.sun.com/javaee/5/javatech.html
http://java.sun.com/reference/blueprints/index.html
http://www.netbeans.org/kb/55/index.html
http://developers.sun.com/javadb/
https://glassfish-samples.dev.java.net/

Preface

Default Paths and File Names

The following table describes the default paths and file names that are used in this book.

TABLEP-2 Default Paths and File Names

Placeholder Description

DefaultValue

tut-install Represents the base installation directory for

the Java EE Tutorial.

java-home Represents the base installation directory for
the Java Platform, Standard Edition (Java SE
platform).

as-install Represents the base installation directory for

the Application Server or the Software
Development Kit (SDK) of which the
Application Server is a part.

domain-root-dir Represents the directory containing all

Application Server domains.

None. Install the tutorial in a directory without spaces in the path.

None. Same value as the JAVA_HOME environment variable.

Java ES installations on the Solaris™ operating system:
/opt/SUNWappserver/appserver

Java ES installations on the Linux operating system:
/opt/sun/appserver/

Other Solaris and Linux non-SDK installations, non-root user:
user’s-home-directory/SUNWappserver

Other Solaris and Linux non-SDK installations, root user:
/opt/SUNWappserver

Solaris and Linux SDK installations:
user’s-home-directory/SDK

Windows, all non-SDK installations:
SystemDrive:\Sun\AppServer

Windows, all SDK installations:

SystemDrive:\Sun\SDK

Java ES Solaris installations:
/var/opt/SUNWappserver/domains/

Java ES Linux installations:
/var/opt/sun/appserver/domains/

All other installations:

as-install/domains/

34 The Java EE 5 Tutorial « October 2008

Preface

TABLEP-2 Default Paths and File Names (Continued)
Placeholder Description DefaultValue
domain-dir Represents the directory for a domain. domain-root-dir/domain-dir

In configuration files, you might see
domain-dir represented as follows:

${com.sun.aas.instanceRoot}

instance-dir Represents the directory for a server instance. domain-dir/instance-dir

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLEP-3 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and Edit your . login file.
directories, and onscreen computer .
Use 1s -a to list all files.
output
machine name% you have mail.
AaBbCc123 What you type, contrasted with onscreen machine_name% su
computer output
Password:
AaBbCc123 A placeholder to be replaced with a real The command to remove a file is rm filename.
name or value
AaBbCcl23 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.

emphasized (note that some emphasized

items appear bold online) A cache s a copy that is stored locally.

Do not save the file.

Symbol Conventions

The following table explains symbols that might be used in this book.

TABLEP-4 Symbol Conventions

Symbol Description Example Meaning
[1 Contains optional arguments 1s [-1] The -1 option is not required.
and command options.

35

Preface

TABLEP-4 Symbol Conventions (Continued)

Symbol Description Example Meaning

{1} Contains a set of choices fora -d {y|n} The -d option requires that you use
required command option. either the y argument or the n

argument.

${} Indicates a variable ${com.sun.javaRoot} References the value of the
reference. com.sun.javaRoot variable.

- Joins simultaneous multiple ~ Control-A Press the Control key while you press
keystrokes. the A key.

+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it, and
keystrokes. then press the subsequent keys.

- Indicates menu item File - New — Templates From the File menu, choose New.

selection in a graphical user
interface.

From the New submenu, choose
Templates.

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

» Documentation (http://www.sun.com/documentation/)

= Support (http://www.sun.com/support/)
® Training (http://www.sun.com/training/)

Searching Sun Product Documentation

36

Besides searching Sun product documentation from the docs.sun.com™ web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun. com in place of docs . sun. com in the search field.

The Java EE 5 Tutorial « October 2008

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Preface

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun. comand click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-3669.

37

http://docs.sun.com

38

PART I

Introduction

Part One introduces the tutorial and examples.

39

40

CHAPTER 1

Overview

Developers today increasingly recognize the need for distributed, transactional, and portable
applications that leverage the speed, security, and reliability of server-side technology. In the
world of information technology, enterprise applications must be designed, built, and produced
for less money, with greater speed, and with fewer resources.

With the Java™ Platform, Enterprise Edition (Java EE), development of Java enterprise
applications has never been easier or faster. The aim of the Java EE 5 platform is to provide
developers a powerful set of APIs while reducing development time, reducing application
complexity, and improving application performance.

The Java EE 5 platform introduces a simplified programming model. With Java EE 5
technology, XML deployment descriptors are now optional. Instead, a developer can simply
enter the information as an annotation directly into a Java source file, and the Java EE server will
configure the component at deployment and runtime. These annotations are generally used to
embed in a program data that would otherwise be furnished in a deployment descriptor. With
annotations, the specification information is put directly in your code next to the program
element that it affects.

In the Java EE platform, dependency injection can be applied to all resources that a component
needs, effectively hiding the creation and lookup of resources from application code.
Dependency injection can be used in EJB containers, web containers, and application clients.
Dependency injection allows the Java EE container to automatically insert references to other
required components or resources using annotations.

The Java Persistence API is new to the Java EE 5 platform. The Java Persistence API provides an
object/relational mapping for managing relational data in enterprise beans, web components,
and application clients. It can also be used in Java SE applications, outside of the Java EE
environment.

This tutorial uses examples to describe the features and functionalities available in the Java EE 5
platform for developing enterprise applications. Whether you are a new or experienced
Enterprise developer, you should find the examples and accompanying text a valuable and
accessible knowledge base for creating your own solutions.

4

Java EE Application Model

If you are new to Java EE enterprise application development, this chapter is a good place to
start. Here you will review development basics, learn about the Java EE architecture and APIs,
become acquainted with important terms and concepts, and find out how to approach Java EE
application programming, assembly, and deployment.

Java EE Application Model

The Java EE application model begins with the Java programming language and the Java virtual
machine. The proven portability, security, and developer productivity they provide forms the
basis of the application model. Java EE is designed to support applications that implement
enterprise services for customers, employees, suppliers, partners, and others who make
demands on or contributions to the enterprise. Such applications are inherently complex,
potentially accessing data from a variety of sources and distributing applications to a variety of
clients.

To better control and manage these applications, the business functions to support these
various users are conducted in the middle tier. The middle tier represents an environment that
is closely controlled by an enterprise’s information technology department. The middle tier is
typically run on dedicated server hardware and has access to the full services of the enterprise.

The Java EE application model defines an architecture for implementing services as multitier
applications that deliver the scalability, accessibility, and manageability needed by
enterprise-level applications. This model partitions the work needed to implement a multitier
service into two parts: the business and presentation logic to be implemented by the developer,
and the standard system services provided by the Java EE platform. The developer can rely on
the platform to provide solutions for the hard systems-level problems of developing a multitier
service.

Distributed Multitiered Applications

42

The Java EE platform uses a distributed multitiered application model for enterprise
applications. Application logic is divided into components according to function, and the
various application components that make up a Java EE application are installed on different
machines depending on the tier in the multitiered Java EE environment to which the
application component belongs.

Figure 1-1 shows two multitiered Java EE applications divided into the tiers described in the
following list. The Java EE application parts shown in Figure 1-1 are presented in “Java EE
Components” on page 44.

= Client-tier components run on the client machine.
= Web-tier components run on the Java EE server.
= Business-tier components run on the Java EE server.

The Java EE 5 Tutorial « October 2008

Distributed Multitiered Applications

= Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of the three or four tiers shown in Figure 1-1, Java
EE multitiered applications are generally considered to be three-tiered applications because
they are distributed over three locations: client machines, the Java EE server machine, and the
database or legacy machines at the back end. Three-tiered applications that run in this way
extend the standard two-tiered client and server model by placing a multithreaded application
server between the client application and back-end storage.

f Java EE Application 1 Java EE Application 2)
[
lient
- ClientTier [— f\:n;?:“ine
Application Dynamic
I PR ot HTML Pages)
v N
JSP Pages Web Tier
/| JavaEE
) Server
: f _ v
Enterprise Beans Enterprise Beans Business Tier
r - - Elsv Ti ‘ Database
ier |—
Database Database Server

FIGURE 1-1 Multitiered Applications

Security

While other enterprise application models require platform-specific security measures in each
application, the Java EE security environment enables security constraints to be defined at
deployment time. The Java EE platform makes applications portable to a wide variety of
security implementations by shielding application developers from the complexity of
implementing security features.

Chapter 1 « Overview 43

Distributed Multitiered Applications

44

The Java EE platform provides standard declarative access control rules that are defined by the
developer and interpreted when the application is deployed on the server. Java EE also provides
standard login mechanisms so application developers do not have to implement these
mechanisms in their applications. The same application works in a variety of different security
environments without changing the source code.

Java EE Components

Java EE applications are made up of components. A Java EE component is a self-contained
functional software unit that is assembled into a Java EE application with its related classes and
files and that communicates with other components.

The Java EE specification defines the following Java EE components:

= Application clients and applets are components that run on the client.

= Java Servlet, JavaServer Faces, and JavaServer Pages™ (JSP™) technology components are
web components that run on the server.

= Enterprise JavaBeans™ (EJB™) components (enterprise beans) are business components
that run on the server.

Java EE components are written in the Java programming language and are compiled in the
same way as any program in the language. The difference between Java EE components and
“standard” Java classes is that Java EE components are assembled into a Java EE application, are
verified to be well formed and in compliance with the Java EE specification, and are deployed to
production, where they are run and managed by the Java EE server.

Java EE Clients

A Java EE client can be a web client or an application client.

Web Clients

A web client consists of two parts: (1) dynamic web pages containing various types of markup
language (HTML, XML, and so on), which are generated by web components running in the
web tier, and (2) a web browser, which renders the pages received from the server.

A web client is sometimes called a thin client. Thin clients usually do not query databases,
execute complex business rules, or connect to legacy applications. When you use a thin client,
such heavyweight operations are oft-loaded to enterprise beans executing on the Java EE server,
where they can leverage the security, speed, services, and reliability of Java EE server-side
technologies.

The Java EE 5 Tutorial « October 2008

Distributed Multitiered Applications

Applets

A web page received from the web tier can include an embedded applet. An applet is a small
client application written in the Java programming language that executes in the Java virtual
machine installed in the web browser. However, client systems will likely need the Java Plug-in
and possibly a security policy file for the applet to successfully execute in the web browser.

Web components are the preferred API for creating a web client program because no plug-ins
or security policy files are needed on the client systems. Also, web components enable cleaner
and more modular application design because they provide a way to separate applications
programming from web page design. Personnel involved in web page design thus do not need
to understand Java programming language syntax to do their jobs.

Application Clients

An application client runs on a client machine and provides a way for users to handle tasks that
require a richer user interface than can be provided by a markup language. It typically has a
graphical user interface (GUI) created from the Swing or the Abstract Window Toolkit (AWT)
API, but a command-line interface is certainly possible.

Application clients directly access enterprise beans running in the business tier. However, if
application requirements warrant it, an application client can open an HTTP connection to
establish communication with a servlet running in the web tier. Application clients written in
languages other than Java can interact with Java EE 5 servers, enabling the Java EE 5 platform to
interoperate with legacy systems, clients, and non-Java languages.

The JavaBeans™ Component Architecture

The server and client tiers might also include components based on the JavaBeans component
architecture (JavaBeans components) to manage the data flow between an application client or
applet and components running on the Java EE server, or between server components and a
database. JavaBeans components are not considered Java EE components by the Java EE
specification.

JavaBeans components have properties and have get and set methods for accessing the
properties. JavaBeans components used in this way are typically simple in design and
implementation but should conform to the naming and design conventions outlined in the
JavaBeans component architecture.

Java EE Server Communications

Figure 1-2 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the Java EE server either directly or, as in the
case of a client running in a browser, by going through JSP pages or servlets running in the web
tier.

Chapter 1 « Overview 45

Distributed Multitiered Applications

> Application Client and > Web Browser, Web Pages, t

Optional JavaBeans Applets, and Optional S5

Components JavaBeans Components %

f T Client Tier

/

) 7 |
4
Web Tier '
/, i
\ . . Java EE
Business Tier Server

FIGURE1-2 Server Communication

46

Your Java EE application uses a thin browser-based client or thick application client. In
deciding which one to use, you should be aware of the trade-offs between keeping functionality
on the client and close to the user (thick client) and off-loading as much functionality as
possible to the server (thin client). The more functionality you oft-load to the server, the easier it
is to distribute, deploy, and manage the application; however, keeping more functionality on
the client can make for a better perceived user experience.

Web Components

Java EE web components are either servlets or pages created using JSP technology (JSP pages)
and/or JavaServer Faces technology. Serviets are Java programming language classes that
dynamically process requests and construct responses. JSP pages are text-based documents that
execute as servlets but allow a more natural approach to creating static content. JavaServer Faces
technology builds on servlets and JSP technology and provides a user interface component
framework for web applications.

The Java EE 5 Tutorial « October 2008

Distributed Multitiered Applications

Static HTML pages and applets are bundled with web components during application assembly
but are not considered web components by the Java EE specification. Server-side utility classes
can also be bundled with web components and, like HTML pages, are not considered web
components.

As shown in Figure 1-3, the web tier, like the client tier, might include a JavaBeans component
to manage the user input and send that input to enterprise beans running in the business tier for
processing.

> Web Browser, Web Pages,

> Application Client and
Optional JavaBeans
Components

Applets, and Optional
JavaBeans Components

N

T Client Tier

\

éj avaBean? JSP Pages
?&%%?%T) S Servlets Web Tier

A
N

4 X

Business Tier Java EE

Server

FIGURE 1-3 Web Tier and Java EE Applications

Business Components

Business code, which is logic that solves or meets the needs of a particular business domain such
as banking, retail, or finance, is handled by enterprise beans running in the business tier.

Figure 1-4 shows how an enterprise bean receives data from client programs, processes it (if
necessary), and sends it to the enterprise information system tier for storage. An enterprise
bean also retrieves data from storage, processes it (if necessary), and sends it back to the client
program.

Chapter 1 « Overview 47

Java EE Containers

@ @

> App_lication Client and > Web Browser, Web Pages,
Optional JavaBeans Applets, and Optional
Components JavaBeans Components

Client Tier

r / \
, v :

JavaBeans
JSP Pages : '
/ ¢ Il ﬁf'z} Serviets | Web Tier =

Components

(Optional)

L]

Java Persistence Entities J EE
Session Beans . - ava
Message-Driven Business Tier T
Beans
\ A J
\ J
{ N
v v Database _
and Legacy EIS Tier
Systems
\ J

FIGURE 1-4 Business and EIS Tiers

Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enterprise
infrastructure systems such as enterprise resource planning (ERP), mainframe transaction
processing, database systems, and other legacy information systems. For example, Java EE
application components might need access to enterprise information systems for database
connectivity.

Java EE Containers

Normally, thin-client multitiered applications are hard to write because they involve many lines
of intricate code to handle transaction and state management, multithreading, resource
pooling, and other complex low-level details. The component-based and platform-independent
Java EE architecture makes Java EE applications easy to write because business logic is
organized into reusable components. In addition, the Java EE server provides underlying

48 The Java EE 5 Tutorial « October 2008

Java EE Containers

services in the form of a container for every component type. Because you do not have to
develop these services yourself, you are free to concentrate on solving the business problem at
hand.

Container Services

Containers are the interface between a component and the low-level platform-specific
functionality that supports the component. Before a web, enterprise bean, or application client
component can be executed, it must be assembled into a Java EE module and deployed into its
container.

The assembly process involves specifying container settings for each component in the Java EE
application and for the Java EE application itself. Container settings customize the underlying
support provided by the Java EE server, including services such as security, transaction
management, Java Naming and Directory Interface™ (JNDI) lookups, and remote connectivity.
Here are some of the highlights:

= The Java EE security model lets you configure a web component or enterprise bean so that
system resources are accessed only by authorized users.

= The Java EE transaction model lets you specify relationships among methods that make up a
single transaction so that all methods in one transaction are treated as a single unit.

= JNDIlookup services provide a unified interface to multiple naming and directory services
in the enterprise so that application components can access these services.

= The Java EE remote connectivity model manages low-level communications between clients
and enterprise beans. After an enterprise bean is created, a client invokes methods on it as if
it were in the same virtual machine.

Because the Java EE architecture provides configurable services, application components within
the same Java EE application can behave differently based on where they are deployed. For
example, an enterprise bean can have security settings that allow it a certain level of access to
database data in one production environment and another level of database access in another
production environment.

The container also manages nonconfigurable services such as enterprise bean and servlet life
cycles, database connection resource pooling, data persistence, and access to the Java EE
platform APIs (see “Java EE 5 APIs” on page 57).

Container Types

The deployment process installs Java EE application components in the Java EE containers as
illustrated in Figure 1-5.

Chapter 1 « Overview 49

Java EE Containers

Application
Client

Application Client

Web Browser

Client
Machine

7

Container A
y '
JSP Web
f’ [Gb Servlet Page |Container
- Java EE
) Server
Enterprise Enterprise EJB
Bean Bean Container

Database

FIGURE 1-5 Java EE Server and Containers

50

= Java EE server: The runtime portion of a Java EE product. A Java EE server provides EJB and

web containers.

= Enterprise JavaBeans (EJB) container: Manages the execution of enterprise beans for Java
EE applications. Enterprise beans and their container run on the Java EE server.

= Web container: Manages the execution of JSP page and servlet components for Java EE
applications. Web components and their container run on the Java EE server.

= Application client container: Manages the execution of application client components.
Application clients and their container run on the client.

= Applet container: Manages the execution of applets. Consists of a web browser and Java
Plug-in running on the client together.

The Java EE 5 Tutorial « October 2008

Web Services Support

Web Services Support

Web services are web-based enterprise applications that use open, XML-based standards and
transport protocols to exchange data with calling clients. The Java EE platform provides the
XML APIs and tools you need to quickly design, develop, test, and deploy web services and
clients that fully interoperate with other web services and clients running on Java-based or
non-Java-based platforms.

To write web services and clients with the Java EE XML APIs, all you do is pass parameter data
to the method calls and process the data returned; or for document-oriented web services, you
send documents containing the service data back and forth. No low-level programming is
needed because the XML API implementations do the work of translating the application data
to and from an XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the following sections.

The translation of data to a standardized XML-based data stream is what makes web services
and clients written with the Java EE XML APIs fully interoperable. This does not necessarily
mean that the data being transported includes XML tags because the transported data can itself
be plain text, XML data, or any kind of binary data such as audio, video, maps, program files,
computer-aided design (CAD) documents and the like. The next section introduces XML and
explains how parties doing business can use XML tags and schemas to exchange dataina
meaningful way.

XML

XML is a cross-platform, extensible, text-based standard for representing data. When XML data
is exchanged between parties, the parties are free to create their own tags to describe the data, set
up schemas to specify which tags can be used in a particular kind of XML document, and use
XML stylesheets to manage the display and handling of the data.

For example, a web service can use XML and a schema to produce price lists, and companies
that receive the price lists and schema can have their own stylesheets to handle the data in a way
that best suits their needs. Here are examples:

= One company might put XML pricing information through a program to translate the XML
to HTML so that it can post the price lists to its intranet.

= A partner company might put the XML pricing information through a tool to create a
marketing presentation.

= Another company might read the XML pricing information into an application for
processing.

Chapter 1 « Overview 51

Java EE Application Assembly and Deployment

SOAP Transport Protocol

Client requests and web service responses are transmitted as Simple Object Access Protocol
(SOAP) messages over HT'TP to enable a completely interoperable exchange between clients
and web services, all running on different platforms and at various locations on the Internet.
HTTP is a familiar request-and response standard for sending messages over the Internet, and
SOAP is an XML-based protocol that follows the HTTP request-and-response model.

The SOAP portion of a transported message handles the following:

= Defines an XML-based envelope to describe what is in the message and how to process the
message

= Includes XML-based encoding rules to express instances of application-defined data types
within the message

= Defines an XML-based convention for representing the request to the remote service and
the resulting response

WSDL Standard Format

The Web Services Description Language (WSDL) is a standardized XML format for describing
network services. The description includes the name of the service, the location of the service,
and ways to communicate with the service. WSDL service descriptions can be stored in UDDI
registries or published on the web (or both). The Sun Java System Application Server Platform
Edition 8 provides a tool for generating the WSDL specification of a web service that uses
remote procedure calls to communicate with clients.

UDDI and ebXML Standard Formats

Other XML-based standards, such as Universal Description, Discovery and Integration (UDDI)
and ebXML, make it possible for businesses to publish information on the Internet about their
products and web services, where the information can be readily and globally accessed by
clients who want to do business.

Java EE Application Assembly and Deployment

52

A Java EE application is packaged into one or more standard units for deployment to any Java
EE platform-compliant system. Each unit contains:

= A functional component or components (such as an enterprise bean, JSP page, servlet, or
applet)
= Anoptional deployment descriptor that describes its content

The Java EE 5 Tutorial « October 2008

Packaging Applications

Once a Java EE unit has been produced, it is ready to be deployed. Deployment typically
involves using a platform’s deployment tool to specify location-specific information, such as a
list of local users that can access it and the name of the local database. Once deployed on a local
platform, the application is ready to run.

Packaging Applications

A Java EE application is delivered in an Enterprise Archive (EAR) file, a standard Java Archive
(JAR) file with an . ear extension. Using EAR files and modules makes it possible to assemble a
number of different Java EE applications using some of the same components. No extra coding
is needed; it is only a matter of assembling (or packaging) various Java EE modules into Java EE
EAR files.

An EAR file (see Figure 1-6) contains Java EE modules and deployment descriptors. A
deployment descriptor is an XML document with an . xml extension that describes the
deployment settings of an application, a module, or a component. Because deployment
descriptor information is declarative, it can be changed without the need to modify the source
code. At runtime, the Java EE server reads the deployment descriptor and acts upon the
application, module, or component accordingly.

Assembly
Root

Web l EJB l
[META-INF][Module] Module

Application Resource
Client Module Adapter Module

application.xml
sun-application.xml

FIGURE1-6 EAR File Structure

There are two types of deployment descriptors: Java EE and runtime. A Java EE deployment
descriptor is defined by a Java EE specification and can be used to configure deployment settings
on any Java EE-compliant implementation. A runtime deployment descriptor is used to

Chapter 1 « Overview 53

Development Roles

configure Java EE implementation-specific parameters. For example, the Sun Java System
Application Server Platform Edition 9 runtime deployment descriptor contains information
such as the context root of a web application, the mapping of portable names of an application’s
resources to the server’s resources, and Application Server implementation-specific parameters,
such as caching directives. The Application Server runtime deployment descriptors are named
sun-moduleType.xml and are located in the same META- INF directory as the Java EE
deployment descriptor.

A Java EE module consists of one or more Java EE components for the same container type and
one component deployment descriptor of that type. An enterprise bean module deployment
descriptor, for example, declares transaction attributes and security authorizations for an
enterprise bean. A Java EE module without an application deployment descriptor can be
deployed as a stand-alone module.

The four types of Java EE modules are as follows:

= EJB modules, which contain class files for enterprise beans and an EJB deployment
descriptor. EJB modules are packaged as JAR files with a . jar extension.

= Web modules, which contain servlet class files, JSP files, supporting class files, GIF and
HTML files, and a web application deployment descriptor. Web modules are packaged as
JAR files with a .war (Web ARchive) extension.

= Application client modules, which contain class files and an application client deployment
descriptor. Application client modules are packaged as JAR files with a . jar extension.

= Resource adapter modules, which contain all Java interfaces, classes, native libraries, and
other documentation, along with the resource adapter deployment descriptor. Together,
these implement the Connector architecture (see “J2EE Connector Architecture” on
page 61) for a particular EIS. Resource adapter modules are packaged as JAR files with an
.rar (resource adapter archive) extension.

Development Roles

54

Reusable modules make it possible to divide the application development and deployment
process into distinct roles so that different people or companies can perform difterent parts of
the process.

The first two roles involve purchasing and installing the Java EE product and tools. After
software is purchased and installed, Java EE components can be developed by application
component providers, assembled by application assemblers, and deployed by application
deployers. In a large organization, each of these roles might be executed by different individuals
or teams. This division of labor works because each of the earlier roles outputs a portable file
that is the input for a subsequent role. For example, in the application component development
phase, an enterprise bean software developer delivers EJB JAR files. In the application assembly
role, another developer combines these EJB JAR files into a Java EE application and saves it in

The Java EE 5 Tutorial « October 2008

Development Roles

an EAR file. In the application deployment role, a system administrator at the customer site uses
the EAR file to install the Java EE application into a Java EE server.

The different roles are not always executed by different people. If you work for a small company,
for example, or if you are prototyping a sample application, you might perform the tasks in
every phase.

Java EE Product Provider

The Java EE product provider is the company that designs and makes available for purchase the
Java EE platform APIs, and other features defined in the Java EE specification. Product
providers are typically application server vendors who implement the Java EE platform
according to the Java EE 5 Platform specification.

Tool Provider

The tool provider is the company or person who creates development, assembly, and packaging
tools used by component providers, assemblers, and deployers.

Application Component Provider

The application component provider is the company or person who creates web components,
enterprise beans, applets, or application clients for use in Java EE applications.

Enterprise Bean Developer

An enterprise bean developer performs the following tasks to deliver an EJB JAR file that
contains one or more enterprise beans:

= Writes and compiles the source code
= Specifies the deployment descriptor
= Packages the . class files and deployment descriptor into the EJB JAR file

Web Component Developer

A web component developer performs the following tasks to deliver a WAR file containing one
or more web components:

= Writes and compiles servlet source code

m Writes JSP, JavaServer Faces, and HTML files

= Specifies the deployment descriptor

= Packagesthe .class, . jsp,and.html files and deployment descriptor into the WAR file

Chapter 1 « Overview 55

Development Roles

56

Application Client Developer

An application client developer performs the following tasks to deliver a JAR file containing the
application client:

= Writes and compiles the source code
= Specifies the deployment descriptor for the client
= Packages the . class files and deployment descriptor into the JAR file

Application Assembler

The application assembler is the company or person who receives application modules from
component providers and assembles them into a Java EE application EAR file. The assembler or
deployer can edit the deployment descriptor directly or can use tools that correctly add XML
tags according to interactive selections.

A software developer performs the following tasks to deliver an EAR file containing the Java EE
application:

= Assembles EJB JAR and WAR files created in the previous phases into a Java EE application
(EAR) file

= Specifies the deployment descriptor for the Java EE application

= Verifies that the contents of the EAR file are well formed and comply with the Java EE
specification

Application Deployer and Administrator

The application deployer and administrator is the company or person who configures and
deploys the Java EE application, administers the computing and networking infrastructure
where Java EE applications run, and oversees the runtime environment. Duties include such
things as setting transaction controls and security attributes and specifying connections to
databases.

During configuration, the deployer follows instructions supplied by the application component
provider to resolve external dependencies, specify security settings, and assign transaction
attributes. During installation, the deployer moves the application components to the server
and generates the container-specific classes and interfaces.

A deployer or system administrator performs the following tasks to install and configure a Java
EE application:

= Adds the Java EE application (EAR) file created in the preceding phase to the Java EE server

= Configures the Java EE application for the operational environment by modifying the
deployment descriptor of the Java EE application

The Java EE 5 Tutorial « October 2008

JavaEE 5 APIs

= Verifies that the contents of the EAR file are well formed and comply with the Java EE
specification

= Deploys (installs) the Java EE application EAR file into the Java EE server

Java EE 5 APIs

Figure 1-7 illustrates the availability of the Java EE 5 platform APIs in each Java EE container
type. The following sections give a brief summary of the technologies required by the Java EE
platform, and the APIs used in Java EE applications.

CAptpl.et HTTP Web Container EJB Container
ontainer
l Applet | JSP] [Servlet] EJB
= = = (@) o) [= = = o o)
& |22 S| |& 2 g 2|2 <))
29’%"’9—>‘3°’><33|— zmgwg>gm><
\ s2le| |3 |8 a| | JAF selz| 13] I8 JAF
Application Client o |8 = A E
Container
[

Application
Client

Database

XVis

SOOINIBS gOM

<
)
Iz
o |2 &
¢laz

TS
3|5
ol|e
=1
2

=
(2]
=
o
Y
Q
a
O
E

J2S

- New in Java EE 5

FIGURE 1-7 Java EE Platform APIs

Enterprise JavaBeans Technology

An Enterprise JavaBeans™ (EJB) component, or enterprise bean, is a body of code having fields
and methods to implement modules of business logic. You can think of an enterprise bean as a
building block that can be used alone or with other enterprise beans to execute business logic on
the Java EE server.

There are two kinds of enterprise beans: session beans and message-driven beans. A session
bean represents a transient conversation with a client. When the client finishes executing, the
session bean and its data are gone. A message-driven bean combines features of a session bean

Chapter 1 « Overview 57

JavaEE 5 APIs

58

and a message listener, allowing a business component to receive messages asynchronously.
Commonly, these are Java Message Service (JMS) messages.

In Java EE 5, entity beans have been replaced by Java persistence API entities. An entity
represents persistent data stored in one row of a database table. If the client terminates, or if the
server shuts down, the persistence manager ensures that the entity data is saved.

Java Servlet Technology

Java servlet technology lets you define HTTP-specific servlet classes. A servlet class extends the
capabilities of servers that host applications that are accessed by way of a request-response
programming model. Although servlets can respond to any type of request, they are commonly
used to extend the applications hosted by web servers.

JavaServer Pages Technology

JavaServer Pages™ (JSP) technology lets you put snippets of servlet code directly into a
text-based document. A JSP page is a text-based document that contains two types of text: static
data (which can be expressed in any text-based format such as HTML, WML, and XML) and
JSP elements, which determine how the page constructs dynamic content.

JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality common to
many JSP applications. Instead of mixing tags from numerous vendors in your JSP applications,
you employ a single, standard set of tags. This standardization allows you to deploy your
applications on any JSP container that supports JSTL and makes it more likely that the
implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating XML
documents, internationalization tags, tags for accessing databases using SQL, and commonly
used functions.

The Java EE 5 Tutorial « October 2008

JavaEE 5 APIs

JavaServer Faces

JavaServer Faces technology is a user interface framework for building web applications. The
main components of JavaServer Faces technology are as follows:

= A GUI component framework.

= A flexible model for rendering components in different kinds of HTML or different markup
languages and technologies. A Renderer object generates the markup to render the
component and converts the data stored in a model object to types that can be represented
in aview.

= Astandard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

Input validation

Event handling

Data conversion between model objects and components
Managed model object creation

Page navigation configuration

All this functionality is available using standard Java APIs and XML-based configuration files.

Java Message Service API

The Java Message Service (JMS) API is a messaging standard that allows Java EE application
components to create, send, receive, and read messages. It enables distributed communication
that is loosely coupled, reliable, and asynchronous.

Java Transaction API

The Java Transaction API (JTA) provides a standard interface for demarcating transactions.
The Java EE architecture provides a default auto commit to handle transaction commits and
rollbacks. An auto commit means that any other applications that are viewing data will see the
updated data after each database read or write operation. However, if your application performs
two separate database access operations that depend on each other, you will want to use the JTA
API to demarcate where the entire transaction, including both operations, begins, rolls back,
and commits.

JavaMail API

Java EE applications use the JavaMail™ API to send email notifications. The JavaMail API has
two parts: an application-level interface used by the application components to send mail, and a

Chapter 1 « Overview 59

JavaEE 5 APIs

60

service provider interface. The Java EE platform includes JavaMail with a service provider that
allows application components to send Internet mail.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) is included because JavaMail uses it. JAF provides
standard services to determine the type of an arbitrary piece of data, encapsulate access to it,
discover the operations available on it, and create the appropriate JavaBeans component to
perform those operations.

Java API for XML Processing

The Java API for XML Processing (JAXP), part of the Java SE platform, supports the processing
of XML documents using Document Object Model (DOM), Simple API for XML (SAX), and
Extensible Stylesheet Language Transformations (XSLT). JAXP enables applications to parse
and transform XML documents independent of a particular XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that might otherwise
have naming conflicts. Designed to be flexible, JAXP lets you use any XML-compliant parser or
XSL processor from within your application and supports the W3C schema. You can find
information on the W3C schema at this URL: http://www.w3.0rg/XML/Schema.

Java API for XML Web Services (JAX-WS)

The JAX-WS specification provides support for web services that use the JAXB API for binding
XML data to Java objects. The JAX-WS specification defines client APIs for accessing web
services as well as techniques for implementing web service endpoints. The Web Services for
J2EE specification describes the deployment of JAX-WS-based services and clients. The EJB and
servlet specifications also describe aspects of such deployment. It must be possible to deploy
JAX-WS-based applications using any of these deployment models.

The JAX-WS specification describes the support for message handlers that can process message
requests and responses. In general, these message handlers execute in the same container and
with the same privileges and execution context as the JAX-WS client or endpoint component
with which they are associated. These message handlers have access to the same JNDI
java:comp/env namespace as their associated component. Custom serializers and deserializers,
if supported, are treated in the same way as message handlers.

The Java EE 5 Tutorial « October 2008

http://www.w3.org/XML/Schema

JavaEE 5 APIs

Java Architecture for XML Binding (JAXB)

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML
schema to a representation in Java language programs. JAXB can be used independently or in
combination with JAX-WS, where it provides a standard data binding for web service messages.
All Java EE application client containers, web containers, and EJB containers support the JAXB
APIL

SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAAJ) is a low-level API on which JAX-WS and
JAXR depend. SAAJ enables the production and consumption of messages that conform to the
SOAP 1.1 specification and SOAP with Attachments note. Most developers do not use the SAAJ
API, instead using the higher-level JAX-WS API.

Java API for XML Registries

The Java API for XML Registries (JAXR) lets you access business and general-purpose registries
over the web. JAXR supports the ebXML Registry and Repository standards and the emerging
UDDI specifications. By using JAXR, developers can learn a single APT and gain access to both
of these important registry technologies.

Additionally, businesses can submit material to be shared and search for material that others
have submitted. Standards groups have developed schemas for particular kinds of XML
documents; two businesses might, for example, agree to use the schema for their industry’s
standard purchase order form. Because the schema is stored in a standard business registry,
both parties can use JAXR to access it.

J2EE Connector Architecture

The J2EE Connector architecture is used by tools vendors and system integrators to create
resource adapters that support access to enterprise information systems that can be plugged in
to any Java EE product. A resource adapter is a software component that allows Java EE
application components to access and interact with the underlying resource manager of the EIS.
Because a resource adapter is specific to its resource manager, typically there is a different
resource adapter for each type of database or enterprise information system.

The J2EE Connector architecture also provides a performance-oriented, secure, scalable, and
message-based transactional integration of Java EE-based web services with existing EISs that
can be either synchronous or asynchronous. Existing applications and EISs integrated through
the J2EE Connector architecture into the Java EE platform can be exposed as XML-based web

Chapter 1 « Overview 61

JavaEE 5 APIs

62

services by using JAX-WS and Java EE component models. Thus JAX-WS and the J2EE
Connector architecture are complementary technologies for enterprise application integration
(EAI) and end-to-end business integration.

Java Database Connectivity API

The Java Database Connectivity (JDBC) API lets you invoke SQL commands from Java
programming language methods. You use the JDBC API in an enterprise bean when you have a
session bean access the database. You can also use the JDBC API from a servlet or a JSP page to
access the database directly without going through an enterprise bean.

The JDBC API has two parts: an application-level interface used by the application components
to access a database, and a service provider interface to attach a JDBC driver to the Java EE
platform.

Java Persistence API

The Java Persistence AP is a Java standards-based solution for persistence. Persistence uses an
object-relational mapping approach to bridge the gap between an object oriented model and a
relational database. Java Persistence consists of three areas:

® The Java Persistence API
= The query language
= Object/relational mapping metadata

Java Naming and Directory Interface

The Java Naming and Directory Interface™ (JNDI) provides naming and directory
functionality, enabling applications to access multiple naming and directory services, including
existing naming and directory services such as LDAP, NDS, DNS, and NIS. It provides
applications with methods for performing standard directory operations, such as associating
attributes with objects and searching for objects using their attributes. Using JNDI, a Java EE
application can store and retrieve any type of named Java object, allowing Java EE applications
to coexist with many legacy applications and systems.

Java EE naming services provide application clients, enterprise beans, and web components
with access to a JNDI naming environment. A naming environment allows a component to be
customized without the need to access or change the component’s source code. A container
implements the component’s environment and provides it to the component as a J[NDI naming
context.

The Java EE 5 Tutorial « October 2008

JavaEE 5 APIs

A Java EE component can locate its environment naming context using JNDI interfaces. A
component can create a javax.naming.InitialContext object and looks up the environment
naming contextin InitialContext under the name java:comp/env. A component’s naming
environment is stored directly in the environment naming context or in any of its direct or
indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects. The names
of system-provided objects, such as JTA UserTransaction objects, are stored in the
environment naming context, java: comp/env. The Java EE platform allows a component to
name user-defined objects, such as enterprise beans, environment entries, JDBC DataSource
objects, and message connections. An object should be named within a subcontext of the
naming environment according to the type of the object. For example, enterprise beans are
named within the subcontext java: comp/env/ejb, and JDBC DataSource references in the
subcontext java:comp/env/jdbc.

Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) provides a way for a Java EE
application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable Authentication
Module (PAM) framework, which extends the Java Platform security architecture to support
user-based authorization.

Simplified Systems Integration

The Java EE platform is a platform-independent, full systems integration solution that creates
an open marketplace in which every vendor can sell to every customer. Such a marketplace
encourages vendors to compete, not by trying to lock customers into their technologies but
instead by trying to outdo each other in providing products and services that benefit customers,
such as better performance, better tools, or better customer support.

The Java EE 5 APIs enable systems and applications integration through the following:

= Unified application model across tiers with enterprise beans

= Simplified request-and-response mechanism with JSP pages and servlets

= Reliable security model with JAAS

= XML-based data interchange integration with JAXP, SAA]J, and JAX-WS

= Simplified interoperability with the J2EE Connector architecture

= Easy database connectivity with the JDBC API

= Enterprise application integration with message-driven beans and JMS, JTA, and JNDI

Chapter 1 « Overview 63

Sun Java System Application Server Platform Edition 9

Sun Java System Application Server Platform Edition 9

The Sun Java System Application Server Platform Edition 9 is a fully compliant implementation
of the Java EE 5 platform. In addition to supporting all the APIs described in the previous
sections, the Application Server includes a number of Java EE tools that are not part of the Java
EE 5 platform but are provided as a convenience to the developer.

This section briefly summarizes the tools that make up the Application Server. Instructions for
starting and stopping the Application Server, starting the Admin Console, and starting and
stopping the Java DB database server are in Chapter 2, “Using the Tutorial Examples.”

Tools

The Application Server contains the tools listed in Table 1-1. Basic usage information for many
of the tools appears throughout the tutorial. For detailed information, see the online help in the
GUTI tools.

TABLE1-1 Application Server Tools

Tool Description

Admin Console A web-based GUT Application Server administration utility. Used to stop the
Application Server and manage users, resources, and applications.

asadmin A command-line Application Serveradministration utility. Used to start and
stop the Application Server and manage users, resources, and applications.

asant A portable command-line build tool that is an extension of the Ant tool
developed by the Apache Software Foundation (see http://ant.apache.org/).
asant contains additional tasks that interact with the Application Server
administration utility.

appclient A command-line tool that launches the application client container and invokes
the client application packaged in the application client JAR file.

capture-schema A command-line tool to extract schema information from a database, producing
a schema file that the Application Server can use for container-managed
persistence.

package-appclient A command-line tool to package the application client container libraries and
JAR files.

Java DB database A copy of the Java DB database server.

verifier A command-line tool to validate Java EE deployment descriptors.

xjc A command-line tool to transform, or bind, a source XML schema to a set of

JAXB content classes in the Java programming language.

64 The Java EE 5 Tutorial « October 2008

http://ant.apache.org/

Sun Java System Application Server Platform Edition 9

TABLE 1-1 Application Server Tools (Continued)
Tool Description
schemagen A command-line tool to create a schema file for each namespace referenced in

wsimport

wsgen

your Java classes.

A command-line tool to generate JAX-WS portable artifacts for a given WSDL
file. After generation, these artifacts can be packaged in a WAR file with the
WSDL and schema documents along with the endpoint implementation and
then deployed.

A command-line tool to read a web service endpoint class and generate all the
required JAX-WS portable artifacts for web service deployment and invocation.

Chapter 1 « Overview

65

66

L K R 4 CHAPTER 2

Using the Tutorial Examples

This chapter tells you everything you need to know to install, build, and run the examples. It
covers the following topics:

= “Required Software” on page 67

= “Starting and Stopping the Application Server” on page 69
“Starting the Admin Console” on page 70

“Starting and Stopping the Java DB Database Server” on page 71
“Building the Examples” on page 71

“Tutorial Example Directory Structure” on page 73

= “Debugging Java EE Applications” on page 73

Required Software

The following software is required to run the examples.

= “Tutorial Bundle” on page 67

= “Java Platform, Standard Edition” on page 68

= “Sun Java System Application Server 9.1” on page 68
= “NetBeans IDE” on page 69

= “Apache Ant” on page 69

Tutorial Bundle

The tutorial example source is contained in the tutorial bundle. To obtain the tutorial bundle,
gotohttp://java.sun.com/javaee/5/docs/tutorial/information/download.html. The
tutorial bundle is a zip file that you can unzip in a location of your choice.

67

http://java.sun.com/javaee/5/docs/tutorial/information/download.html

Required Software

68

After you have installed the tutorial bundle, the example source code is in the

tut-install/ javaeetutorial5/examples/ directory, where tut-install is the directory where you
installed the tutorial. The examples directory contains subdirectories for each of the
technologies discussed in the tutorial.

Java Platform, Standard Edition

To build, deploy, and run the examples, you need a copy of Java Platform, Standard Edition 5.0
or Java Platform, Standard Edition 6.0 (J2SE 5.0 or JDK 6). You can download the J2SE 5.0
software from http://java.sun.com/javase/downloads/index_ jdk5.jsp. You can
download the JDK 6 software from http://java.sun.com/javase/downloads/.

Download the current JDK update that does not include any other software (such as NetBeans
or Java EE).

Sun Java System Application Server 9.1

Sun Java System Application Server 9.1 is targeted as the build and runtime environment for the
tutorial examples. To build, deploy, and run the examples, you need a copy of the Application
Server and, optionally, NetBeans IDE. You can download the Application Server from
http://java.sun.com/javaee/downloads/.

Scroll down to the section entitled Download the Components Independently and click the
Download link next to Sun Java System Application Server 9.1 (based on GlassFish V2).

Note - You can also run the tutorial examples using Sun Java System Application Server 9.0, or
using GlassFish V2.

Refer to the Java EE Tutorial Compatibility Wiki page for information about the versions of the
Application Server and the Sun GlassFish Enterprise Server with which the tutorial examples
have been tested.

Application Server Installation Tips

During the installation of the Application Server:

= Accept the default admin user name, and specify a password. The default user name is
admin. Remember the password you specify (for example, adminadmin). You will need this
user name and password.

= Select the Don't Prompt for Admin User Name and Password radio button.

The Java EE 5 Tutorial « October 2008

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/
http://java.sun.com/javaee/downloads/
http://wiki.glassfish.java.net/Wiki.jsp?page=FaqJavaEETutorialCompatibility

Starting and Stopping the Application Server

= Note the HTTP port at which the server is installed. This tutorial assumes that you are
accepting the default port of 8080. If 8080 is in use during installation and the installer
chooses another port or if you decide to change it yourself, you will need to update the
common build properties file (described in the next section) and the configuration files for
some of the tutorial examples to reflect the correct port.

This tutorial refers to the directory where you install the Application Server as as-install. For
example, the default installation directory on Microsoft Windows is C: \Sun\AppServer, so
as-install is C:\Sun\AppServer.

After you install the Application Server, add the following directories to your PATH to avoid
having to specify the full path when you use commands:

as-install/bin
as-install/1ib/ant/bin

NetBeans IDE

The NetBeans integrated development environment (IDE) is a free, open-source IDE for
developing Java applications, including enterprise applications. NetBeans IDE supports the Java
EE 5 platform. You can build, package, deploy, and run the tutorial examples from within
NetBeans IDE.

You can download NetBeans IDE from http://www.netbeans.org/.

Refer to the Java EE Tutorial Compatibility Wiki page for information about the versions of
NetBeans IDE with which the tutorial examples have been tested.

Apache Ant

Antis a Java technology-based build tool developed by the Apache Software Foundation
(http://ant.apache.org/), and is used to build, package, and deploy the tutorial examples.
Antis included with the Application Server. To use the ant command, add
as-install/1ib/ant/bin to your PATH environment variable.

Starting and Stopping the Application Server

To start the Application Server, open a terminal window or command prompt and execute the
following:

asadmin start-domain --verbose domainl

Chapter2 « Using the Tutorial Examples 69

http://www.netbeans.org/
http://wiki.glassfish.java.net/Wiki.jsp?page=FaqJavaEETutorialCompatibility
http://ant.apache.org/

Starting the Admin Console

A domain is a set of one or more Application Server instances managed by one administration
server. Associated with a domain are the following:

= The Application Server’s port number. The default is 8080.
® Theadministration server’s port number. The default is 4848.
® Anadministration user name and password.

You specify these values when you install the Application Server. The examples in this tutorial
assume that you chose the default ports.

With no arguments, the start-domain command initiates the default domain, which is
domainl. The - -verbose flag causes all logging and debugging output to appear on the terminal
window or command prompt (it will also go into the server log, which is located in
domain-dir/logs/server.log).

Or, on Windows, you can choose:

Programs — Sun Microsystems — Application Server PE 9 — Start Default Server

After the server has completed its startup sequence, you will see the following output:
Domain domainl started.

To stop the Application Server, open a terminal window or command prompt and execute:
asadmin stop-domain domainl

Or, on Windows, choose:

Programs — Sun Microsystems — Application Server PE 9 — Stop Default Server

When the server has stopped you will see the following output:

Domain domainl stopped.

Starting the Admin Console

70

To administer the Application Server and manage users, resources, and Java EE applications,
use the Admin Console tool. The Application Server must be running before you invoke the
Admin Console. To start the Admin Console, open a browser at
http://localhost:4848/asadmin/.

On Windows, from the Start menu, choose:

Programs — Sun Microsystems — Application Server PE 9 — Application Server

The Java EE 5 Tutorial « October 2008

Building the Examples

Starting and Stopping the Java DB Database Server
The Application Server includes the Java DB database.

To start the Java DB database server, open a terminal window or command prompt and
execute:

asadmin start-database
On Windows, from the Start menu, choose:
Programs — Sun Microsystems — Application Server PE 9 — Start Java DB

To stop the Java DB server, open a terminal window or command prompt and execute:

asadmin stop-database
On Windows, from the Start menu, choose:
Programs — Sun Microsystems — Application Server PE 9 — Stop Java DB

For information about the Java DB database included with the Application Server, see
http://developers.sun.com/javadb/.

Building the Examples

The tutorial examples are distributed with a configuration file for either NetBeans IDE or Ant.
Directions for building the examples are provided in each chapter. Either NetBeans IDE or Ant
may be used to build, package, deploy, and run the examples.

Building the Examples Using NetBeans IDE

To run the tutorial examples in NetBeans IDE, you must register your Application Server
installation as a NetBeans Server Instance. Follow these instructions to register the Application
Server in NetBeans IDE.

Select Tools—Server Manager to open the Server Manager dialog.

Click Add Server.

Under Server, select Sun Java System Application Server and click Next.

Under Platform Location, enter the location of your Application Server installation.

Select Register Local Default Domain and click Next.

AN A o

Under Admin Username and Admin Password, enter the admin name and password
created when you installed the Application Server.

Chapter2 - Using the Tutorial Examples 71

http://developers.sun.com/javadb/

Building the Examples

72

7. Click Finish.

Building the Examples on the Command-Line Using
Ant

Build properties common to all the examples are specified in the build.properties file in the
tut-install/ javaeetutorial5/examples/bp-project/ directory. You must create this file
before you can run the examples. Copy the file build.properties.sample to
build.properties and edit it to reflect your environment. The tutorial examples use the Java
BluePrints (http://java.sun.com/reference/blueprints/) build system and application
layout structure.

To run the Ant scripts, you must set common build properties in the file
tut-install/ javaeetutorial5/examples/bp-project/build.properties as follows:

= Set the javaee.home property to the location of your Application Server installation. The
build process uses the javaee.home property to include the libraries in as-install/1ib/ in the
classpath. All examples that run on the Application Server include the Java EE library
archive, as-install/1ib/javaee. jar. in the build classpath. Some examples use additional
libraries in as-install/1ib/; the required libraries are enumerated in the individual
technology chapters.

Note - On Windows, you must escape any backslashes in the javaee. home property with
another backslash or use forward slashes as a path separator. So, if your Application Server
installation is C:\Sun\AppServer, you must set javaee. home to javaee.home =
C:\\Sun\\AppServer or javaee.home=C:/Sun/AppServer.

= Setthe javaee.tutorial.home property to the location of your tutorial. This property is
used for Ant deployment and undeployment.

For example, on UNIX:

javaee.tutorial.home=/home/username/javaeetutorial5

On Windows:

javaee.tutorial.home=C:/javaeetutorial5

Do not install the tutorial to a location with spaces in the path.

= Ifyou did not accept the default values for the admin user and password, set the admin.user
property to the value you specified when you installed the Application Server, and set the
admin user’s password in the admin-password. txt file in the
tut-install/ javaeetutorial5/examples/common/ directory to the value you specified when
you installed the Application Server.

The Java EE 5 Tutorial « October 2008

http://java.sun.com/reference/blueprints/
http://java.sun.com/reference/blueprints/

Debugging Java EE Applications

= Ifyou did not use port 8080, set the domain. resources.port property to the value specified
when you installed the Application Server.

Tutorial Example Directory Structure

To facilitate iterative development and keep application source separate from compiled files,
the tutorial examples use the Java BluePrints application directory structure.

Each application module has the following structure:

= build.xml: Ant build file

® src/java: Java source files for the module

= src/conf: configuration files for the module, with the exception of web applications
= web: JSP and HTML pages, style sheets, tag files, and images

= web/WEB- INF: configuration files for web applications

= nbproject: NetBeans project files

Examples that have multiple application modules packaged into an enterprise application
archive (or EAR) have submodule directories that use the following naming conventions:

= example-name-app-client: Application clients
= example-name-ejb: Enterprise bean JAR files
= example-name-war: web applications

The Ant build files (build.xml) distributed with the examples contain targets to create a build
subdirectory and to copy and compile files into that directory; a dist subdirectory, which holds
the packaged module file; and a client- jar directory, which holds the retrieved application
client JAR.

Debugging Java EE Applications

This section describes how to determine what is causing an error in your application
deployment or execution.

Using the Server Log

One way to debug applications is to look at the server log in domain-dir/1logs/server.log. The
log contains output from the Application Server and your applications. You can log messages
from any Java class in your application with System.out.println and the Java Logging APIs
(documented at
http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html) and from
web components with the ServietContext.log method.

Chapter2 - Using the Tutorial Examples 73

http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

Debugging Java EE Applications

74

If you start the Application Server with the - -verbose flag, all logging and debugging output
will appear on the terminal window or command prompt and the server log. If you start the
Application Server in the background, debugging information is only available in the log. You
can view the server log with a text editor or with the Admin Console log viewer.

To use the log viewer:
1. Select the Application Server node.

2. Select the Logging tab.
3. Click the Open Log Viewer button. The log viewer will open and display the last 40 entries.

If you wish to display other entries:

1. Click the Modify Search button.
2. Specify any constraints on the entries you want to see.
3. Click the Search button at the bottom of the log viewer.

Using a Debugger

The Application Server supports the Java Platform Debugger Architecture (JPDA). With JPDA,
you can configure the Application Server to communicate debugging information using a
socket.
To debug an application using a debugger:
1. Enable debugging in the Application Server using the Admin Console:

a. Select the Application Server node.

b. Select the JVM Settings tab. The default debug options are set to:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y, suspend=n,address=9009

As you can see, the default debugger socket port is 9009. You can change it to a port not
in use by the Application Server or another service.

c. Check the Enabled box of the Debug field.

d. Click the Save button.

2. Stop the Application Server and then restart it.

The Java EE 5 Tutorial « October 2008

PART 11

The Web Tier

Part Two explores the technologies in the web tier.

75

76

CHAPTER 3

Getting Started with Web Applications

A web application is a dynamic extension of a web or application server. There are two types of
web applications:

= Presentation-oriented: A presentation-oriented web application generates interactive web
pages containing various types of markup language (HTML, XML, and so on) and dynamic
content in response to requests. Chapters Chapter 4, “Java Servlet Technology,” through
Chapter 15, “Internationalizing and Localizing Web Applications,” cover how to develop
presentation-oriented web applications.

= Service-oriented: A service-oriented web application implements the endpoint of a web
service. Presentation-oriented applications are often clients of service-oriented web
applications. Chapters Chapter 16, “Building Web Services with JAX-WS,” and Chapter 19,
“SOAP with Attachments API for Java,” cover how to develop service-oriented web
applications.

Web Applications

In the Java 2 platform, web components provide the dynamic extension capabilities for a web
server. Web components are either Java servlets, JSP pages, or web service endpoints. The
interaction between a web client and a web application is illustrated in Figure 3-1. The client
sends an HTTP request to the web server. A web server that implements Java Servlet and
JavaServer Pages technology converts the request into an HTTPServletRequest object. This
object is delivered to a web component, which can interact with JavaBeans components or a
database to generate dynamic content. The web component can then generate an
HTTPServletResponse or it can pass the request to another web component. Eventually a web
component generates a HTTPServletResponse object. The web server converts this object to an
HTTP response and returns it to the client.

77

Web Applications

Web Server
)
)
0 > HttpServiet
HTTP Request
R —
Web equest
Client e
HttpServlet
me Response
Response| \——t
~——————
JavaBeans
Components

FIGURE3-1 Java Web Application Request Handling

Servlets are Java programming language classes that dynamically process requests and construct
responses. JSP pages are text-based documents that execute as servlets but allow a more natural
approach to creating static content. Although servlets and JSP pages can be used
interchangeably, each has its own strengths. Servlets are best suited for service-oriented
applications (web service endpoints are implemented as servlets) and the control functions of a
presentation-oriented application, such as dispatching requests and handling nontextual data.
JSP pages are more appropriate for generating text-based markup such as HTML, Scalable
Vector Graphics (SVG), Wireless Markup Language (WML), and XML.

Since the introduction of Java Servlet and JSP technology, additional Java technologies and
frameworks for building interactive web applications have been developed. Figure 3-2
illustrates these technologies and their relationships.

78 The Java EE 5 Tutorial « October 2008

Web Applications

JavaServer Pages
Standard Tag Library

JavaServer Pages

JavaServlet

FIGURE3-2 Java Web Application Technologies

Notice that Java Servlet technology is the foundation of all the web application technologies, so
you should familiarize yourself with the material in Chapter 4, “Java Servlet Technology,” even
if you do not intend to write servlets. Each technology adds a level of abstraction that makes
web application prototyping and development faster and the web applications themselves more
maintainable, scalable, and robust.

Web components are supported by the services of a runtime platform called a web container. A
web container provides services such as request dispatching, security, concurrency, and
life-cycle management. It also gives web components access to APIs such as naming,
transactions, and email.

Certain aspects of web application behavior can be configured when the application is installed,
or deployed, to the web container. The configuration information is maintained in a text file in
XML format called a web application deployment descriptor (DD). A DD must conform to the
schema described in the Java Servlet Specification.

This chapter gives a brief overview of the activities involved in developing web applications.
First it summarizes the web application life cycle. Then it describes how to package and deploy
very simple web applications on the Application Server. It moves on to configuring web
applications and discusses how to specify the most commonly used configuration parameters. It
then introduces an example, Duke’s Bookstore, which illustrates all the Java EE web-tier
technologies, and describes how to set up the shared components of this example. Finally it
discusses how to access databases from web applications and set up the database resources
needed to run Duke’s Bookstore.

Chapter3 - Getting Started with Web Applications 79

http://java.sun.com/products/servlet/download.html#specs

Web Application Life Cycle

Web Application Life Cycle

80

A web application consists of web components, static resource files such as images, and helper
classes and libraries. The web container provides many supporting services that enhance the
capabilities of web components and make them easier to develop. However, because a web
application must take these services into account, the process for creating and running a web
application is different from that of traditional stand-alone Java classes.

The process for creating, deploying, and executing a web application can be summarized as
follows:

Develop the web component code.

Develop the web application deployment descriptor.

Compile the web application components and helper classes referenced by the components.
Optionally package the application into a deployable unit.

Deploy the application into a web container.

AL

Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2 through 4 are
expanded on in the following sections and illustrated with a Hello, World-style
presentation-oriented application. This application allows a user to enter a name into an HTML
form (Figure 3-3) and then displays a greeting after the name is submitted (Figure 3-4).

©) Hello - Mozilla Firefox E “E][E
File Edit Miew History Bookmarks Tools Help
€ -5 - 4 [hitp:fiocathost:s0s0/helol [+] [[Gl+[s000- 2]

Y-

Hello, my name is Duke. What's vours?

Dane [/]

FIGURE3-3 Greeting Form

The Java EE 5 Tutorial « October 2008

Web Modules

©) Hello - Mozilla Firefox (=03
File Edit Miew History Bookmarks Tools Help
@ - - @4 m ||_| http: fflocalhost:8080/hellol frusername=_Charlie |‘| D‘| v| <\|

Y-

Hello, my name is Duke. What's vours?

| |

Hello, Charlie!

Dane [/]

FIGURE3-4 Response

The Hello application contains two web components that generate the greeting and the
response. This chapter discusses two versions of the application: a JSP version called hellol, in
which the components are implemented by two JSP pages

(tut-install/ javaeetutorial5s/examples/web/hellol/web/index. jsp and

tut-install/ javaeetutorial5/examples/web/hellol/web/response.jsp)and a servlet
version called hello2, in which the components are implemented by two servlet classes
(tut-install/ javaeetutorial5s/examples/web/hello2/src/servlets/GreetingServliet.java
and

tut-install/ javaeetutorial5/examples/web/hello2/src/servlets/ResponseServlet.java).
The two versions are used to illustrate tasks involved in packaging, deploying, configuring, and
running an application that contains web components. The section Chapter 2, “Using the
Tutorial Examples,” explains how to get the code for these examples.

After you install the tutorial bundle, the source code for the examples is in the following
directories:

® tut-install/javaeetutorial5/examples/web/hellol/
® tut-install/javaeetutorial5/examples/web/hello2/

Web Modules

In the Java EE architecture, web components and static web content files such as images are
called web resources. A web module is the smallest deployable and usable unit of web resources.
A Java EE web module corresponds to a web application as defined in the Java Servlet
specification.

Chapter3 - Getting Started with Web Applications 81

Web Modules

82

In addition to web components and web resources, a web module can contain other files:

= Server-side utility classes (database beans, shopping carts, and so on). Often these classes
conform to the JavaBeans component architecture.

= Client-side classes (applets and utility classes).

A web module has a specific structure. The top-level directory of a web module is the document
root of the application. The document root is where JSP pages, client-side classes and archives,
and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB- INF, which contains the following files
and directories:

= web.xml: The web application deployment descriptor
= Taglibrary descriptor files (see “Tag Library Descriptors” on page 247)

= classes: A directory that contains server-side classes: servlets, utility classes, and JavaBeans
components

® tags: A directory that contains tag files, which are implementations of tag libraries (see “Tag
File Location” on page 235)

= lib: A directory that contains JAR archives of libraries called by server-side classes

If your web module does not contain any servlets, filter, or listener components then it does not
need a web application deployment descriptor. In other words, if your web module only
contains JSP pages and static files then you are not required to include a web . xm1 file. The
hellol example, first discussed in “Packaging Web Modules” on page 83, contains only JSP
pages and images and therefore does not include a deployment descriptor.

You can also create application-specific subdirectories (that is, package directories) in either the
document root or the WEB-INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a JAR file
known as a web archive (WAR) file. Because the contents and use of WAR files differ from those
of JAR files, WAR file names use a .war extension. The web module just described is portable;
you can deploy it into any web container that conforms to the Java Servlet Specification.

To deploy a WAR on the Application Server, the file must also contain a runtime deployment
descriptor. The runtime deployment descriptor is an XML file that contains information such
as the context root of the web application and the mapping of the portable names of an
application’s resources to the Application Server’s resources. The Application Server web
application runtime DD is named sun-web.xml and is located in the WEB- INF directory along
with the web application DD. The structure of a web module that can be deployed on the
Application Server is shown in Figure 3-5.

The Java EE 5 Tutorial « October 2008

Web Modules

Assembly
Root

JSP pages,
static HTML pages,
applet classes, etc.

—
lib l classes tags
) S) S W
web.xml
sun-web.xml
* tld
Library All server-side All .tag files
archive files .class files for for this
this web module web module

FIGURE3-5 Web Module Structure

Packaging Web Modules

A web module must be packaged into a WAR in certain deployment scenarios and whenever
you want to distribute the web module. You package a web module into a WAR by executing
the jar command in a directory laid out in the format of a web module, by using the Ant utility,
or by using the IDE tool of your choice. This tutorial shows you how to use NetBeans IDE or
Ant to build, package, and deploy the sample applications.

To build the hello1l application with NetBeans IDE, follow these instructions:

—

Select File—Open Project.
2. Inthe Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/
3. Select the hellol folder.
4. Select the Open as Main Project check box.

Chapter3 - Getting Started with Web Applications 83

Web Modules

5. Click Open Project.
6. Inthe Projects tab, right-click the hello1 project and select Build.

To build the hello1l application using the Ant utility, follow these steps:

1. Inaterminal window, go to tut-install/ javaeetutorial5/examples/web/hellol/.

2. Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/ javaeetutorial5/examples/web/hellol/build/ directory, create the WAR
file, and copy it to the tut-install/ javaeetutorial5/examples/web/hellol/dist/
directory.

Deploying a WARFile
You can deploy a WAR file to the Application Server in a few ways:

Copying the WAR into the domain-dir/autodeploy/ directory.
Using the Admin Console.

By running asadmin or ant to deploy the WAR.

Using NetBeans IDE.

All these methods are described briefly in this chapter; however, throughout the tutorial, you
will use ant and NetBeans IDE for packaging and deploying.

Setting the Context Root

A context root identifies a web application in a Java EE server. You specify the context root when
you deploy a web module. A context root must start with a forward slash (/) and end with a
string.

In a packaged web module for deployment on the Application Server, the context root is stored
in sun-web.xml.

To edit the context root, do the following:

Expand your project tree in the Projects pane of NetBeans IDE.
Expand the Web Pages and WEB-INF nodes of your project.
Double-click sun-web.xmtl.

In the editor pane, click Edit As XML.

Edit the context root, which is enclosed by the context-root element.

G R =

Deploying a Packaged Web Module

If you have deployed the hellol application, before proceeding with this section, undeploy the
application by following one of the procedures described in “Undeploying Web Modules” on
page 88.

84 The Java EE 5 Tutorial « October 2008

Web Modules

Deploying with the Admin Console

Expand the Applications node.

Select the Web Applications node.

Click the Deploy button.

Select the radio button labeled “Package file to be uploaded to the Application Server”

Type the full path to the WAR file (or click on Browse to find it), and then click the OK
button.

6. Click Next.

7. Type the application name.
8

9

ook WD

. Type the context root.
. Select the Enabled box.
10. Click the Finish button.

Deploying with asadmin

To deploy a WAR with asadmin, open a terminal window or command prompt and execute

asadmin deploy full-path-to-war-file

Deploying with Ant

To deploy a WAR with the Ant tool, open a terminal window or command prompt in the
directory where you built and packaged the WAR, and execute

ant deploy

Deploying with NetBeans IDE
To deploy a WAR with NetBeans IDE, do the following:

1. Select File—Open Project.
2. Inthe Open Project dialog, navigate to your project and open it.
3. Inthe Projects tab, right-click the project and select Undeploy and Deploy.

Testing Deployed Web Modules

Now that the web module is deployed, you can view it by opening the application in a web
browser. By default, the application is deployed to host localhost on port 8080. The context
root of the web application is hellol.

Chapter3 - Getting Started with Web Applications 85

Web Modules

To test the application, follow these steps:

1. Open aweb browser.

2. Enter the following URL in the web address box:

http://localhost:8080/hellol

3. Enter your name, and click Submit.

The application should display the name you submitted as shown in Figure 3-3 and Figure 3-4.

Listing Deployed Web Modules

The Application Server provides two ways to view the deployed web modules: the Admin
Console and the asadmin command.

To use the Admin Console:

1. Openthe URL http://localhost:4848/asadmin in a browser.
2. Expand the nodes Applications—Web Applications.

Use the asadmin command as follows:

asadmin list-components

Updating Web Modules

A typical iterative development cycle involves deploying a web module and then making
changes to the application components. To update a deployed web module, you must do the
following:

1. Recompile any modified classes.

2. Ifyouhave deployed a packaged web module, update any modified components in the
WAR.

3. Redeploy the module.
4. Reload the URLin the client.

Updating a Packaged Web Module

This section describes how to update the hellol web module that you packaged.

First, change the greeting in the file
tut-install/ javaeetutorial5s/examples/web/hellol/web/index. jsp to

<h2>Hi, my name is Duke. What's yours?</h2>

86 The Java EE 5 Tutorial « October 2008

Web Modules

To update the project in NetBeans IDE:

= Right-click on the project and select Build.
= Right-click on the project and select Undeploy and Deploy.

To update the project using the Ant build tool:

= Type ant to copy the modified JSP page into the build directory.
= Type ant deploy to deploy the WAR file.

To view the modified module, reload the URL in the browser.

You should see the screen in Figure 3-6 in the browser.

©) Hello - Mozilla Firefox E “E][E
File Edit Miew History Bookmarks Tools Help
@-o - 4 [hitp:fiocathost:s0s0/helol [+] [[Gl+[s000- &)

Y-

Hi, my name is Duke. What's yours?

Daone [/]

FIGURE3-6 New Greeting

Dynamic Reloading

If dynamic reloading is enabled, you do not have to redeploy an application or module when
you change its code or deployment descriptors. All you have to do is copy the changed JSP or
class files into the deployment directory for the application or module. The deployment

directory for a web module named context-root is

domain-dir/applications/j2ee-modules/context-root. The server checks for changes
periodically and redeploys the application, automatically and dynamically, with the changes.

This capability is useful in a development environment, because it allows code changes to be
tested quickly. Dynamic reloading is not recommended for a production environment,
however, because it may degrade performance. In addition, whenever a reload is done, the

sessions at that time become invalid and the client must restart the session.

Chapter 3 « Getting Started with Web Applications

87

Web Modules

88

To enable dynamic reloading, use the Admin Console:

1. Select the Applications Server node.

2. Select the Advanced tab.

3. Check the Reload Enabled box to enable dynamic reloading.
4

. Enter a number of seconds in the Reload Poll Interval field to set the interval at which
applications and modules are checked for code changes and dynamically reloaded.

5. Click the Save button.

In addition, to load new servlet files or reload deployment descriptor changes, you must do the
following:

1. Create an empty file named . reload at the root of the module:

domain-dir/applications/j2ee-modules/context-root/.reload

2. Explicitly update the . reload file’s time stamp each time you make these changes. On
UNIX, execute

touch .reload

For JSP pages, changes are reloaded automatically at a frequency set in the Reload Poll Interval
field. To disable dynamic reloading of JSP pages, set the Reload Poll Interval field value to -1.

Undeploying Web Modules

You can undeploy web modules in four ways: you can use NetBeans IDE, the Admin Console,
the asadmin command, or the Ant tool.

To use NetBeans IDE:

1. Ensure the Sun Java System Application Server is running.

2. Inthe Runtime window, expand the Sun Java System Application Server instance and the
node containing the application or module.

3. Right-click the application or module and choose Undeploy.

To use the Admin Console:

Open the URL http://localhost:4848/asadmin in a browser.
Expand the Applications node.

Select Web Applications.

Click the check box next to the module you wish to undeploy.
Click the Undeploy button.

MRS

Use the asadmin command as follows:

The Java EE 5 Tutorial « October 2008

Configuring Web Applications

asadmin undeploy context-root

To use the Ant tool, execute the following command in the directory where you built and
packaged the WAR:

ant undeploy

Configuring Web Applications

Web applications are configured by means of elements contained in the web application
deployment descriptor.

The following sections give a brief introduction to the web application features you will usually
want to configure. A number of security parameters can be specified; these are covered in
Chapter 30, “Securing Web Applications.”

In the following sections, examples demonstrate procedures for configuring the Hello, World
application. If Hello, World does not use a specific configuration feature, the section gives
references to other examples that illustrate how to specify the deployment descriptor element.

Mapping URLs to Web Components

When a request is received by the web container it must determine which web component
should handle the request. It does so by mapping the URL path contained in the request to a
web application and a web component. A URL path contains the context root and an alias:

http://host: port/context-root/alias

Setting the Component Alias

The alias identifies the web component that should handle a request. The alias path must start
with a forward slash (/) and end with a string or a wildcard expression with an extension (for
example, *. jsp). Since web containers automatically map an alias that ends with *. jsp, you do
not have to specify an alias for a JSP page unless you wish to refer to the page by a name other
than its file name.

The hello2 application has two servlets that need to be mapped in the web . xm1 file. You can
edit a web application’s web . xm1 file in NetBeans IDE by doing the following:

1. Select File—Open Project.
2. Inthe Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/

3. Select the hello2 folder.

Chapter3 - Getting Started with Web Applications 89

Configuring Web Applications

90

Select the Open as Main Project check box.

Click Open Project.

Expand the project tree in the Projects pane.

Expand the Web pages node and then the WEB-INF node in the project tree.
Double-click the web . xm1 file inside the WEB-INF node.

e N U

The following steps describe how to make the necessary edits to the web . xm file, including how
to set the display name and how to map the servlet components. Because the edits are already in
the file, you can just use the steps to view the settings.

To set the display name:

1. Click General at the top of the editor to open the general view.

2. Enter hello2 in the Display Name field.

To perform the servlet mappings:

1. Click Servlets at the top of the editor to open the servlets view.

2. Click Add Servlet.

3. Inthe Add Servlet dialog, enter GreetingServlet in the Servlet Name field.

4. Enter servlets.GreetingServlet in the Servlet Class field.

5. Enter /greeting in the URL Pattern field.

6. Click OK.

7. Repeat the preceding steps, except enter ResponseServlet as the servlet name,
servlets.ResponseServlet as the servlet class, and / response as the URL pattern.

If you are not using NetBeans IDE, you can add these settings using a text editor.

To package the example with NetBeans IDE, do the following:

1. Select File—Open Project.
2. Inthe Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/
Select the hello2 folder.

Select the Open as Main Project check box.
Click Open Project.

A

In the Projects tab, right-click the hello2 project and select Build.

The Java EE 5 Tutorial « October 2008

Configuring Web Applications

To package the example with the Ant utility, do the following:

1. Inaterminal window, go to tut-install/ javaeetutorial5/examples/web/hello2/.

2. Type ant. This target will build the WAR file and copy it to the
tut-install/ javaeetutorial5/examples/web/hello2/dist/ directory.

To deploy the example using NetBeans IDE, right-click on the project in the Projects pane and
select Undeploy and Deploy.

To deploy the example using Ant, type ant deploy. The deploy target in this case gives you an
incorrect URL to run the application. To run the application, please use the URL shown at the
end of this section.

To run the application, first deploy the web module, and then open the URL
http://localhost:8080/hello2/greeting inabrowser.

Declaring Welcome Files

The welcome files mechanism allows you to specify a list of files that the web container will use
for appending to a request for a URL (called a valid partial request) that is not mapped to a web
component.

For example, suppose you define a welcome file welcome. html. When a client requests a URL
such as host: port/webapp/ directory, where directory is not mapped to a servlet or JSP page, the
file host: port/webapp/directory/welcome.html is returned to the client.

If a web container receives a valid partial request, the web container examines the welcome file
list and appends to the partial request each welcome file in the order specified and checks
whether a static resource or servlet in the WAR is mapped to that request URL. The web
container then sends the request to the first resource in the WAR that matches.

If no welcome file is specified, the Application Server will use a file named index . XXX, where
XXX can be html or jsp, as the default welcome file. If there is no welcome file and no file
named index. XXX, the Application Server returns a directory listing.

To specify a welcome file in the web application deployment descriptor using NetBeans IDE, do
the following:

Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.
Double-click web . xml.

ook D=

Do one of the following, making sure that the JSP pages you specify are actually included in
the WAR file:

Chapter3 - Getting Started with Web Applications 91

Configuring Web Applications

92

a. Click Pages at the top of the editor pane and enter the names of the JSP pages that act as
welcome files in the Welcome Files field.

b. Click XML at the top of the editor pane, specify the JSP pages using welcome-file
elements and include these elements inside awelcome-file-list element. The
welcome-file element defines the JSP page to be used as the welcome page.

The example discussed in “Encapsulating Reusable Content Using Tag Files” on page 233
has a welcome file.

Setting Initialization Parameters

The web components in a web module share an object that represents their application context
(see “Accessing the Web Context” on page 124). You can pass initialization parameters to the
context or to a web component.

To add a context parameter using NetBeans IDE, do the following:

Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.
Double-click web. xml.

Click General at the top of the editor pane.

Select the Context Parameters node.

Click Add.

In the Add Context Parameter dialog, do the following:

® N Uk w =

a. Enter the name that specifies the context object in the Param Name field.
b. Enter the parameter to pass to the context object in the Param Value field.
c. Click OK.

Alternatively, you can edit the XML of the web . xm file directly by clicking XML at the top of the
editor pane and using the following elements to add a context parameter:

= A param-name element that specifies the context object
= A param-value element that specifies the parameter to pass to the context object

® A context-paramelement that encloses the previous two elements

For a sample context parameter, see the example discussed in “The Example JSP Pages” on
page 136.

To add a web component initialization parameter using NetBeans IDE, do the following:

1. Open the project if you haven’t already.
2. Expand the project’s node in the Projects pane.

The Java EE 5 Tutorial « October 2008

Configuring Web Applications

Expand the Web Pages node and then the WEB-INF node.
Double-click web . xml.
Click Servlets at the top of the editor pane.

AN AN

After entering the servlet’s name, class, and URL pattern, click the Add button under the
Initialization Parameters table.

7. Inthe Add Initialization Parameter dialog:

a. Enter the name of the parameter in the Param Name field.
b. Enter the parameter’s value in the Param Value Field.
c. Click OK.

Alternatively, you can edit the XML of the web . xm1 file directly by clicking XML at the top of the
editor pane and using the following elements to add a context parameter:

= A param-name element that specifies the name of the initialization parameter
= A param-value element that specifies the value of the initialization parameter
= Aninit-paramelement that encloses the previous two elements

Mapping Errors to Error Screens

When an error occurs during execution of a web application, you can have the application
display a specific error screen according to the type of error. In particular, you can specify a
mapping between the status code returned in an HTTP response or a Java programming
language exception returned by any web component (see “Handling Servlet Errors” on
page 105) and any type of error screen.

To set up error mappings using NetBeans IDE, do the following:
Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.
Double-click web . xml.

Click Pages at the top of the editor pane.

Expand the Error Pages node.

Click Add.

In the Add Error Page dialog:

a. Click Browse to locate the page that you want to act as the error page.

® N Uk »w =

b. Enter the HTTP status code that will cause the error page to be opened in the Error Code
field.

c. Enter the exception that will cause the error page to load in the Exception Type field.
d. Click OK.

Chapter3 - Getting Started with Web Applications 93

Configuring Web Applications

94

Alternatively, you can click XML at the top of the editor pane and enter the error page mapping
by hand using the following elements:

® Anexception-type element specifying either the exception or the HTTP status code that
will cause the error page to be opened.

= A location element that specifies the name of a web resource to be invoked when the status
code or exception is returned. The name should have a leading forward slash (/).

= Anerror-page element that encloses the previous two elements.
You can have multiple error-page elements in your deployment descriptor. Each one of the

elements identifies a different error that causes an error page to open. This error page can be the
same for any number of error-page elements.

Note - You can also define error screens for a JSP page contained in a WAR. If error screens are
defined for both the WAR and a JSP page, the JSP page’s error page takes precedence. See
“Handling JSP Page Errors” on page 143.

For a sample error page mapping, see the example discussed in “The Example Servlets” on
page 100.

Declaring Resource References

If your web component uses objects such as enterprise beans, data sources, or web services, you
use Java EE annotations to inject these resources into your application. Annotations eliminate a
lot of the boilerplate lookup code and configuration elements that previous versions of Java EE
required.

Although resource injection using annotations can be more convenient for the developer, there
are some restrictions from using it in web applications. First, you can only inject resources into
container-managed objects. This is because a container must have control over the creation of a
component so that it can perform the injection into a component. As a result, you cannot inject
resources into objects such as simple JavaBeans components. However, JavaServer Faces
managed beans are managed by the container; therefore, they can accept resource injections.

Additionally, JSP pages cannot accept resource injections. This is because the information
represented by annotations must be available at deployment time, but the JSP page is compiled
after that; therefore, the annotation will not be seen when it is needed. Those components that
can accept resource injections are listed in Table 3-1.

This section describes how to use a couple of the annotations supported by a servlet container to
inject resources. Chapter 25, “Persistence in the Web Tier,” describes how web applications use
annotations supported by the Java Persistence API. Chapter 30, “Securing Web Applications,”
describes how to use annotations to specify information about securing web applications.

The Java EE 5 Tutorial « October 2008

Configuring Web Applications

TABLE3-1 Web Components That Accept Resource Injections

Component Interface/Class

Servlets javax.servlet.Servlet

Servlet Filters javax.servlet.ServletFilter

Event Listeners javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributeListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributeListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributelListener
javax.servlet.http.HttpSessionBindingListener

Taglib Listeners Same as above

Taglib Tag Handlers javax.servlet.jsp.tagext.JspTag

Managed Beans Plain Old Java Objects

Declaring a Reference to a Resource

The @Resource annotation is used to declare a reference to a resource such as a data source, an
enterprise bean, or an environment entry. This annotation is equivalent to declaring a
resource-ref element in the deployment descriptor.

The @Resource annotation is specified on a class, method or field. The container is responsible
for injecting references to resources declared by the @Resource annotation and mapping it to
the proper JNDI resources. In the following example, the @esource annotation is used to inject
a data source into a component that needs to make a connection to the data source, as is done
when using JDBC technology to access a relational database:

@Resource javax.sql.DataSource catalogDS;

public getProductsByCategory() {
// get a connection and execute the query
Connection conn = catalogDS.getConnection();

}

The container injects this data source prior to the component being made available to the
application. The data source JNDI mapping is inferred from the field name catalogDS and the
type, javax.sql.DataSource.

If you have multiple resources that you need to inject into one component, you need to use the
@Resources annotation to contain them, as shown by the following example:

Chapter3 - Getting Started with Web Applications 95

Duke’s Bookstore Examples

@Resources ({
@Resource (name="myDB" type=java.sql.DataSource),
@Resource(name="myMQ" type=javax.jms.ConnectionFactory)

1)

The web application examples in this tutorial use the Java Persistence API to access relational
databases. This API does not require you to explicitly create a connection to a data source.
Therefore, the examples do not use the @esource annotation to inject a data source. However,
this API supports the @PersistenceUnit and @PersistenceContext annotations for injecting
EntityManagerFactory and EntityManager instances, respectively. Chapter 25, “Persistence in
the Web Tier,” describes these annotations and the use of the Java Persistence API in web
applications.

Declaring a Reference to aWeb Service

The @WebServiceRef annotation provides a reference to a web service. The following example
shows uses the @WebServiceRef annotation to declare a reference to a web service.
WebServiceRef uses the wsdlLocation element to specify the URI of the deployed service’s
WSDL file:

import javax.xml.ws.WebServiceRef;

public class ResponseServlet extends HTTPServlet {
@WebServiceRef(wsdlLocation=

"http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

Duke’s Bookstore Examples

96

In Chapters Chapter 4, “Java Servlet Technology,” through Chapter 15, “Internationalizing and
Localizing Web Applications,” a common example, Duke’s Bookstore, is used to illustrate the
elements of Java Servlet technology, JavaServer Pages technology, the JSP Standard Tag Library,
and JavaServer Faces technology. The example emulates a simple online shopping application.
It provides a book catalog from which users can select books and add them to a shopping cart.
Users can view and modify the shopping cart. When users are finished shopping, they can
purchase the books in the cart.

The Duke’s Bookstore examples share common classes and a database schema. These files are
located in the directory tut-install/ javaeetutorial5/examples/web/bookstore/. The
common classes are packaged into a JAR. Each of the Duke’s Bookstore examples must include
this JAR file in their WAR files. The process that builds and packages each application also
builds and packages the common JAR file and includes it in the example WAR file.

The next section describes how to create the bookstore database tables and resources required
to run the examples.

The Java EE 5 Tutorial « October 2008

Accessing Databases from Web Applications

Accessing Databases from Web Applications

Data that is shared between web components and is persistent between invocations of a web
application is usually maintained in a database. To maintain a catalog of books, the Duke’s
Bookstore examples described in Chapters Chapter 4, “Java Servlet Technology,” through
Chapter 15, “Internationalizing and Localizing Web Applications,” use the Java DB database
included with the Application Server.

To access the data in a database, web applications use the new Java Persistence API (see
Chapter 24, “Introduction to the Java Persistence API”). See Chapter 25, “Persistence in the
Web Tier,” to learn how the Duke’s Bookstore applications use this API to access the book data.

To run the Duke’s Bookstore applications, you need to first populate the database with the book
data and create a data source in the application server. The rest of this section explains how to
perform these tasks.

Populating the Example Database

When you deploy any of the Duke’s Bookstore applications using ant deploy, the database is
automatically populated at the same time. If you want to populate the database separately from
the deploy task or are using NetBeans IDE to deploy the application, follow these steps:

1. Inaterminal window, go to the books directory or any one of the bookstorel through
bookstore6 example directories.

2. Start the Java DB database server. For instructions, see “Starting and Stopping the Java DB
Database Server” on page 71. You don’t have to do this if you are using NetBeans IDE. It
starts the database server automatically.

3. Type ant create-tables. This task runs a command to read the file tutorial.sql and
execute the SQL commands contained in the file.

4. Atthe end of the processing, you should see the following output:

[sql] 181 of 181 SQL statements executed successfully

When you are running create-tables, don’t worry if you see a message that an SQL statement
failed. This usually happens the first time you run the command because it always tries to delete
an existing database table first before it creates a new one. The first time through, there is no
table yet, of course.

Chapter3 - Getting Started with Web Applications 97

Further Information about Web Applications

Creating a Data Source in the Application Server

A DataSource object has a set of properties that identify and describe the real world data source
that it represents. These properties include information such as the location of the database
server, the name of the database, the network protocol to use to communicate with the server,
and so on.

Data sources in the Application Server implement connection pooling. To define the Duke’s
Bookstore data source, you use the installed Derby connection pool named DerbyPool.

You create the data source using the Application Server Admin Console, following this
procedure:

Expand the Resources node.

Expand the JDBC node.

Select the JDBC Resources node.

Click the New... button.

Type jdbc/BookDB in the JNDI Name field.
Choose DerbyPool for the Pool Name.
Click OK.

NN

Further Information about Web Applications

98

For more information on web applications, see:

= The Java Servlet specification:
http://java.sun.com/products/serviet/download.html#specs
® The Java Servlet web site:

http://java.sun.com/products/servlet

The Java EE 5 Tutorial « October 2008

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet

L R 2 4 CHAPTER 4

Java Servlet Technology

As soon as the web began to be used for delivering services, service providers recognized the
need for dynamic content. Applets, one of the earliest attempts toward this goal, focused on
using the client platform to deliver dynamic user experiences. At the same time, developers also
investigated using the server platform for this purpose. Initially, Common Gateway Interface
(CGI) scripts were the main technology used to generate dynamic content. Although widely
used, CGI scripting technology has a number of shortcomings, including platform dependence
and lack of scalability. To address these limitations, Java Servlet technology was created as a
portable way to provide dynamic, user-oriented content.

Whatls a Servlet?

A servlet is a Java programming language class that is used to extend the capabilities of servers
that host applications accessed by means of a request-response programming model. Although
servlets can respond to any type of request, they are commonly used to extend the applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-specific
servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and classes for writing
servlets. All servlets must implement the Servlet interface, which defines life-cycle methods.
When implementing a generic service, you can use or extend the GenericServlet class provided
with the Java Servlet APL. The HttpServlet class provides methods, such as doGet and doPost,
for handling HT TP-specific services.

This chapter focuses on writing servlets that generate responses to HTTP requests.

99

http://java.sun.com/javaee/5/docs/api/javax/servlet/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/Servlet.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/GenericServlet.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpServlet.html

The Example Servlets

The Example Servlets

This chapter uses the Duke’s Bookstore application to illustrate the tasks involved in
programming servlets. The source code for the bookstore application is located in the
tut-install/ javaeetutorial5/examples/web/bookstorel/ directory, which is created when
you unzip the tutorial bundle (see “Building the Examples” on page 71).

Table 4-1 lists the servlets that handle each bookstore function. You can find these servlet
classes in

tut-install/ javaeetutorial5/examples/web/bookstorel/src/java/com/sun/bookstorel/.
Each programming task is illustrated by one or more servlets. For example,
BookDetailsServlet illustrates how to handle HTTP GET requests, BookDetailsServlet and
CatalogServlet show how to construct responses, and CatalogServlet illustrates how to
track session information.

TABLE4-1 Duke’s Bookstore Example Servlets

Function Servlet
Enter the bookstore BookStoreServlet
Create the bookstore banner BannerServlet
Browse the bookstore catalog CatalogServlet
Putabook in a shopping cart CatalogServlet,
BookDetailsServlet
Get detailed information on a specific book BookDetailsServlet
Display the shopping cart ShowCartServlet
Remove one or more books from the shopping cart ShowCartServlet
Buy the books in the shopping cart CashierServlet
Send an acknowledgment of the purchase ReceiptServlet

The data for the bookstore application is maintained in a database and accessed through the
database access class database.BookDBAO. The database package also contains the class Book
which represents a book. The shopping cart and shopping cart items are represented by the
classes cart.ShoppingCart and cart.ShoppingCartItem, respectively.

To deploy and run the application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

2. InNetBeans IDE, select File—Open Project.
In the Open Project dialog, navigate to:

100 The Java EE 5 Tutorial « October 2008

The Example Servlets

tut-install/ javaeetutorial5/examples/web/

Select the bookstorel folder.

Select the Open as Main Project check box and the Open Required Projects check box.
Click Open Project.

In the Projects tab, right-click the bookstorel project, and select Undeploy and Deploy.

To run the application, open the bookstore URL
http://localhost:8080/bookstorel/bookstore.

To deploy and run the application using Ant, follow these steps:

1.
2.

3.
4.

o

In a terminal window, go to tut-install/ javaeetutorial5/examples/web/bookstorel/.

Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/ javaeetutorial5/examples/web/bookstorel/build/ directory, and create a
WAR file and copy it to the

tut-install/ javaeetutorial5/examples/web/bookstorel/dist/ directory.

Start the Application Server.

Perform all the operations described in “Creating a Data Source in the Application Server”
on page 98.

To deploy the example, type ant deploy. The deploy target outputs a URL for running the
application. Ignore this URL, and instead use the one shown in the next step.

. Torun the application, open the bookstore URL

http://localhost:8080/bookstorel/bookstore.

To learn how to configure the example, refer to the deployment descriptor (the web. xm1 file),
which includes the following configurations:

A display-name element that specifies the name that tools use to identify the application.
A set of filter elements that identify servlet filters contained in the application.

A setof filter-mapping elements that identify which servlets will have their requests or
responses filtered by the filters identified by the filter elements. A filter-mapping
element can define more than one servlet mapping and more than one URL pattern for a
particular filter.

A set of servlet elements that identify all the servlet instances of the application.

A setof servlet-mapping elements that map the servlets to URL patterns. More than one
URL pattern can be defined for a particular servlet.

A set of error-page mappings that map exception types to an HTML page, so that the HTML
page opens when an exception of that type is thrown by the application.

Chapter4 - Java Servlet Technology 101

Servlet Life Cycle

Troubleshooting Duke's Bookstore Database
Problems

The Duke’s Bookstore database access object returns the following exceptions:

® BookNotFoundException: Returned if a book can’t be located in the bookstore database.
This will occur if you haven’t loaded the bookstore database with data or the server has not
been started or has crashed. You can populate the database by running ant create-tables.

® BooksNotFoundException: Returned if the bookstore data can’t be retrieved. This will occur
if you haven’t loaded the bookstore database with data or if the database server hasn’t been
started or it has crashed.

® UnavailableException: Returned ifa servlet can’t retrieve the web context attribute
representing the bookstore. This will occur if the database server hasn’t been started.

Because you have specified an error page, you will see the message
The application is unavailable. Please try later.

If you don’t specify an error page, the web container generates a default page containing the
message

A Servlet Exception Has Occurred

and a stack trace that can help you diagnose the cause of the exception. If you use
errorpage.html, you will have to look in the server log to determine the cause of the exception.

Servlet Life Cycle

102

The life cycle of a servlet is controlled by the container in which the servlet has been deployed.
When a request is mapped to a servlet, the container performs the following steps.

1. Ifaninstance of the servlet does not exist, the web container
a. Loads the servlet class.
b. Creates an instance of the servlet class.

c. Initializes the servlet instance by calling the init method. Initialization is covered in
“Initializing a Servlet” on page 109.

2. Invokes the service method, passing request and response objects. Service methods are
discussed in “Writing Service Methods” on page 110.

If the container needs to remove the servlet, it finalizes the servlet by calling the servlet’s
destroy method. Finalization is discussed in “Finalizing a Servlet” on page 128.

The Java EE 5 Tutorial « October 2008

Servlet Life Cycle

Handling Servlet Life-Cycle Events

You can monitor and react to events in a servlet’s life cycle by defining listener objects whose
methods get invoked when life-cycle events occur. To use these listener objects you must define

and specify the listener class.

Defining the Listener Class

You define a listener class as an implementation of a listener interface. Table 4-2 lists the events
that can be monitored and the corresponding interface that must be implemented. When a
listener method is invoked, it is passed an event that contains information appropriate to the
event. For example, the methods in the HttpSessionListener interface are passed an
HttpSessionEvent, which contains an HttpSession.

TABLE4-2 Servlet Life-Cycle Events

Object Event

Listener Interface and Event Class

Web context (see Initialization and
“Accessingthe Web destruction
Context” on page 124)

Attribute added,
removed, or replaced

Session (See Creation,

“Maintaining Client invalidation,

State” on page 125) activation,
passivation, and
timeout
Attribute added,

removed, or replaced

Request A servlet request has
started being
processed by web
components

Attribute added,
removed, or replaced

javax.servlet.ServletContextListener and
ServletContextEvent
javax.servlet.ServletContextAttributeListener and
ServletContextAttributeEvent

javax.servlet.http.HttpSessionListener, javax.servlet.http.
HttpSessionActivationListener, and

HttpSessionEvent

javax.servlet.http.HttpSessionAttributeListener and
HttpSessionBindingEvent
javax.servlet.ServletRequestListener and

ServletRequestEvent

javax.servlet.ServletRequestAttributeListener and

ServletRequestAttributeEvent

The

tut-install/ javaeetutorial5/examples/web/bookstorel/src/java/com/sun/bookstorel/listener

class creates and removes the database access and counter objects used in the Duke’s Bookstore
application. The methods retrieve the web context object from ServletContextEvent and then
store (and remove) the objects as servlet context attributes.

Chapter4 - Java Servlet Technology

103

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContextListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContextEvent.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContextAttributeListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContextAttributeEvent.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionActivationListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionActivationListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionEvent.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionAttributeListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionBindingEvent.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequestListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequestEvent.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequestAttributeListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequestAttributeEvent.html

Servlet Life Cycle

import database.BookDBAO;
import javax.servlet.*;
import util.Counter;

import javax.ejb.*;
import javax.persistence.*;

public final class ContextListener
implements ServletContextListener {
private ServletContext context = null;

@PersistenceUnit
EntityManagerFactory emf;

public void contextInitialized(ServletContextEvent event) {
context = event.getServletContext();
try {
BookDBAO bookDB = new BookDBAO(emf);
context.setAttribute("bookDB", bookDB);
} catch (Exception ex) {
System.out.println(
"Couldn’t create database:

+ ex.getMessage());
}

Counter counter = new Counter();
context.setAttribute("hitCounter", counter);

counter = new Counter();
context.setAttribute("orderCounter", counter);

public void contextDestroyed(ServletContextEvent event) {
context = event.getServletContext();
BookDBAO bookDB = context.getAttribute("bookDB")
bookDB. remove() ;
context.removeAttribute("bookDB")
context.removeAttribute("hitCounter")
context.removeAttribute("orderCounter")

Specifying Event Listener Classes

You specify an event listener class using the listener element of the deployment descriptor.
Review “The Example Servlets” on page 100 for information on how to specify the
ContextListener listener class.

104 The Java EE 5 Tutorial « October 2008

Sharing Information

You can specify an event listener using the deployment descriptor editor of NetBeans IDE by
doing the following:

Expand your application’s project node.

Expand the project’s Web Pages and WEB-INF nodes.
Double-click web . xml.

Click General at the top of the web . xm1 editor.

Expand the Web Application Listeners node.

Click Add.

In the Add Listener dialog, click Browse to locate the listener class.
Click OK.

PN RN

Handling Servlet Errors

Any number of exceptions can occur when a servlet executes. When an exception occurs, the
web container generates a default page containing the message

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for a given
exception. Review the deployment descriptor file included with the example to learn how to
map the exceptions exception.BookNotFound, exception.BooksNotFound, and
exception.OrderException returned by the Duke’s Bookstore application to errorpage. html.

See “Mapping Errors to Error Screens” on page 93 for instructions on how to specify error pages
using NetBeans IDE.

Sharing Information

Web components, like most objects, usually work with other objects to accomplish their tasks.
There are several ways they can do this. They can use private helper objects (for example,
JavaBeans components), they can share objects that are attributes of a public scope, they can use
a database, and they can invoke other web resources. The Java Servlet technology mechanisms
that allow a web component to invoke other web resources are described in “Invoking Other
Web Resources” on page 122.

Using Scope Objects
Collaborating web components share information by means of objects that are maintained as

attributes of four scope objects. You access these attributes using the [get|set]Attribute
methods of the class representing the scope. Table 4-3 lists the scope objects.

Chapter4 - Java Servlet Technology 105

Sharing Information

Session
Attribute

currency

Session
Attribute

cart

FIGURE 4-1

106

TABLE4-3 Scope Objects

Scope Object Class Accessible From

Web context javax.servlet.ServletContext Web components within a web context. See “Accessing the
Web Context” on page 124.

Session javax.servlet.http.HttpSession =~ Web components handling a request that belongs to the
session. See “Maintaining Client State” on page 125.

Request subtype of javax.servlet. Web components handling the request.

ServletRequest
Page javax.servlet.jsp.JspContext The JSP page that creates the object. See “Using Implicit

Objects” on page 145.

!

Figure 4-1 shows the scoped attributes maintained by the Duke’s Bookstore application.

[BookStoreServlet]—

hitCounterFilter Web

Context

BookDetaiIsServIet]—

CatalogServlet]—

Attribute

hitCounter
bookDB

ShowCartServlet]—

orderCounter

I—[CashierServlet]

OrderFilter

[ReceiptServlet]

Duke’s Bookstore Scoped Attributes

Controlling Concurrent

Access to Shared Resources

In a multithreaded server, it is possible for shared resources to be accessed concurrently. In
addition to scope object attributes, shared resources include in-memory data (such as instance
or class variables) and external objects such as files, database connections, and network

connections.

Concurrent access can arise in several situations:

= Multiple web components accessing objects stored in the web context.

= Multiple web components accessing objects stored in a session.

The Java EE 5 Tutorial « October 2008

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContext.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSession.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequest.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequest.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/JspContext.html

Sharing Information

= Multiple threads within a web component accessing instance variables. A web container will
typically create a thread to handle each request. If you want to ensure that a servlet instance
handles only one request at a time, a servlet can implement the SingleThreadModel
interface. If a servlet implements this interface, you are guaranteed that no two threads will
execute concurrently in the servlet’s service method. A web container can implement this
guarantee by synchronizing access to a single instance of the servlet, or by maintaining a
pool of web component instances and dispatching each new request to a free instance. This
interface does not prevent synchronization problems that result from web components
accessing shared resources such as static class variables or external objects. In addition, the
Servlet 2.4 specification deprecates the SingleThreadModel interface.

When resources can be accessed concurrently, they can be used in an inconsistent fashion. To
prevent this, you must control the access using the synchronization techniques described in the
Threads lesson in The Java Tutorial, Fourth Edition, by Sharon Zakhour et al. (Addison-Wesley,
2006).

The preceding section showed five scoped attributes shared by more than one servlet: bookDB,

cart, currency, hitCounter, and orderCounter. The bookDB attribute is discussed in the next
section. The cart, currency, and counters can be set and read by multiple multithreaded servlets.

To prevent these objects from being used inconsistently, access is controlled by synchronized
methods. For example, here is the Counter class, located at

tut-install/ javaeetutorial5s/examples/web/bookstorel/src/java/com/sun/bookstorel/util/:

public class Counter {

private int counter;

public Counter() {
counter = 0;

}

public synchronized int getCounter() {
return counter;

}

public synchronized int setCounter(int c) {
counter = ¢;
return counter;

}

public synchronized int incCounter() {
return(++counter);

Accessing Databases

Data that is shared between web components and is persistent between invocations of a web
application is usually maintained by a database. Web components use the Java Persistence API
to access relational databases. The data for Duke’s Bookstore is maintained in a database and is

Chapter4 - Java Servlet Technology 107

http://java.sun.com/javaee/5/docs/api/javax/servlet/SingleThreadModel.html
http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html
http://java.sun.com/docs/books/tutorial/

Sharing Information

108

accessed through the database access class

tut-install/ javaeetutorial5/examples/web/bookstorel/src/java/com/sun/bookstorel/database/Book
For example, ReceiptServlet invokes the BookDBAO. buyBooks method to update the book

inventory when a user makes a purchase. The buyBooks method invokes buyBook for each book

contained in the shopping cart, as shown in the following code.

public void buyBooks(ShoppingCart cart) throws OrderException{

Collection items = cart.getItems();
Iterator i = items.iterator();

try {
while (i.hasNext()) {
ShoppingCartItem sci = (ShoppingCartItem)i.next();
Book bd = (Book)sci.getItem();
String id = bd.getBookId();
int quantity = sci.getQuantity();
buyBook(id, quantity);
}
} catch (Exception ex) {
throw new OrderException("Commit failed: " +
ex.getMessage());

public void buyBook(String bookId, int quantity)
throws OrderException {

try {
Book requestedBook = em.find(Book.class, bookId);

if (requestedBook != null) {

int inventory = requestedBook.getInventory();

if ((inventory - quantity) >= 0) {
int newInventory = inventory - quantity;
requestedBook.setInventory(newInventory);

} else{
throw new OrderException("Not enough of "

+ bookId + " in stock to complete order.");

}
} catch (Exception ex) {
throw new OrderException("Couldn’t purchase book:
+ bookId + ex.getMessage());

The Java EE 5 Tutorial « October 2008

Initializing a Servlet

To ensure that the order is processed in its entirety, the call to buyBooks is wrapped in a single
transaction. In the following code, the calls to the begin and commit methods of
UserTransaction mark the boundaries of the transaction. The call to the rollback method of
UserTransaction undoes the effects of all statements in the transaction so as to protect the
integrity of the data.

try {
utx.begin();
bookDB.buyBooks(cart);
utx.commit();
} catch (Exception ex) {
try {
utx.rollback();
} catch(Exception e) {
System.out.println("Rollback failed: "+e.getMessage());
}
System.err.println(ex.getMessage());
orderCompleted = false;}

Initializing a Servlet

After the web container loads and instantiates the servlet class and before it delivers requests
from clients, the web container initializes the servlet. To customize this process to allow the
servlet to read persistent configuration data, initialize resources, and perform any other
one-time activities, you override the init method of the Servlet interface. A servlet that
cannot complete its initialization process should throw UnavailableException.

All the servlets that access the bookstore database (BookStoreServlet, CatalogServlet,
BookDetailsServlet, and ShowCartServlet) initialize a variable in their init method that
points to the database access object created by the web context listener:

public class CatalogServlet extends HttpServlet {
private BookDBAO bookDB;
public void init() throws ServletException {
bookDB = (BookDBAO)getServletContext().
getAttribute("bookDB");
if (bookDB == null) throw new
UnavailableException("Couldn’t get database.");

Chapter4 - Java Servlet Technology 109

Writing Service Methods

Writing Service Methods

The service provided by a servlet is implemented in the service method of a GenericServlet,
in the doMethod methods (where Method can take the value Get, Delete, Options, Post, Put, or
Trace) ofan HttpServlet object, or in any other protocol-specific methods defined by a class
that implements the Servlet interface. In the rest of this chapter, the term service method is
used for any method in a servlet class that provides a service to a client.

The general pattern for a service method is to extract information from the request, access
external resources, and then populate the response based on that information.

For HTTP servlets, the correct procedure for populating the response is to first retrieve an
output stream from the response, then fill in the response headers, and finally write any body
content to the output stream. Response headers must always be set before the response has been
committed. Any attempt to set or add headers after the response has been committed will be
ignored by the web container. The next two sections describe how to get information from
requests and generate responses.

Getting Information from Requests

A request contains data passed between a client and the servlet. All requests implement the
ServletRequest interface. This interface defines methods for accessing the following
information:

= Parameters, which are typically used to convey information between clients and servlets

= Object-valued attributes, which are typically used to pass information between the servlet
container and a servlet or between collaborating servlets

= Information about the protocol used to communicate the request and about the client and
server involved in the request

= Information relevant to localization

For example, in CatalogServlet the identifier of the book that a customer wishes to purchase is
included as a parameter to the request. The following code fragment illustrates how to use the
getParameter method to extract the identifier:

String bookId = request.getParameter("Add")
if (bookId != null) {
Book book = bookDB.getBook(bookId);

You can also retrieve an input stream from the request and manually parse the data. To read
character data, use the BufferedReader object returned by the request’s getReader method. To
read binary data, use the ServletInputStream returned by getInputStream.

HTTP servlets are passed an HT'TP request object, HttpServletRequest, which contains the
request URL, HTTP headers, query string, and so on.

110 The Java EE 5 Tutorial « October 2008

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequest.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletInputStream.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpServletRequest.html

Writing Service Methods

An HTTP request URL contains the following parts:
http://[host]: [port] [request-path]? [query-string]

The request path is further composed of the following elements:

= Context path: A concatenation of a forward slash (/) with the context root of the servlet’s
web application.

= Servlet path: The path section that corresponds to the component alias that activated this
request. This path starts with a forward slash (/).

= Path info: The part of the request path that is not part of the context path or the servlet path.

If the context path is /catalog and for the aliases listed in Table 4-4, Table 4-5 gives some
examples of how the URL will be parsed.

TABLE4-4 Aliases

Pattern Servlet
/lawn/* LawnServlet
/*.jsp JSPServlet

TABLE4-5 Request Path Elements

Request Path Servlet Path Path Info
/catalog/lawn/index.html /lawn /index.html
/catalog/help/feedback.jsp /help/feedback.jsp null

Query strings are composed of a set of parameters and values. Individual parameters are
retrieved from a request by using the getParameter method. There are two ways to generate
query strings:

= A query string can explicitly appear in a web page. For example, an HTML page generated
by CatalogServlet could contain the link Add
To Cart. CatalogServlet extracts the parameter named Add as follows:

String bookId = request.getParameter("Add");

= A query string is appended to a URL when a form with a GET HTTP method is submitted. In
the Duke’s Bookstore application, CashierServlet generates a form, then a user name
input to the form is appended to the URL that maps to ReceiptServlet, and finally
ReceiptServlet extracts the user name using the getParameter method.

Chapter4 - Java Servlet Technology m

Writing Service Methods

112

Constructing Responses

A response contains data passed between a server and the client. All responses implement the
ServletResponse interface. This interface defines methods that allow you to:

= Retrieve an output stream to use to send data to the client. To send character data, use the
PrintWriter returned by the response’s getWriter method. To send binary data in a MIME
body response, use the ServletOutputStream returned by getOutputStream. To mix binary
and text data (as in a multipart response), use a ServletOutputStream and manage the
character sections manually.

= Indicate the content type (for example, text/html) being returned by the response with the
setContentType(String) method. This method must be called before the response is
committed. A registry of content type names is kept by the Internet Assigned Numbers
Authority (IANA) at http://www.1ana.org/assignments/media-types/.

= Indicate whether to buffer output with the setBufferSize(int) method. By default, any
content written to the output stream is immediately sent to the client. Buffering allows
content to be written before anything is actually sent back to the client, thus providing the
servlet with more time to set appropriate status codes and headers or forward to another
web resource. The method must be called before any content is written or before the
response is committed.

= Setlocalization information such as locale and character encoding. See Chapter 15,
“Internationalizing and Localizing Web Applications,” for details.

HTTP response objects, HttpServletResponse, have fields representing HTTP headers such as
the following:

= Status codes, which are used to indicate the reason a request is not satisfied or that a request
has been redirected.

= Cookies, which are used to store application-specific information at the client. Sometimes
cookies are used to maintain an identifier for tracking a user’s session (see “Session
Tracking” on page 127).

In Duke’s Bookstore, BookDetailsServlet generates an HTML page that displays information
about a book that the servlet retrieves from a database. The servlet first sets response headers:
the content type of the response and the buffer size. The servlet buffers the page content because
the database access can generate an exception that would cause forwarding to an error page. By
buffering the response, the servlet prevents the client from seeing a concatenation of part ofa
Duke’s Bookstore page with the error page should an error occur. The doGet method then
retrieves a PrintWriter from the response.

To fill in the response, the servlet first dispatches the request to BannerServlet, which
generates a common banner for all the servlets in the application. This process is discussed in
“Including Other Resources in the Response” on page 122. Then the servlet retrieves the book
identifier from a request parameter and uses the identifier to retrieve information about the

The Java EE 5 Tutorial « October 2008

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletResponse.html
http://java.sun.com/javase/6/docs/api/java/io/PrintWriter.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletOutputStream.html
http://www.iana.org/assignments/media-types/
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpServletResponse.html

Writing Service Methods

book from the bookstore database. Finally, the servlet generates HTML markup that describes
the book information and then commits the response to the client by calling the close method
onthePrintWriter.

public class BookDetailsServlet extends HttpServlet {

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// set headers before accessing the Writer
response.setContentType("text/html")
response.setBufferSize(8192);

PrintWriter out = response.getWriter();

// then write the response
out.println("<html>" +
"<head><title>+
messages.getString("TitleBookDescription")
+</title></head>")

// Get the dispatcher; it gets the banner to the user
RequestDispatcher dispatcher =
getServletContext().
getRequestDispatcher("/banner");
if (dispatcher != null)
dispatcher.include(request, response);

// Get the identifier of the book to display
String bookId = request.getParameter("bookId");
if (bookId != null) {
// and the information about the book
try {
Book bd =
bookDB.getBook (bookId) ;

// Print the information obtained
out.println("<h2>" + bd.getTitle() + "</h2>" +

} catch (BookNotFoundException ex) {
response.resetBuffer();
throw new ServletException(ex);

}

out.println("</body></html>");
out.close();

Chapter4 - Java Servlet Technology 113

Filtering Requests and Responses

BookDetailsServlet generates a page that looks like Figure 4-2.

) Book Description - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help

@ - - @ m |IJ ‘localhost: 8080/bookstore 1 fbookdetailsbookId=202 | ‘| D‘| 'v| e

Duke's ‘?Qi‘ Bookstore

Web Servers for Fun and Profit

by Jegvez (20000

Here's what the critics say:
“What a cool book
Our Price: $40.75

Add to Cart Continue Shopping

Dane [/]

FIGURE4-2 Book Details

Filtering Requests and Responses

A filter is an object that can transform the header and content (or both) of a request or response.
Filters differ from web components in that filters usually do not themselves create a response.
Instead, a filter provides functionality that can be “attached” to any kind of web resource.
Consequently, a filter should not have any dependencies on a web resource for which it is acting
as a filter; this way it can be composed with more than one type of web resource.

The main tasks that a filter can perform are as follows:

= Query the request and act accordingly.

= Block the request-and-response pair from passing any further.

114 The Java EE 5 Tutorial « October 2008

Filtering Requests and Responses

= Modify the request headers and data. You do this by providing a customized version of the
request.

= Modify the response headers and data. You do this by providing a customized version of the
response.

m Interact with external resources.

Applications of filters include authentication, logging, image conversion, data compression,
encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, or more filtersin a
specific order. This chain is specified when the web application containing the component is
deployed and is instantiated when a web container loads the component.

In summary, the tasks involved in using filters are

= Programming the filter
= Programming customized requests and responses
= Specifying the filter chain for each web resource

Programming Filters

The filtering API is defined by the Filter, FilterChain,and FilterConfig interfaces in the
javax.servlet package. You define a filter by implementing the Filter interface.

The most important method in this interface is doFilter, which is passed request, response,
and filter chain objects. This method can perform the following actions:

= Examine the request headers.
= Customize the request object if the filter wishes to modify request headers or data.
= Customize the response object if the filter wishes to modify response headers or data.

= Invoke the next entity in the filter chain. If the current filter is the last filter in the chain that
ends with the target web component or static resource, the next entity is the resource at the
end of the chain; otherwise, it is the next filter that was configured in the WAR. The filter
invokes the next entity by calling the doFilter method on the chain object (passing in the
request and response it was called with, or the wrapped versions it may have created).
Alternatively, it can choose to block the request by not making the call to invoke the next
entity. In the latter case, the filter is responsible for filling out the response.

= Examine response headers after it has invoked the next filter in the chain.
= Throw an exception to indicate an error in processing.
In addition to doFilter, you must implement the init and destroy methods. The init

method is called by the container when the filter is instantiated. If you wish to pass initialization
parameters to the filter, you retrieve them from the FilterConfig object passed to init.

Chapter4 - Java Servlet Technology 115

http://java.sun.com/javaee/5/docs/api/javax/servlet/Filter.html

Filtering Requests and Responses

The Duke’s Bookstore application uses the filters HitCounterFilter and OrderFilter, located

at

tut-install/ javaeetutorial5/examples/web/bookstorel/src/java/com/sun/bookstorel/filters/,
to increment and log the value of counters when the entry and receipt servlets are accessed.

In the doFilter method, both filters retrieve the servlet context from the filter configuration
object so that they can access the counters stored as context attributes. After the filters have
completed application-specific processing, they invoke doFilter on the filter chain object
passed into the original doFilter method. The elided code is discussed in the next section.

public final class HitCounterFilter implements Filter {
private FilterConfig filterConfig = null;

public void init(FilterConfig filterConfig)
throws ServletException {
this.filterConfig = filterConfig;
}
public void destroy() {
this.filterConfig = null;
}
public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException {
if (filterConfig == null)
return;
StringWriter sw = new StringWriter();
PrintWriter writer = new PrintWriter(sw);
Counter counter = (Counter)filterConfig.
getServletContext().
getAttribute("hitCounter")
writer.println();
writer.println("s==============");
writer.println("The number of hits is: " +
counter.incCounter());
writer.println("s==============");
// Log the resulting string
writer.flush();
System.out.println(sw.getBuffer().toString());

chain.doFilter(request, wrapper);

116 The Java EE 5 Tutorial « October 2008

Filtering Requests and Responses

Programming Customized Requests and Responses

There are many ways for a filter to modify a request or response. For example, a filter can add an
attribute to the request or can insert data in the response. In the Duke’s Bookstore example,
HitCounterFilter inserts the value of the counter into the response.

A filter that modifies a response must usually capture the response before it is returned to the
client. To do this, you pass a stand-in stream to the servlet that generates the response. The
stand-in stream prevents the servlet from closing the original response stream when it
completes and allows the filter to modify the servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper that overrides
the getWriter or getOutputStream method to return this stand-in stream. The wrapper is
passed to the doFilter method of the filter chain. Wrapper methods default to calling through
to the wrapped request or response object. This approach follows the well-known Wrapper or
Decorator pattern described in Design Patterns, Elements of Reusable Object-Oriented Software,
by Erich Gamma et al. (Addison-Wesley, 1995). The following sections describe how the hit
counter filter described earlier and other types of filters use wrappers.

To override request methods, you wrap the request in an object that extends
ServletRequestWrapper or HttpServletRequestWrapper. To override response methods, you
wrap the response in an object that extends ServletResponseWrapper or
HttpServletResponseWrapper.

HitCounterFilter wraps the responseina
tut-install/javaeetutorial5/examples/web/bookstorel/src/java/com/sun/bookstorel/filters;
The wrapped response is passed to the next object in the filter chain, which is

BookStoreServlet. Then BookStoreServlet writes its response into the stream created by
CharResponseWrapper. When chain.doFilter returns, HitCounterFilter retrieves the

servlet’s response from PrintWriter and writes it to a buffer. The filter inserts the value of the

counter into the buffer, resets the content length header of the response, and then writes the

contents of the buffer to the response stream.

PrintWriter out = response.getWriter();
CharResponseWrapper wrapper = new CharResponseWrapper (
(HttpServletResponse) response) ;
chain.doFilter(request, wrapper);
CharArrayWriter caw = new CharArrayWriter();
caw.write(wrapper.toString().substring(0,
wrapper.toString().index0f ("</body>")-1));
caw.write("<p>\n<centers" +
messages.getString("Visitor") + "" +
counter.getCounter() + "</centers");
caw.write("\n</body></html>");
response.setContentLength(caw.toString().getBytes().length);
out.write(caw.toString());

Chapter4 - Java Servlet Technology 17

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletRequestWrapper.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpServletRequestWrapper.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletResponseWrapper.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpServletResponseWrapper.html

Filtering Requests and Responses

out.close();

public class CharResponseWrapper extends
HttpServletResponseWrapper {
private CharArrayWriter output;
public String toString() {
return output.toString();

}

public CharResponseWrapper(HttpServletResponse response){
super(response);
output = new CharArrayWriter();

}

public PrintWriter getWriter(){
return new PrintWriter(output);

Figure 4-3 shows the entry page for Duke’s Bookstore with the hit counter.

118 The Java EE 5 Tutorial « October 2008

Filtering Requests and Responses

) Duke’s Bookstore - Mozilla Firefox |;|E|r5_—<|
File Edit Miew History Bookmarks Tools Help

@ - - @4 m ||_| http: fflocalhost: 8080/bookstore 1 fbookstore |‘| D‘| v|

Duke's ‘?Qi‘ Bookstore

What We're Reading

Web Components for Weh Developers talles about how web components can transform
the way vou develop applications for the web. This 12 a must read for any sell respecting web
developer!

Start Shopping

Tou are wisttor number 1

Dane (/]

FIGURE4-3 Duke’s Bookstore with Hit Counter
Specifying Filter Mappings

A web container uses filter mappings to decide how to apply filters to web resources. A filter
mapping matches a filter to a web component by name, or to web resources by URL pattern.
The filters are invoked in the order in which filter mappings appear in the filter mapping list of a
WAR. You specify a filter mapping list for a WAR in its deployment descriptor, either with
NetBeans IDE or by coding the list by hand with XML.

To declare the filter and map it to a web resource using NetBeans IDE, do the following:
Expand the application’s project node in the Project pane.

Expand the Web Pages and WEB-INF nodes under the project node.

Double-click web . xm1.

Click Filters at the top of the editor pane.

N

Expand the Servlet Filters node in the editor pane.

Chapter4 - Java Servlet Technology 119

Filtering Requests and Responses

120

6. Click Add Filter Element to map the filter to a web resource by name or by URL pattern.
7. Inthe Add Servlet Filter dialog, enter the name of the filter in the Filter Name field.

8. Click Browse to locate the servlet class to which the filter applies. You can include wildcard

characters so that you can apply the filter to more than one servlet.

9. Click OK.

To constrain how the filter is applied to requests, do the following:

L.

Expand the Filter Mappings node in the Filters tab of the editor pane.

2. Select the filter from the list of filters.

3.

Click Add.

4. Inthe Add Filter Mapping dialog, select one of the following dispatcher types:

® REQUEST: Only when the request comes directly from the client

= FORWARD: Only when the request has been forwarded to a component (see “Transferring
Control to Another Web Component” on page 124)

= INCLUDE: Only when the request is being processed by a component that has been
included (see “Including Other Resources in the Response” on page 122)

= ERROR: Only when the request is being processed with the error page mechanism (see
“Handling Servlet Errors” on page 105)

You can direct the filter to be applied to any combination of the preceding situations by
selecting multiple dispatcher types. If no types are specified, the default option is
REQUEST.

You can declare, map, and constrain the filter by editing the XML in the web application
deployment descriptor directly by following these steps:

1.
2.

While in the web . xml editor pane in NetBeans IDE, click XML at the top of the editor pane.

Declare the filter by adding a filter element right after the display-name element. The
filter element creates a name for the filter and declares the filter’s implementation class
and initialization parameters.

Map the filter to a web resource by name or by URL pattern using the filter-mapping
element:

a. Includea filter-name element that specifies the name of the filter as defined by the
filter element.

b. Include a servlet-name element that specifies to which servlet the filter applies. The

servlet-name element can include wildcard characters so that you can apply the filter to

more than one servlet.

Constrain how the filter will be applied to requests by specifying one of the enumerated
dispatcher options (described in step 4 of the preceding set of steps) with the dispatcher
element and adding the dispatcher element to the filter-mapping element.

The Java EE 5 Tutorial « October 2008

Filtering Requests and Responses

You can direct the filter to be applied to any combination of the preceding situations by
including multiple dispatcher elements. If no elements are specified, the default option is
REQUEST.

If you want to log every request to a web application, you map the hit counter filter to the URL
pattern /*. Table 4-6 summarizes the filter definition and mapping list for the Duke’s Bookstore
application. The filters are matched by servlet name, and each filter chain contains only one
filter.

TABLE4-6 Duke’s Bookstore Filter Definition and Mapping List

Filter Class Servlet
HitCounterFilter filters.HitCounterFilter BookStoreServlet
OrderFilter filters.OrderFilter ReceiptServlet

You can map a filter to one or more web resources and you can map more than one filter to a
web resource. This is illustrated in Figure 4-4, where filter F1 is mapped to servlets S1, S2, and
S3, filter F2 is mapped to servlet S2, and filter F3 is mapped to servlets S1 and S2.

{F1HF2

FIGURE4-4 Filter-to-Servlet Mapping

Recall that a filter chain is one of the objects passed to the doFilter method of a filter. This
chain is formed indirectly by means of filter mappings. The order of the filters in the chain is the
same as the order in which filter mappings appear in the web application deployment
descriptor.

Chapter4 - Java Servlet Technology 121

Invoking Other Web Resources

When a filter is mapped to servlet S1, the web container invokes the doFilter method of F1.
The doFilter method of each filter in S1’s filter chain is invoked by the preceding filter in the
chain by means of the chain.doFilter method. Because S1’s filter chain contains filters F1 and
F3,F1’s call to chain.doFilter invokes the doFilter method of filter F3. When F3’s doFilter
method completes, control returns to F1’s doFilter method.

Invoking Other Web Resources

122

Web components can invoke other web resources in two ways: indirectly and directly. A web
component indirectly invokes another web resource when it embeds a URL that points to
another web component in content returned to a client. In the Duke’s Bookstore application,
most web components contain embedded URLs that point to other web components. For
example, ShowCartServlet indirectly invokes the CatalogServlet through the following
embedded URL:

/bookstorel/catalog

A web component can also directly invoke another resource while it is executing. There are two
possibilities: The web component can include the content of another resource, or it can forward
arequest to another resource.

To invoke a resource available on the server that is running a web component, you must first
obtain a RequestDispatcher object using the getRequestDispatcher("URL") method.

You can get a RequestDispatcher object from either a request or the web context; however, the
two methods have slightly different behavior. The method takes the path to the requested
resource as an argument. A request can take a relative path (that is, one that does not begin with
a /), but the web context requires an absolute path. If the resource is not available or if the server
has notimplemented a RequestDispatcher object for that type of resource,
getRequestDispatcher will return null. Your servlet should be prepared to deal with this
condition.

Including Other Resources in the Response

It is often useful to include another web resource (for example, banner content or copyright
information) in the response returned from a web component. To include another resource,
invoke the include method of aRequestDispatcher object:

include(request, response);

The Java EE 5 Tutorial « October 2008

http://java.sun.com/javaee/5/docs/api/javax/servlet/RequestDispatcher.html

Invoking Other Web Resources

If the resource is static, the include method enables programmatic server-side includes. If the
resource is a web component, the effect of the method is to send the request to the included web
component, execute the web component, and then include the result of the execution in the
response from the containing servlet. An included web component has access to the request
object, but it is limited in what it can do with the response object:

= [t can write to the body of the response and commit a response.

= [tcannot set headers or call any method (for example, setCookie) that affects the headers of
the response.

The banner for the Duke’s Bookstore application is generated by BannerServlet. Note that
both doGet and doPost are implemented because BannerServlet can be dispatched from either
method in a calling servlet.

public class BannerServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
output(request, response);
}
public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
output(request, response);

private void output(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
PrintWriter out = response.getWriter();
out.println("<body bgcolor=\"#ffffff\">" +
"<center>" + "<hr>
 " + "<h1>" +
"Duke’s " +
<img src=\"" + request.getContextPath() +
"/duke.books.gif\">" +

"Bookstore" +

"</h1>" + "</center>" + "
 <hr>
");

}

Each servlet in the Duke’s Bookstore application includes the result from BannerServlet using
the following code:

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/banner")
if (dispatcher != null)
dispatcher.include(request, response);

Chapter4 - Java Servlet Technology 123

Accessing the Web Context

Transferring Control to Another Web Component

In some applications, you might want to have one web component do preliminary processing of
arequest and have another component generate the response. For example, you might want to
partially process a request and then transfer to another component depending on the nature of
the request.

To transfer control to another web component, you invoke the forward method of a

RequestDispatcher. When a request is forwarded, the request URL is set to the path of the

forwarded page. The original URI and its constituent parts are saved as request attributes
javax.servlet.forward. [request-uri|context-path|servlet-path | path-info| query-string].

The

tut-install/ javaeetutorial5/examples/web/bookstore2/src/java/com/sun/bookstore2/dispatcher/Di
servlet, used by a version of the Duke’s Bookstore application described in “The Example JSP

Pages” on page 226, saves the path information from the original URL, retrieves a

RequestDispatcher from the request, and then forwards to the JSP page,

tut-install/ javaeetutorial5/examples/web/bookstore3/web/template/template. jsp.

public class Dispatcher extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response) {
RequestDispatcher dispatcher = request.
getRequestDispatcher("/template.jsp")
if (dispatcher != null)
dispatcher.forward(request, response);

}
public void doPost(HttpServletRequest request,

}

The forward method should be used to give another resource responsibility for replying to the
user. If you have already accessed a ServletOutputStreamor PrintWriter object within the
servlet, you cannot use this method; doing so throws an IllegalStateException.

Accessing the Web Context

The context in which web components execute is an object that implements the ServletContext
interface. You retrieve the web context using the getServletContext method. The web context
provides methods for accessing:

= [nitialization parameters

= Resources associated with the web context
= Object-valued attributes

= Logging capabilities

124 The Java EE 5 Tutorial « October 2008

http://java.sun.com/javaee/5/docs/api/javax/servlet/ServletContext.html

Maintaining Client State

The web context is used by the Duke’s Bookstore filters HitCounterFilter and OrderFilter,
which are discussed in “Filtering Requests and Responses” on page 114. Each filter stores a
counter as a context attribute. Recall from “Controlling Concurrent Access to Shared
Resources” on page 106 that the counter’s access methods are synchronized to prevent
incompatible operations by servlets that are running concurrently. A filter retrieves the counter
object using the context’s getAttribute method. The incremented value of the counter is
recorded in the log.

public final class HitCounterFilter implements Filter {
private FilterConfig filterConfig = null;
public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException {

StringWriter sw = new StringWriter();

PrintWriter writer = new PrintWriter(sw);

ServletContext context = filterConfig.
getServletContext();

Counter counter = (Counter)context.
getAttribute("hitCounter");

writer.println("The number of hits is: " +
counter.incCounter());

System.out.println(sw.getBuffer().toString());

Maintaining Client State

Many applications require that a series of requests from a client be associated with one another.
For example, the Duke’s Bookstore application saves the state of a user’s shopping cart across
requests. Web-based applications are responsible for maintaining such state, called a session,
because HT'TP is stateless. To support applications that need to maintain state, Java Servlet
technology provides an API for managing sessions and allows several mechanisms for
implementing sessions.

Accessing a Session

Sessions are represented by an HttpSession object. You access a session by calling the
getSession method of a request object. This method returns the current session associated
with this request, or, if the request does not have a session, it creates one.

Chapter4 - Java Servlet Technology 125

http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSession.html

Maintaining Client State

126

Associating Objects with a Session

You can associate object-valued attributes with a session by name. Such attributes are accessible
by any web component that belongs to the same web context and is handling a request that is
part of the same session.

The Duke’s Bookstore application stores a customer’s shopping cart as a session attribute. This
allows the shopping cart to be saved between requests and also allows cooperating servlets to
access the cart. CatalogServlet adds items to the cart; ShowCartServlet displays, deletes
items from, and clears the cart; and CashierServlet retrieves the total cost of the books in the
cart.

public class CashierServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// Get the user’s session and shopping cart
HttpSession session = request.getSession();
ShoppingCart cart =
(ShoppingCart)session.
getAttribute("cart");

// Determine the total price of the user’s books
double total = cart.getTotal();

Notifying Objects That Are Associated with a Session

Recall that your application can notify web context and session listener objects of servlet
life-cycle events (“Handling Servlet Life-Cycle Events” on page 103). You can also notify objects
of certain events related to their association with a session such as the following:

= When the object is added to or removed from a session. To receive this notification, your
object must implement the javax.servlet.http.HttpSessionBindingListener interface.

= When the session to which the object is attached will be passivated or activated. A session
will be passivated or activated when it is moved between virtual machines or saved to and
restored from persistent storage. To receive this notification, your object must implement
the javax.servlet.http.HttpSessionActivationListener interface.

Session Management

Because there is no way for an HTTP client to signal that it no longer needs a session, each
session has an associated timeout so that its resources can be reclaimed. The timeout period can
be accessed by using a session’s [get | set]MaxInactiveInterval methods.

The Java EE 5 Tutorial « October 2008

http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionBindingListener.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/HttpSessionActivationListener.html

Maintaining Client State

You can also set the timeout period in the deployment descriptor using NetBeans IDE:

1. Open theweb.xml file in the web. xml editor.
2. Click General at the top of the editor.

3. Enter aninteger value in the Session Timeout field. The integer value represents the number
of minutes of inactivity that must pass before the session times out.

To ensure that an active session is not timed out, you should periodically access the session by
using service methods because this resets the session’s time-to-live counter.

When a particular client interaction is finished, you use the session’s invalidate method to
invalidate a session on the server side and remove any session data. The bookstore application’s
ReceiptServlet is the last servlet to access a client’s session, so it has the responsibility to
invalidate the session:

public class ReceiptServlet extends HttpServlet {
public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
// Get the user’s session and shopping cart
HttpSession session = request.getSession();
// Payment received -- invalidate the session
session.invalidate();

Session Tracking

A web container can use several methods to associate a session with a user, all of which involve
passing an identifier between the client and the server. The identifier can be maintained on the
client as a cookie, or the web component can include the identifier in every URL that is returned
to the client.

If your application uses session objects, you must ensure that session tracking is enabled by
having the application rewrite URLs whenever the client turns off cookies. You do this by
calling the response’s encodeURL (URL) method on all URLSs returned by a servlet. This method
includes the session ID in the URL only if cookies are disabled; otherwise, it returns the URL
unchanged.

The doGet method of ShowCartServlet encodes the three URLs at the bottom of the shopping
cart display page as follows:
out.println("<p> <p><a href=\"" +
response.encodeURL (request.getContextPath() +
"/bookcatalog") +
"\">" + messages.getString("ContinueShopping") +

Chapter4 - Java Servlet Technology 127

Finalizing a Servlet

" " +
"<a href=\"" +

response.encodeURL (request.getContextPath() +
"/bookcashier") +
"\">" + messages.getString("Checkout") +
" " +
"<a href=\"" +

response.encodeURL (request.getContextPath() +
"/bookshowcart?Clear=clear") +
"\">" + messages.getString("ClearCart") +
"");

If cookies are turned off, the session is encoded in the Check Out URL as follows:

http://localhost:8080/bookstorel/cashier;jsessionid=c@o7fszebl

If cookies are turned on, the URL is simply

http://localhost:8080/bookstorel/cashier

Finalizing a Servlet

128

When a servlet container determines that a servlet should be removed from service (for
example, when a container wants to reclaim memory resources or when it is being shut down),
the container calls the destroy method of the Servlet interface. In this method, you release
any resources the servlet is using and save any persistent state. The following destroy method
releases the database object created in the init method described in “Initializing a Servlet” on
page 109:

public void destroy() {
bookDB = null;
}

All of a servlet’s service methods should be complete when a servlet is removed. The server tries
to ensure this by calling the dest roy method only after all service requests have returned or
after a server-specific grace period, whichever comes first. If your servlet has operations that
take a long time to run (that is, operations that may run longer than the server’s grace period),
the operations could still be running when destroy is called. You must make sure that any
threads still handling client requests complete; the remainder of this section describes how to
do the following:

= Keep track of how many threads are currently running the service method.

= Provide a clean shutdown by having the destroy method notify long-running threads of the
shutdown and wait for them to complete.

= Have the long-running methods poll periodically to check for shutdown and, if necessary,
stop working, clean up, and return.

The Java EE 5 Tutorial « October 2008

Finalizing a Servlet

Tracking Service Requests

To track service requests, include in your servlet class a field that counts the number of service
methods that are running. The field should have synchronized access methods to increment,
decrement, and return its value.

public class ShutdownExample extends HttpServlet {
private int serviceCounter = 0;

// Access methods for serviceCounter
protected synchronized void enteringServiceMethod() {

serviceCounter++;

}

protected synchronized void leavingServiceMethod() {
serviceCounter--;

}

protected synchronized int numServices() {
return serviceCounter;

}

The service method should increment the service counter each time the method is entered and
should decrement the counter each time the method returns. This is one of the few times that
your HttpServlet subclass should override the service method. The new method should call
super.service to preserve the functionality of the original service method:

protected void service(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException,IOException {
enteringServiceMethod();

try {
super.service(req, resp);
} finally {
leavingServiceMethod();
}

Notifying Methods to Shut Down

To ensure a clean shutdown, your destroy method should not release any shared resources
until all the service requests have completed. One part of doing this is to check the service
counter. Another part is to notify the long-running methods that it is time to shut down. For
this notification, another field is required. The field should have the usual access methods:

public class ShutdownExample extends HttpServlet {
private boolean shuttingDown;

Chapter4 - Java Servlet Technology 129

Finalizing a Servlet

130

//Access methods for shuttingDown

protected synchronized void setShuttingDown(boolean flag) {
shuttingDown = flag;

}

protected synchronized boolean isShuttingDown() {
return shuttingDown;

}

Here is an example of the dest roy method using these fields to provide a clean shutdown:

public void destroy() {
/* Check to see whether there are still service methods /*
/* running, and if there are, tell them to stop. */
if (numServices() > 0) {
setShuttingDown(true);

/* Wait for the service methods to stop. */
while(numServices() > 0) {
try {
Thread.sleep(interval);
} catch (InterruptedException e) {
}

Creating Polite Long-Running Methods

The final step in providing a clean shutdown is to make any long-running methods behave
politely. Methods that might run for a long time should check the value of the field that notifies
them of shutdowns and should interrupt their work, if necessary.

public void doPost(...) {

for(i = 0; ((i < lotsOfStuffToDo) &&
'isShuttingDown()); i++) {
try {
partOfLongRunningOperation(i);
} catch (InterruptedException e) {

The Java EE 5 Tutorial « October 2008

Further Information about Java Servlet Technology

Further Information about Java Servlet Technology

For more information on Java Servlet technology, see:
= Java Servlet 2.4 specification:

http://java.sun.com/products/servliet/download.html#specs
= The Java Servlet web site:

http://java.sun.com/products/servlet

Chapter4 - Java Servlet Technology 131

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet

132

L K R 4 CHAPTER 5

JavaServer Pages Technology

JavaServer Pages (JSP) technology allows you to easily create web content that has both static
and dynamic components. JSP technology makes available all the dynamic capabilities of Java
Servlet technology but provides a more natural approach to creating static content.

The main features of JSP technology are as follows:

= Alanguage for developing JSP pages, which are text-based documents that describe how to
process a request and construct a response

= An expression language for accessing server-side objects

= Mechanisms for defining extensions to the JSP language

JSP technology also contains an API that is used by developers of web containers, but this APTis
not covered in this tutorial.

Whatls a JSP Page?

A JSP page is a text document that contains two types of text: static data, which can be expressed
in any text-based format (such as HTML, SVG, WML, and XML), and JSP elements, which
construct dynamic content.

The recommended file extension for the source file of a JSP page is . jsp. The page can be
composed of a top file that includes other files that contain either a complete JSP page or a
fragment of a JSP page. The recommended extension for the source file of a fragment of a JSP

pageis .jspf.

The JSP elements in a JSP page can be expressed in two syntaxes, standard and XML, though
any given file can use only one syntax. A JSP page in XML syntax is an XML document and can
be manipulated by tools and APIs for XML documents. This chapter and Chapters Chapter 7,
“JavaServer Pages Standard Tag Library,” through Chapter 9, “Scripting in JSP Pages,
document only the standard syntax. The XML syntax is covered in Chapter 6, “JavaServer Pages
Documents”

133

http://www.w3.org/MarkUp/
http://www.w3.org/TR/SVG
http://xml.coverpages.org/wap-wml.html
http://www.w3.org/TR/REC-xml/

What s a JSP Page?

134

A Simple JSP Page Example

The web page in Figure 5-1 is a form that allows you to select a locale and displays the date in a
manner appropriate to the locale.

©) Localized Dates - Mozilla Firefox |;|E|r5_—<|
File Edit Miew History Bookmarks Tools Help

@ - - @ i ||_| hittp:fflocalhost: 2080/ date findex. jsp |‘| [}_i v| 4\|
Locale: | Lithuanian {Lithuanis) ~ |[Get Date

Date: Prmadienis, 2007, Liepos 20

Dane [/]

FIGURE5-1 Localized Date Form

The source code for this example is in the tut-install/ javaeetutorial5/examples/web/date/
directory. The JSP page, index. jsp, appears below; it is a typical mixture of static HTML
markup and JSP elements. If you have developed web pages, you are probably familiar with the
HTML document structure statements (<head>, <body>, and so on) and the HTML statements
that create a form (<form>) and a menu (<select>).

The lines in bold in the example code contain the following types of JSP constructs:

= A page directive (<%@page . .. %>) sets the content type returned by the page.
= Tag library directives (<%@taglib ... %>) import custom tag libraries.

= jsp:useBean is a standard element that creates an object containing a collection of locales
and initializes an identifier that points to that object.

= JSP expression language expressions (${ }) retrieve the value of object properties. The
values are used to set custom tag attribute values and create dynamic content.

= Custom tags (see Chapter 8, “Custom Tags in JSP Pages”) set a variable (c: set), iterate over
a collection of locale names (c: forEach), and conditionally insert HTML text into the
response (c:if, c:choose, c:when, c:otherwise).

= jsp:setProperty is another standard element that sets the value of an object property.

= A function (f:equals) tests the equality of an attribute and the current item of a collection.
(A built-in == operator is usually used to test equality.)

Here is the JSP page:

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core

The Java EE 5 Tutorial « October 2008

What s a JSP Page?

prefix="c" %>
<%@ taglib uri="/functions" prefix="f" %>
<html>
<head><title>Localized Dates</title></head>
<body bgcolor="white">
<jsp:useBean id="locales" scope="application"
class="mypkg.MyLocales"/>

<form name="localeForm" action="index.jsp" method="post">
<c:set var="selectedLocaleString" value="${param.locale}" />
<c:set var="selectedFlag"
value="${'empty selectedLocaleString}" />
Locale:
<select name=locale>
<c:forEach var="localeString" items="${locales.localeNames}" >
<c:choose>
<c:when test="${selectedFlag}">
<c:choose>
<c:when
test="${f:equals(selectedLocaleString, localeString)}"
<option selected>${localeString}</option>
</c:when>
<c:otherwise>
<option>${localeString}</option>
</c:otherwise>
</c:choose>
</c:when>
<c:otherwise>
<option>${localeString}</option>
</c:otherwise>
</c:choose>
</c:forEach>
</select>
<input type="submit" name="Submit" value="Get Date">
</form>

<c:if test="${selectedFlag}" >
<jsp:setProperty name="locales"
property="selectedLocaleString"
value="${selectedLocaleString}" />
<jsp:useBean id="date" class="mypkg.MyDate"/>
<jsp:setProperty name="date" property="locale"
value="${locales.selectedLocale}"/>
Date: ¢${date.date}</c:if>
</body>
</html>

Chapter5 - JavaServer Pages Technology

>

135

The Example JSP Pages

To deploy the date application with NetBeans IDE, follow these steps:
1. Start the Application Server.

2. InNetBeans IDE, select File—Open Project.

3. Inthe Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/
4. Select the date folder.
5. Select the Open as Main Project check box.
6. Click Open Project.
7. Inthe Projects tab, right-click the date project, and select Undeploy and Deploy.

To deploy the date application with the Ant tool, follow these steps:

1. Inaterminal window, go to tut-install/ javaeetutorial5/examples/web/date/.

2. Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/ javaeetutorial5/examples/web/date/build/ directory, and create a WAR
file.

3. Start the Application Server.
4. Type ant deploy.

To run the example, do the following:

1. Set the character encoding in your browser to UTF-8.
2. Open your browser to http://localhost:8080/date.

3. Youwill see a combo box whose entries are locales. Select alocale and click Get Date. You
will see the date expressed in a manner appropriate for that locale.

Some of the characters might not display properly if you don’t have the appropriate language
files installed on your machine. Consult the user guide or online help for your operating system
to determine how you can install these language files.

The Example JSP Pages

136

To illustrate JSP technology, this chapter rewrites each servlet in the Duke’s Bookstore
application introduced in “The Example Servlets” on page 100 as a JSP page (see Table 5-1).

The Java EE 5 Tutorial « October 2008

The Example JSP Pages

TABLE5-1 Duke’s Bookstore Example JSP Pages

Function

JSP Pages

Enter the bookstore.

Create the bookstore banner.

Browse the books offered for sale.

Add abook to the shopping cart.

Get detailed information on a specific book.
Display the shopping cart.

Remove one or more books from the shopping cart.
Buy the books in the shopping cart.

Receive an acknowledgment for the purchase.

bookstore.jsp

banner.jsp

bookcatalog.jsp
bookcatalog. jsp and bookdetails.jsp
bookdetails.jsp

bookshowcart. jsp

bookshowcart. jsp

bookcashier.jsp

bookreceipt.jsp

The data for the bookstore application is still maintained in a database and is accessed through
tut-install/ javaeetutorial5s/examples/web/bookstore2/src/java/com/sun/bookstore2/database
However, the JSP pages access BookDBAO through the JavaBeans component

tut-install/ javaeetutorial5/examples/web/bookstore2/src/java/com/sun/bookstore2/database
This class allows the JSP pages to use JSP elements designed to work with JavaBeans

components (see “JavaBeans Component Design Conventions” on page 167).

The implementation of the database bean follows. The bean has two instance variables: the

current book and the data access object.

package database;

public class BookDB {
private String bookId = "0"
private BookDBAO database = null;

public BookDB () throws Exception {
}

public void setBookId(String bookId) {

this.bookId = bookId;
}

public void setDatabase(BookDAO database) {

this.database = database;
}
public Book getBook()

throws Exception {

return (Book)database.getBook(bookId);

Chapter5 - JavaServer Pages Technology

137

The Example JSP Pages

138

This version of the Duke’s Bookstore application is organized along the Model-View-Controller
(MVC) architecture. The MV C architecture is a widely used architectural approach for
interactive applications that distributes functionality among application objects so as to
minimize the degree of coupling between the objects. To achieve this, it divides applications
into three layers: model, view, and controller. Each layer handles specific tasks and has
responsibilities to the other layers:

= The model represents business data, along with business logic or operations that govern
access and modification of this business data. The model notifies views when it changes and
lets the view query the model about its state. It also lets the controller access application
functionality encapsulated by the model. In the Duke’s Bookstore application, the shopping
cart and database access object contain the business logic for the application.

= The view renders the contents of a model. It gets data from the model and specifies how that
data should be presented. It updates data presentation when the model changes. A view also
forwards user input to a controller. The Duke’s Bookstore JSP pages format the data stored
in the session-scoped shopping cart and the page-scoped database bean.

m The controller defines application behavior. It dispatches user requests and selects views for
presentation. It interprets user inputs and maps them into actions to be performed by the
model. In a web application, user inputs are HT'TP GET and POST requests. A controller
selects the next view to display based on the user interactions and the outcome of the model
operations. In the Duke’s Bookstore application, the Dispatcher servlet is the controller. It
examines the request URL, creates and initializes a session-scoped JavaBeans component
(the shopping cart), and dispatches requests to view JSP pages.

Note - When employed in a web application, the MV C architecture is often referred to as a
Model-2 architecture. The bookstore example discussed in Chapter 4, “Java Servlet
Technology,” which intermixes presentation and business logic, follows what is known as a
Model-1 architecture. The Model-2 architecture is the recommended approach to designing
web applications.

In addition, this version of the application uses several custom tags from the JavaServer Pages
Standard Tag Library (JSTL), described in Chapter 7, “JavaServer Pages Standard Tag Library”:

m c:if, c:choose, c:when,and c:otherwise for flow control

= c:set for setting scoped variables

= c:urlforencoding URLs

= fmt:message, fmt: formatNumber, and fmt: formatDate for providing locale-sensitive

messages, numbers, and dates

Custom tags are the preferred mechanism for performing a wide variety of dynamic processing
tasks, including accessing databases, using enterprise services such as email and directories, and
implementing flow control. In earlier versions of JSP technology, such tasks were performed
with JavaBeans components in conjunction with scripting elements (discussed in Chapter 9,

The Java EE 5 Tutorial « October 2008

The Example JSP Pages

“Scripting in JSP Pages”). Although still available in JSP 2.0 technology, scripting elements tend
to make JSP pages more difficult to maintain because they mix presentation and logic,
something that is discouraged in page design. Custom tags are introduced in “Using Custom
Tags” on page 172 and described in detail in Chapter 8, “Custom Tags in JSP Pages.”

Finally, this version of the example contains an applet to generate a dynamic digital clock in the
banner. See “Including an Applet” on page 176 for a description of the JSP element that
generates HTML for downloading the applet.

To deploy and run the application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

[\®)

. In NetBeans IDE, select File—Open Project.

et

In the Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/
4. Select the bookstore2 folder.
Select the Open as Main Project check box and the Open Required Projects check box.
Click Open Project.
In the Projects tab, right-click the bookstore2 project, and select Undeploy and Deploy.
To run the application, open the bookstore URL
http://localhost:8080/bookstore2/books/bookstore.

To deploy and run the application using Ant, follow these steps:

1. Inaterminal window, go to tut-install/ javaeetutorial5/examples/web/bookstore2/.

N

. Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/ javaeetutorial5/examples/web/bookstore2/build/ directory, and create a
WAR file and copy it to the
tut-install/ javaeetutorial5/examples/web/bookstore2/dist/ directory.

3. Start the Application Server.

4. Perform all the operations described in “Creating a Data Source in the Application Server”
on page 98.

o

To deploy the example, type ant deploy. The deploy target outputs a URL for running the
application. Ignore this URL, and instead use the one shown in the next step.

6. To run the application, open the bookstore URL
http://localhost:8080/bookstore2/books/bookstore.

Chapter5 - JavaServer Pages Technology 139

The Example JSP Pages

140

To learn how to configure the example, refer to the deployment descriptor (the web. xm1 file),
which includes the following configurations:

A display-name element that specifies the name that tools use to identify the application.
A context-param element that specifies the JSTL resource bundle base name.

A listener element that identifies the ContextListener class used to create and remove
the database access.

A servlet element that identifies the Dispatcher servlet instance.

A setof servlet-mapping elements that map Dispatcher to URL patterns for each of the
JSP pages in the application.

Nested inside a jsp-config element are two jsp-property-group elements, which define
the preludes and coda to be included in each page. See “Setting Properties for Groups of JSP
Pages” on page 179 for more information.

Figure 5-2 shows the bookcatalog. jsp page from the Duke’s Bookstore application. This page
displays a list of all the books that are available for purchase.

The Java EE 5 Tutorial « October 2008

The Example JSP Pages

) Duke’s Bookstore - Mozilla Firefox
File Edit Miew History Bookmarks Tools Help

@l - - @ m ||_| ocalhost:8080/bookstore2/books bookcatalog?add= i ‘: D‘| '_'| fullal:

Duke's E* Bookstore

monday, July 30, 2007 4:42:42 PM

Please choose fir'om owr selections:

My Early Years: Growing up on *7
by Duke
Web Servers for Fun and Profit

by Jeavas
Web Components for Web Developers

by Webstar Masterson

From Oalk to Java: The Revolution of a Language

by Kevin Novation

Java Intenmnediate Bytecodes

by Jamas Sosling

The Green Project: Programming for Conswmner Devices
by Ban Thrilled

Dule: A Biography of the Java Evangelist
by Jizad Tru

Clapyright © 2003-2007 Sun Micragystems, Ine.

$30.75 _Add to Cart
$40.75 _Add to Cart
$27.75 _Add to Cart
e — $10.75 _Addto Cart
$30.95 _Add to Cart
$30.00 _Add to Cart

4500 Addto Cart

Applet comysunfbookstore2clockDigitalClock started

FIGURE5-2 Book Catalog

See “Troubleshooting Duke's Bookstore Database Problems” on page 102 for help with
diagnosing common problems related to the database server. If the messages in your pages
appear as strings of the form ??? Key ??7?, the likely cause is that you have not provided the

correct resource bundle base name as a context parameter.

Chapter5 - JavaServer Pages Technology

141

The Life Cycle of a JSP Page

The Life Cycle of a JSP Page

142

A JSP page services requests as a servlet. Thus, the life cycle and many of the capabilities of JSP
pages (in particular the dynamic aspects) are determined by Java Servlet technology. You will
notice that many sections in this chapter refer to classes and methods described in Chapter 4,
“Java Servlet Technology”

When a request is mapped to a JSP page, the web container first checks whether the JSP page’s
servlet is older than the JSP page. If the servlet is older, the web container translates the JSP page
into a servlet class and compiles the class. During development, one of the advantages of JSP
pages over servlets is that the build process is performed automatically.

Translation and Compilation

During the translation phase each type of data in a JSP page is treated differently. Static data is
transformed into code that will emit the data into the response stream. JSP elements are treated
as follows:

= Directives are used to control how the web container translates and executes the JSP page.

= Scripting elements are inserted into the JSP page’s servlet class. See Chapter 9, “Scripting in
JSP Pages,” for details.

= Expression language expressions are passed as parameters to calls to the JSP expression
evaluator.

® jsp:[set|get]Property elements are converted into method calls to JavaBeans
components.

® jsp:[include|forward]elements are converted into invocations of the Java Servlet API.
= The jsp:plugin element is converted into browser-specific markup for activating an applet.
= Custom tags are converted into calls to the tag handler that implements the custom tag.

In the Application Server, the source for the servlet created from a JSP page named pageName is
in this file:

domain-dir/generated/jsp/j2ee-modules/ WAR-NAME/pageName jsp.java

For example, the source for the index page (named index. jsp) for the date localization
example discussed at the beginning of the chapter would be named:

domain-dir/generated/jsp/j2ee-modules/date/index jsp.java

Both the translation and the compilation phases can yield errors that are observed only when
the page is requested for the first time. If an error is encountered during either phase, the server
will return JasperException and a message that includes the name of the JSP page and the line
where the error occurred.

The Java EE 5 Tutorial « October 2008

The Life Cycle of a JSP Page

After the page has been translated and compiled, the JSP page’s servlet (for the most part)
follows the servlet life cycle described in “Servlet Life Cycle” on page 102:

1. Ifaninstance of the JSP page’s servlet does not exist, the container:

a. Loads the JSP page’s servlet class
b. Instantiates an instance of the servlet class
c. Initializes the servlet instance by calling the jspInit method

2. The container invokes the _jspService method, passing request and response objects.

If the container needs to remove the JSP page’s servlet, it calls the jspDestroy method.

Execution

You can control various JSP page execution parameters by using page directives. The directives
that pertain to buffering output and handling errors are discussed here. Other directives are
covered in the context of specific page-authoring tasks throughout the chapter.

Buffering

When a JSP page is executed, output written to the response object is automatically buffered.
You can set the size of the buffer using the following page directive:

<%@ page buffer="none|xxxkb" %>

A larger buffer allows more content to be written before anything is actually sent back to the
client, thus providing the JSP page with more time to set appropriate status codes and headers
or to forward to another web resource. A smaller buffer decreases server memory load and
allows the client to start receiving data more quickly.

Handling JSP Page Errors

Any number of exceptions can arise when a JSP page is executed. To specify that the web
container should forward control to an error page if an exception occurs, include the following
page directive at the beginning of your JSP page:

<%@ page errorPage="file-name" %>

The Duke’s Bookstore application page
tut-install/ javaeetutorial5/examples/web/bookstore2/web/template/preludeErrorPage. jspf
contains the directive:

<%@ page errorPage="errorpage.jsp"%>

The following page directive at the beginning of
tut-install/ javaeetutorial5/examples/web/bookstore2/web/error/errorpage.jsp
indicates that it is serving as an error page:

Chapter5 - JavaServer Pages Technology 143

Creating Static Content

n
%>

<%@ page isErrorPage="true
This directive makes an object of type javax.servlet.jsp.ErrorData available to the error page so
that you can retrieve, interpret, and possibly display information about the cause of the
exception in the error page. You access the error data object in an EL (see “Unified Expression
Language” on page 146) expression by way of the page context. Thus,
${pageContext.errorData.statusCode} retrieves the status code, and
${pageContext.errorData.throwable} retrieves the exception. You can retrieve the cause of
the exception using this expression:

${pageContext.errorData.throwable.cause}

For example, the error page for Duke’s Bookstore is as follows:

<%@ page isErrorPage="true" %>

taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c"

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt"

prefix="fmt" %>

<html>

<head>

<title><fmt:message key="ServerError"/></title>

</head>

<body bgcolor="white">

<h3>

<fmt:message key="ServerError"/>

</h3>

<p>

: ${pageContext.errorData.throwable.cause}

</body>

</html>

<%l

%>

Note - You can also define error pages for the WAR that contains a JSP page. If error pages are
defined for both the WAR and a JSP page, the JSP page’s error page takes precedence.

Creating Static Content

144

You create static content in a JSP page simply by writing it as if you were creating a page that
consisted only of that content. Static content can be expressed in any text-based format, such as
HTML, Wireless Markup Language (WML), and XML. The default format is HTML. If you
want to use a format other than HTML, at the beginning of your JSP page you include a page
directive with the contentType attribute set to the content type. The purpose of the
contentType directive is to allow the browser to correctly interpret the resulting content. So if
you wanted a page to contain data expressed in WML, you would include the following
directive:

The Java EE 5 Tutorial « October 2008

http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/ErrorData.html

Creating Dynamic Content

<%@ page contentType="text/vnd.wap.wml"%>

A registry of content type names is kept by the IANA at
http://www.iana.org/assignments/media-types/.

Response and Page Encoding

You also use the contentType attribute to specify the encoding of the response. For example,
the date application specifies that the page should be encoded using UTF-8, an encoding that
supports almost all locales, using the following page directive:

<%@ page contentType="text/html; charset=UTF-8" %>
If the response encoding weren't set, the localized dates would not be rendered correctly.

To set the source encoding of the page itself, you would use the following page directive:

<%@ page pageEncoding="UTF-8" %>

You can also set the page encoding of a set of JSP pages. The value of the page encoding varies
depending on the configuration specified in the JSP configuration section of the web
application deployment descriptor (see “Declaring Page Encodings” on page 181).

Creating Dynamic Content

You create dynamic content by accessing Java programming language object properties.

Using Objects within JSP Pages

You can access a variety of objects, including enterprise beans and JavaBeans components,
within a JSP page. JSP technology automatically makes some objects available, and you can also
create and access application-specific objects.

Using Implicit Objects

Implicit objects are created by the web container and contain information related to a particular
request, page, session, or application. Many of the objects are defined by the Java servlet
technology underlying JSP technology and are discussed at length in Chapter 4, “Java Servlet
Technology” The section “Implicit Objects” on page 162 explains how you access implicit
objects using the JSP expression language.

Chapter5 - JavaServer Pages Technology 145

http://www.iana.org/assignments/media-types/

Unified Expression Language

Using Application-Specific Objects

When possible, application behavior should be encapsulated in objects so that page designers
can focus on presentation issues. Objects can be created by developers who are proficient in the
Java programming language and in accessing databases and other services. The main way to
create and use application-specific objects within a JSP page is to use JSP standard tags
(discussed in “JavaBeans Components” on page 167) to create JavaBeans components and set
their properties, and EL expressions to access their properties. You can also access JavaBeans
components and other objects in scripting elements, which are described in Chapter 9,
“Scripting in JSP Pages”

Using Shared Objects

The conditions affecting concurrent access to shared objects (described in “Controlling
Concurrent Access to Shared Resources” on page 106) apply to objects accessed from JSP pages
that run as multithreaded servlets. You can use the following page directive to indicate how a
web container should dispatch multiple client requests:

n
%>

<%@ page isThreadSafe="true|false

When the isThreadSafe attribute is set to true, the web container can choose to dispatch
multiple concurrent client requests to the JSP page. This is the default setting. If using true, you
must ensure that you properly synchronize access to any shared objects defined at the page
level. This includes objects created within declarations, JavaBeans components with page scope,
and attributes of the page context object (see “Implicit Objects” on page 162).

If isThreadSafe is set to false, requests are dispatched one at a time in the order they were
received, and access to page-level objects does not have to be controlled. However, you still
must ensure that access is properly synchronized to attributes of the application or session
scope objects and to JavaBeans components with application or session scope. Furthermore, it
is not recommended to set isThreadSafe to false. The JSP page’s generated servlet will
implement the javax.servlet.SingleThreadModel interface, and because the Servlet 2.4
specification deprecates SingleThreadModel, the generated servlet will contain deprecated
code.

Unified Expression Language

146

The primary new feature of JSP 2.1 is the unified expression language (unified EL), which
represents a union of the expression language offered by JSP 2.0 and the expression language
created for JavaServer Faces technology (see Chapter 10, “JavaServer Faces Technology”)
version 1.0.

The expression language introduced in JSP 2.0 allows page authors to use simple expressions to
dynamically read data from JavaBeans components. For example, the test attribute of the
following conditional tag is supplied with an EL expression that compares the number of items
in the session-scoped bean named cart with 0.

The Java EE 5 Tutorial « October 2008

Unified Expression Language

<c:if test="${sessionScope.cart.numberOfItems > 0}">
</c:if>

As explained in “The Life Cycle of a JSP Page” on page 142, JSP supports a simple
request/response life cycle, during which a page is executed and the HTML markup is rendered
immediately. Therefore, the simple, read-only expression language offered by JSP 2.0 was well
suited to the needs of JSP applications.

JavaServer Faces technology, on the other hand, features a multiphase life cycle designed to
support its sophisticated Ul component model, which allows for converting and validating
component data, propagating component data to objects, and handling component events. To
facilitate these functions, JavaServer Faces technology introduced its own expression language
that included the following functionality:

= Deferred evaluation of expressions
= The ability to set data as well as get data
= The ability to invoke methods

See “Using the Unified EL to Reference Backing Beans” on page 312 for more information on
how to use the unified EL in JavaServer Faces applications.

These two expression languages have been unified for a couple reasons. One reason is so that
page authors can mix JSP content with JavaServer Faces tags without worrying about conflicts
caused by the different life cycles these technologies support. Another reason is so that other
JSP-based technologies could make use of the additional features similarly to the way JavaServer
Faces technology uses them. In fact, although the standard JSP tags and static content continue
to use only those features present in JSP 2.0, authors of JSP custom tags can create tags that take
advantage of the new set of features in the unified expression language.

To summarize, the new, unified expression language allows page authors to use simple
expressions to perform the following tasks:

= Dynamically read application data stored in JavaBeans components, various data structures,
and implicit objects

= Dynamically write data, such as user input into forms, to JavaBeans components
= Invoke arbitrary static and public methods

= Dynamically perform arithmetic operations

Chapter5 - JavaServer Pages Technology 147

Unified Expression Language

The unified EL also allows custom tag developers to specify which of the following kinds of
expressions that a custom tag attribute will accept:

= mmediate evaluation expressions or deferred evaluation expressions. An immediate
evaluation expression is evaluated immediately by the JSP engine. A deferred evaluation
expression can be evaluated later by the underlying technology using the expression
language.

® Value expression or method expression. A value expression references data, whereas a
method expression invokes a method.

= Rvalue expression or Lvalue expression. An rvalue expression can only read a value, whereas
an lvalue expression can both read and write that value to an external object.

Finally, the unified EL also provides a pluggable API for resolving expressions so that
application developers can implement their own resolvers that can handle expressions not
already supported by the unified EL.

This section gives an overview of the unified expression language features by explaining the
following topics:

“Immediate and Deferred Evaluation Syntax” on page 148
“Value and Method Expressions” on page 150
“Defining a Tag Attribute Type” on page 156
“Deactivating Expression Evaluation” on page 157
“Literal Expressions” on page 158

“Resolving Expressions” on page 160

“Implicit Objects” on page 162

“Operators” on page 163

“Reserved Words” on page 163

“Examples of EL Expressions” on page 164
“Functions” on page 165

Immediate and Deferred Evaluation Syntax

The unified EL supports both immediate and deferred evaluation of expressions. Immediate
evaluation means that the JSP engine evaluates the expression and returns the result
immediately when the page is first rendered. Deferred evaluation means that the technology
using the expression language can employ its own machinery to evaluate the expression
sometime later during the page’s life cycle, whenever it is appropriate to do so.

Those expressions that are evaluated immediately use the ${} syntax, which was introduced
with the JSP 2.0 expression language. Expressions whose evaluation is deferred use the #{}
syntax, which was introduced by JavaServer Faces technology.

Because of its multiphase life cycle, JavaServer Faces technology uses deferred evaluation
expressions. During the life cycle, component events are handled, data is validated, and other

148 The Java EE 5 Tutorial « October 2008

Unified Expression Language

tasks are performed, all done in a particular order. Therefore, it must defer evaluation of
expressions until the appropriate point in the life cycle.

Other technologies using the unified EL might have different reasons for using deferred
expressions.

Immediate Evaluation

All expressions using the ${} syntax are evaluated immediately. These expressions can only be
used within template text or as the value of a JSP tag attribute that can accept runtime
expressions.

The following example shows a tag whose value attribute references an immediate evaluation
expression that gets the total price from the session-scoped bean named cart:

<fmt:formatNumber value="${sessionScope.cart.total}"/>

The JSP engine evaluates the expression, ${sessionScope.cart.total}, converts it, and passes
the returned value to the tag handler.

Immediate evaluation expressions are always read-only value expressions. The expression
shown above can only get the total price from the cart bean; it cannot set the total price.

Deferred Evaluation

Deferred evaluation expressions take the form #{expr} and can be evaluated at other phases of
a page life cycle as defined by whatever technology is using the expression. In the case of
JavaServer Faces technology, its controller can evaluate the expression at different phases of the
life cycle depending on how the expression is being used in the page.

The following example shows a JavaServer Faces inputText tag, which represents a text field
component into which a user enters a value. The inputText tag’s value attribute references a
deferred evaluation expression that points to the name property of the customer bean.

<h:inputText id="name" value="#{customer.name}" />

For an initial request of the page containing this tag, the JavaServer Faces implementation
evaluates the #{customer.name} expression during the render response phase of the life cycle.
During this phase, the expression merely accesses the value of name from the customer bean, as
is done in immediate evaluation.

For a postback, the JavaServer Faces implementation evaluates the expression at different
phases of the life cycle, during which the value is retrieved from the request, validated, and
propagated to the customer bean.

As shown in this example, deferred evaluation expressions can be value expressions that can be
used to both read and write data. They can also be method expressions. Value expressions (both
immediate and deferred) and method expressions are explained in the next section.

Chapter5 - JavaServer Pages Technology 149

Unified Expression Language

150

Value and Method Expressions

The unified EL defines two kinds of expressions: value expressions and method expressions.
Value expressions can either yield a value or set a value. Method expressions reference methods
that can be invoked and can return a value.

Value Expressions

Value expressions can be further categorized into rvalue and Ivalue expressions. Rvalue
expressions are those that can read data, but cannot write it. Lvalue expressions can both read
and write data.

All expressions that are evaluated immediately use the ${} delimiters and are always rvalue
expressions. Expressions whose evaluation can be deferred use the #{} delimiters and can act as
both rvalue and Ivalue expressions. Consider these two value expressions:

<taglib:tag value="${customer.name}" />
<taglib:tag value="#{customer.name}" />

The former uses immediate evaluation syntax, whereas the latter uses deferred evaluation
syntax. The first expression accesses the name property, gets its value, and the value is added to
the response and rendered on the page. The same thing can happen with the second expression.
However, the tag handler can defer the evaluation of this expression to a later time in the page
life cycle, if the technology using this tag allows it.

In the case of JavaServer Faces technology, the latter tag’s expression is evaluated immediately
during an initial request for the page. In this case, this expression acts as an rvalue expression.
During a postback, this expression can be used to set the value of the name property with user
input. In this situation, the expression acts as an Ivalue expression.

Referencing Objects Using Value Expressions

Both rvalue and Ivalue expressions can refer to the following objects and their properties or
attributes:

JavaBeans components
Collections

Java SE enumerated types
Implicit objects

See “Implicit Objects” on page 162 for more detail on the implicit objects available with JSP
technology.

To refer to these objects, you write an expression using a variable name with which you created
the object. The following expression references a JavaBeans component called customer.

${customer}

The Java EE 5 Tutorial « October 2008

Unified Expression Language

The web container evaluates a variable that appears in an expression by looking up its value
according to the behavior of PageContext. findAttribute(String), where the String
argument is the name of the variable. For example, when evaluating the expression
${customer}, the container will look for customer in the page, request, session, and application
scopes and will return its value. If customer is not found, null is returned. A variable that
matches one of the implicit objects described in “Implicit Objects” on page 162 will return that
implicit object instead of the variable’s value.

You can alter the way variables are resolved with a custom EL resolver, which is a new feature of
the unified EL. For instance, you can provide an EL resolver that intercepts objects with the
name customer, so that ${customer} returns a value in the EL resolver instead. However, you
cannot override implicit objects in this way. See “EL Resolvers” on page 161 for more
information on EL resolvers.

You can set the variable name, customer, when you declare the bean. See “Creating and Using a
JavaBeans Component” on page 168 for information on how to declare a JavaBeans component
for use in your JSP pages.

To declare beans in JavaServer Faces applications, you use the managed bean facility. See
“Backing Beans” on page 310 for information on how to declare beans for use in JavaServer
Faces applications.

When referencing an enum constant with an expression, you use a String literal. For example,
consider this Enum class:

public enum Suit {hearts, spades, diamonds, clubs}

To refer to the Suit constant, Suit.hearts with an expression, you use the String literal,
“hearts". Depending on the context, the String literal is converted to the enum constant
automatically. For example, in the following expression in which mySuit is an instance of Suit,
"hearts"is first converted to a Suit.hearts before it is compared to the instance.

${mySuit == "hearts"}

Referring to Object Properties Using Value Expressions

To refer to properties of a bean or an Enum instance, items of a collection, or attributes of an
implicit object, you use the . or [] notation, which is similar to the notation used by
ECMAScript.

So, if you wanted to reference the name property of the customer bean, you could use either the
expression ${customer.name} or the expression ${customer["name"]}. The part inside the
square brackets is a String literal that is the name of the property to reference.

You can use double or single quotes for the String literal. You can also combine the [] and .
notations, as shown here:

Chapter5 - JavaServer Pages Technology 151

Unified Expression Language

152

${customer.address["street"]}

Properties of an enum can also be referenced in this way. However, as with JavaBeans
component properties, the Enum class’s properties must follow JavaBeans component
conventions. This means that a property must at least have an accessor method called
get<Property> (where <Property> is the name of the property) so that an expression can
reference it.

For example, say you have an Enum class that encapsulates the names of the planets of our
galaxy and includes a method to get the mass of a planet. You can use the following expression
to reference the method getMass of the Planet Enum class:

${myPlanet.mass}

If you are accessing an item in an array or list, you must use either a literal value that can be
coerced to int or the [] notation with an int and without quotes. The following examples could
all resolve to the same item in a list or array, assuming that socks can be coerced to int:

m ¢{customer.orders[1]}
m ${customer.orders.socks}

In contrast, an item in a Map can be accessed using a string literal key; no coercion is required:

${customer.orders["socks"]}

An rvalue expression also refers directly to values that are not objects, such as the result of
arithmetic operations and literal values, as shown by these examples:

m ${"literal"}

= ¢{customer.age + 20}
= ${true}

= ${57}

The unified expression language defines the following literals:
= Boolean: trueand false

= Integer:asin Java

= Floating point: as in Java

= String: with single and double quotes; " is escaped as \",” is escaped as \ ', and \ is escaped as
\\

= Null: null

You can also write expressions that perform operations on an enum constant. For example,
consider the following Enum class:

public enum Suit {club, diamond, heart, spade }

The Java EE 5 Tutorial « October 2008

Unified Expression Language

After declaring an enum constant called mySuit, you can write the following expression to test if
mySuit is spade:

${mySuit == "spade"}

When the EL resolving mechanism resolves this expression it will invoke the value0Of method
of the Enum class with the Suit class and the spade type, as shown here:

mySuit.valueOf(Suit.class, "spade"}

See “JavaBeans Components” on page 167 for more information on using expressions to
reference JavaBeans components and their properties.

Where Value Expressions Can Be Used

Value expressions using the ${} delimiters can be used in the following places:

= In static text
= Inany standard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current output. Here
is an example of an expression embedded in static text:

<some:tag>
some text ${expr} some text

</some:tag>

If the static text appears in a tag body, note that an expression will not be evaluated if the body is
declared to be tagdependent (see “Tags with Attributes” on page 229).

Lvalue expressions can only be used in tag attributes that can accept Ivalue expressions.

Chapter5 - JavaServer Pages Technology 153

Unified Expression Language

154

There are three ways to set a tag attribute value using either an rvalue or Ivalue expression:

= With a single expression construct:
<some:tag value="${expr}"/>
<another:tag value="#{expr}"/>

These expressions are evaluated and the result is coerced to the attribute’s expected type.

= With one or more expressions separated or surrounded by text:
<some:tag value="some${expr}${expr}text${expr}"/>
<another:tag value="some#{expr}#{expr}text#{expr}"/>

These kinds of expression are called a composite expressions. They are evaluated from left to
right. Each expression embedded in the composite expression is coerced to a String and
then concatenated with any intervening text. The resulting String is then coerced to the
attribute’s expected type.

= With text only:

<some:tag value="sometext"/>

This expression is called a literal expression. In this case, the attribute’s St ring value is
coerced to the attribute’s expected type. Literal value expressions have special syntax rules.
See “Literal Expressions” on page 158 for more information. When a tag attribute has an
enum type, the expression that the attribute uses must be a literal expression. For example,
the tag attribute can use the expression "hearts" to mean Suit.hearts. The literal is
coerced to Suit and the attribute gets the value Suit.hearts.

All expressions used to set attribute values are evaluated in the context of an expected type. If
the result of the expression evaluation does not match the expected type exactly, a type
conversion will be performed. For example, the expression ${1.2E4} provided as the value of
an attribute of type float will result in the following conversion:

Float.valueOf("1.2E4").floatValue()

See section 1.18 of the JavaServer Pages 2.1 Expression Language Specification (available from
http://jcp.org/aboutJava/communityprocess/final/jsr245/) for the complete type
conversion rules.

Method Expressions

Another feature of the unified expression language is its support of deferred method
expressions. A method expression is used to invoke an arbitrary public method, which can

The Java EE 5 Tutorial « October 2008

http://jcp.org/aboutJava/communityprocess/final/jsr245/

Unified Expression Language

return a result. A similar feature of the unified EL is functions. Method expressions differ from
functions in many ways. “Functions” on page 165 explains more about the differences between
functions and method expressions.

Method expressions primarily benefit JavaServer Faces technology, but they are available to any
technology that can support the unified expression language. Let’s take a look at how JavaServer
Faces technology employs method expressions.

In JavaServer Faces technology, a component tag represents a Ul component on a page. The
component tag uses method expressions to invoke methods that perform some processing for
the component. These methods are necessary for handling events that the components generate
and validating component data, as shown in this example:

<h:form>
<h:inputText
id="name"
value="#{customer.name}"
validator="#{customer.validateName}"/>
<h:commandButton

id="submit"
action="#{customer.submit}" />
</h:form>

The inputText tag displays a UIInput component as a text field. The validator attribute of
this inputText tag references a method, called validateName, in the bean, called customer. The
TLD (see “Tag Library Descriptors” on page 247) that defines the inputText tag specifies what
signature the method referred to by the validator attribute must have. The same is true of the
customer. submit method referenced by the action attribute of the commandButton tag. The
TLD specifies that the submit method must return an Object instance that specifies which page
to navigate to next after the button represented by the commandButton tagis clicked.

The validation method is invoked during the process validation phase of the life cycle,
whereas the submit method is invoked during the invoke application phase of the life cycle.
Because a method can be invoked during different phases of the life cycle, method expressions
must always use the deferred evaluation syntax.

Similarly to Ivalue expressions, method expressions can use the . and [] operators. For example,
#{object.method} is equivalent to #{object["method"]}. The literal inside the [] is coerced to
Stringand is used to find the name of the method that matches it. Once the method is found, it
is invoked or information about the method is returned.

Chapter5 - JavaServer Pages Technology 155

Unified Expression Language

156

Method expressions can be used only in tag attributes and only in the following ways:

= With a single expression construct, where bean refers to a JavaBeans component and method
refers to a method of the JavaBeans component:

<some:tag value="#{bean.method}"/>

The expression is evaluated to a method expression, which is passed to the tag handler. The
method represented by the method expression can then be invoked later.

= With text only:

<some:tag value="sometext"/>

Method expressions support literals primarily to support action attributes in JavaServer
Faces technology. When the method referenced by this method expression is invoked, it
returns the String literal, which is then coerced to the expected return type, as defined in
the tag’s TLD.

Defining a Tag Attribute Type

As explained in the previous section, all kinds of expressions can be used in tag attributes.
Which kind of expression and how that expression is evaluated (whether immediately or
deferred) is determined by the type attribute of the tag’s definition in the TLD (see “Tag Library
Descriptors” on page 247) file that defines the tag.

If you plan to create custom tags (see Chapter 8, “Custom Tags in JSP Pages”), you need to
specify for each tag in the TLD what kind of expression it accepts. Table 5-2 shows the three
different kinds of tag attributes that accept EL expressions, and gives examples of expressions
they accept and the type definitions of the attributes that must be added to the TLD. You cannot
use #{} syntax for a dynamic attribute, meaning an attribute that accepts
dynamically-calculated values at runtime. Section 2.3.2 of the JavaServer Pages 2.1 specification
refers to these attributes. Neither can you use the ${} syntax for a deferred attribute.

TABLE5-2 Definitions of Tag Attributes That Accept EL Expressions

Attribute Type Example Expression Type Attribute Definition
dynamic "literal" <rtexprvalue>true</rtexprvalue>
${literal} <rtexprvalue>true</rtexprvalue>

The Java EE 5 Tutorial « October 2008

Unified Expression Language

TABLE5-2 Definitions of Tag Attributes That Accept EL Expressions (Continued)
Attribute Type Example Expression Type Attribute Definition

deferred value "literal” <deferred-value>
<type>java.lang.String</type>
</deferred-value>

#{customer.age} <deferred-value>
<type>int</type>
</deferred-value>

deferred method "literal" <deferred-method>
<method-signature>
java.lang.String submit()
</method-signature>
<deferred-method>

#{customer.calcTotal} <deferred-method>
<method-signature>
double calcTotal(int, double)
</method-signature>
</deferred-method>

In addition to the tag attribute types shown in Table 5-2, you can also define an attribute to
accept both dynamic and deferred expressions. In this case, the tag attribute definition contains
both an rtexprvalue definition set to true and either a deferred-value or deferred-method
definition.

Deactivating Expression Evaluation

Because the patterns that identify EL expressions, ${ } and #{ }, were not reserved in the JSP
specifications before JSP 2.0, there might exist applications in which such patterns are intended
to pass through verbatim. To prevent the patterns from being evaluated, you can deactivate EL
evaluation using one of the following methods:

= Escape the #{ or ${ characters in the page.
= Configure the application with a JSP Property Group.
= Configure the page with the page directive.

To escape the #{ or ${ characters in the page, you use the \ character as follows:

some text \#{ some more\${ text
<my:tag someAttribute="sometext\#{more\${text" />

Another way to deactivate EL evaluation is by using a JSP property group to either allow the #{
characters asa String literal using the deferred-syntax-allowed-as-literal subelement, or
to treat all expressions as literals using the el-ignored subelement:

Chapter5 - JavaServer Pages Technology 157

Unified Expression Language

158

<jsp-property-group>
<deferred-syntax-allowed-as-literal>
true
</deferred-syntax-allowed-as-literal>
</jsp-property-group>

or

<jsp-property-group>
<el-ignored>true</el-ignored>
</jsp-property-group>

Finally, you can configure the page with the page directive to either accept the #{ characters as
String literals with the deferredSyntaxAllowedAsLiteral attribute, or to ignore all EL
expressions using the isELIgnored attribute:

"
%>

<%@page ... deferredSyntaxAllowedAsLiteral="true

or
<%@ page isELIgnored ="true" %>

The valid values of these attributes are true and false. If isELIgnored is true, EL expressions
are ignored when they appear in static text or tag attributes. If it is false, EL expressions are
evaluated by the container only if the attribute has rtexprvalue set to true or the expression is
a deferred expression.

The default value of isELIgnored varies depending on the version of the web application
deployment descriptor. The default mode for JSP pages delivered with a Servlet 2.4 descriptor is
to evaluate EL expressions; this automatically provides the default that most applications want.
The default mode for JSP pages delivered using a descriptor from Servlet 2.3 or before is to
ignore EL expressions; this provides backward compatibility.

Literal Expressions

A literal expression evaluates to the text of the expression, which is of type String. It does not
use the ${} or #{} delimiters.

The Java EE 5 Tutorial « October 2008

Unified Expression Language

If you have a literal expression that includes the reserved ${} or #{} syntax, you need to escape
these characters as follows.

= By creating a composite expression as shown here:
${'${"}exprA}
#{'#{ }exprB}

The resulting values would then be the strings ${exprA} and #{exprB}.

= The escape characters \$ and \# can be used to escape what would otherwise be treated as an
eval-expression:

\${exprA}
\#{exprB}
The resulting values would again be the strings ${exprA} and #{exprB}.

When a literal expression is evaluated, it can be converted to another type. Table 5-3 shows
examples of various literal expressions and their expected types and resulting values.

TABLE5-3 Literal Expressions

Expression Expected Type Result

Hi String Hi

true Boolean Boolean.TRUE
42 int 42

Literal expressions can be evaluated immediately or deferred and can be either value or method
expressions. At what point a literal expression is evaluated depends on where it is being used. If
the tag attribute that uses the literal expression is defined as accepting a deferred value
expression, then the literal expression references a value and is evaluated at a point in the life
cycle that is determined by where the expression is being used and to what it is referring.

In the case of a method expression, the method that is referenced is invoked and returns the
specified String literal. The commandButton tag of the Guess Number application uses a literal
method expression as a logical outcome to tell the JavaServer Faces navigation system which
page to display next. See “Navigation Model” on page 308 for more information on this example.

Chapter5 - JavaServer Pages Technology 159

Unified Expression Language

160

Resolving Expressions

The unified EL introduces a new, pluggable API for resolving expressions. The main pieces of
this API are:

= The ValueExpression class, which defines a value expression
®= TheMethodExpression class, which defines a method expression
® AnELResolver class that defines a mechanism for resolving expressions

m A setof ELResolver implementations, in which each implementation is responsible for
resolving expressions that reference a particular type of object or property

= AnELContext object that saves state relating to EL resolution, holds references to EL
resolvers, and contains context objects (such as JspContext) needed by the underlying
technology to resolve expressions

Most application developers will not need to use these classes directly unless they plan to write
their own custom EL resolvers. Those writing JavaServer Faces custom components will
definitely need to use ValueExpression and MethodExpression. This section details how
expressions are resolved for the benefit of these developers. It does not explain how to create a
custom resolver. For more information on creating custom resolvers, see the article The Unified
Expression Language, Ryan Lubke et al., located at
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html. You can also
refer to “Request Processing” on page 1073, which explains how the Duke’s Bank application uses
a custom resolver.

Process of Expression Evaluation

When a value expression that is included in a page is parsed during an initial request for the
page, a ValueExpression object is created to represent the expression. Then, the
ValueExpression object’s getValue method is invoked. This method will in turn invoke the
getValue method of the appropriate resolver. A similar process occurs during a postback when
setValue is called if the expression is an lvalue expression.

In the case of a method expression, a BeanELResolver is used to find the object that implements
the method to be invoked or queried. Similarly to the process for evaluating value expressions,
when a method expression is encountered, a MethodExpression object is created.
Subsequently, either the invoke or getMethodInfo method of the MethodExpression objectis
called. This method in turn invokes the BeanELResolver object’s getValue method. The
getMethodInfo is mostly for use by tools.

After a resolver completes resolution of an expression, it sets the propertyResolved flag of the
ELContext to true so that no more resolvers are consulted.

The Java EE 5 Tutorial « October 2008

http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

Unified Expression Language

EL Resolvers

At the center of the EL machinery is the extensible ELResolver class. A class that implements
ELResolver defines how to resolve expressions referring to a particular type of object or
property. In terms of the following expression, a BeanELResolver instance is called the first
time to find the base object, employee, which is a JavaBeans component. Once the resolver finds
the object, it is called again to resolve the property, IName of the employee object.

${employee.lName}

The unified EL includes a set of standard resolver implementations. Table 5-4 lists these
standard resolvers and includes example expressions that they can resolve.

TABLE5-4 Standard EL Resolvers

Resolver Example Expression Description

ArrayELResolver ${myArray[1]} Returns the value at index 1 in the array called
myArray

BeanELResolver ${employee.Name} Returns the value of the IName property of the
employee bean

ListELResolver ${myList[5]} Returns the value at index 5 of myList list

MapELResolver ${myMap.someKey} Returns the value stored at the key, someKey, in

the Map, myMap

ResourceBundleELResolver ${myRB.myKey} Returns the message at myKey in the resource
bundle called myRB

Depending on the technology using the unified EL, other resolvers might be available. In
addition, application developers can add their own implementations of ELResolver to support
resolution of expressions not already supported by the unified EL by registering them with an
application.

All of the standard and custom resolvers available to a particular application are collected in a
chain in a particular order. This chain of resolvers is represented by a CompositeELResolver
instance. When an expression is encountered, the CompositeELResolver instance iterates over
the list of resolvers and consults each resolver until it finds one that can handle the expression.

If an application is using JSP technology, the chain of resolvers includes the
ImplicitObjectELResolver and the ScopedAttributeELResolver. These are described in the
following section.

See section JSP 2.9 of the JavaServer Pages 2.1 specification to find out the order in which
resolvers are chained together in a CompositeELResolver instance.

To learn how to create a custom EL resolver, see The Unified Expression Language
(http://java.sun.com/products/jsp/reference/techart/unifiedEL.html).

Chapter5 - JavaServer Pages Technology 161

http://java.sun.com/products/jsp/reference/techart/unifiedEL.html
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

Unified Expression Language

162

Implicit Objects

The JSP expression language defines a set of implicit objects:

= pageContext: The context for the JSP page. Provides access to various objects including:

servletContext: The context for the JSP page’s servlet and any web components
contained in the same application. See “Accessing the Web Context” on page 124.

session: The session object for the client. See “Maintaining Client State” on page 125.

request: The request triggering the execution of the JSP page. See “Getting Information
from Requests” on page 110.

response: The response returned by the JSP page. See “Constructing Responses” on
page 112.

= Inaddition, several implicit objects are available that allow easy access to the following

objects:

= param: Maps a request parameter name to a single value

= paramValues: Maps a request parameter name to an array of values
u

header: Maps a request header name to a single value

headerValues: Maps a request header name to an array of values

cookie: Maps a cookie name to a single cookie

initParam: Maps a context initialization parameter name to a single value

= Finally, there are objects that allow access to the various scoped variables described in
“Using Scope Objects” on page 105.

pageScope: Maps page-scoped variable names to their values
requestScope: Maps request-scoped variable names to their values
sessionScope: Maps session-scoped variable names to their values
applicationScope: Maps application-scoped variable names to their values

JSP 2.1 provides two EL resolvers to handle expressions that reference these objects:
ImplicitObjectELResolver and ScopedAttributeELResolver.

A variable that matches one of the implicit objects is evaluated by ImplicitObjectResolver,
which returns the implicit object. This resolver only handles expressions with a base of nul1.
What this means for the following expression is that the ImplicitObjectResolver resolves the
sessionScope implicit object only. Once the implicit object is found, the MapELResolver
instance resolves the profile attribute because the profile object represents a map.

${sessionScope.profile}

ScopedAttributeELResolver evaluates a single object that is stored in scope. Like

ImplicitObjectELResolver, italso only evaluates expressions with a base of null. This
resolver essentially looks for an object in all of the scopes until it finds it, according to the
behavior of PageContext.findAttribute(String). For example, when evaluating the

The Java EE 5 Tutorial « October 2008

Unified Expression Language

expression ${product}, the resolver will look for product in the page, request, session, and
application scopes and will return its value. If product is not found, null is returned.

When an expression references one of the implicit objects by name, the appropriate object is
returned instead of the corresponding attribute. For example, ${pageContext} returns the
PageContext object, even if there is an existing pageContext attribute containing some other
value.

Operators

In addition to the . and [] operators discussed in “Value and Method Expressions” on

page 150, the JSP expression language provides the following operators, which can be used in

rvalue expressions only:

= Arithmetic: +, - (binary), *, / and div, %and mod, - (unary)

= Logical: and, &&, or, | |, not, !

= Relational: ==, eq, !=, ne, <, 1t, >, gt, <=, ge, >=, le. Comparisons can be made against other
values, or against boolean, string, integer, or floating point literals.

= Empty: The empty operator is a prefix operation that can be used to determine whether a

value is null or empty.

= Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of A.

The precedence of operators highest to lowest, left to right is as follows:

= [].

= () (used to change the precedence of operators)
= - (unary) not ! empty

m * / div % mod

=+ - (binary)

B <><=>= 1t gt le ge
m == l=eq ne

= && and

= || or

=7

Reserved Words

The following words are reserved for the JSP expression language and should not be used as
identifiers.

Chapter5 - JavaServer Pages Technology 163

Unified Expression Language

and or
ne 1t
ge true
instanceof empty

not eq
gt le
false null
div mod

Note that many of these words are not in the language now, but they may be in the future, so

you should avoid using them.

Examples of EL Expressions

Table 5-5 contains example EL expressions and the result of evaluating them.

TABLE5-5 Example Expressions

EL Expression Result
${1 > (4/2)} false
${4.0 >= 3} true
${100.0 == 100} true
${(10*10) ne 100} false
${'a’ < 'b’'} true
${'hip’ gt 'hit’} false
${4 > 3} true
${1.2E4 + 1.4} 12001.4
${3 div 4} 0.75
${10 mod 4} 2

${!empty param.Add}

${pageContext.request.contextPath}

${sessionScope.cart.numberOfItems}

${param['mycom.productId’]}

${header["host"]}

False if the request parameter named Add is null or an empty
string.

The context path.

The value of the numberOfItems property of the
session-scoped attribute named cart.

The value of the request parameter named mycom. productId.

The host.

The Java EE 5 Tutorial « October 2008

Unified Expression Language

TABLE5-5 Example Expressions (Continued)
EL Expression Result
${departments[deptName]} The value of the entry named deptName in the departments
map.

${requestScope[’javax.servlet.forward. The value of the request-scoped attribute named

servlet_path’]} javax.servlet.forward.servlet_path.

#{customer.lName} Gets the value of the property IName from the customer bean
during an initial request. Sets the value of IName during a
postback.

#{customer.calcTotal} The return value of the method calcTotal of the customer
bean.

L]
Functions

The JSP expression language allows you to define a function that can be invoked in an
expression. Functions are defined using the same mechanisms as custom tags (see “Using
Custom Tags” on page 172 and Chapter 8, “Custom Tags in JSP Pages”).

At first glance, functions seem similar to method expressions, but they are different in the
following ways:

= Functions refer to static methods that return a value. Method expressions refer to non-static,
arbitrary public methods on objects.

= Functions are identified statically at translation time, whereas methods are identified
dynamically at runtime.

= Function parameters and invocations are specified as part of an EL expression. A method
expression only identifies a particular method. The invocation of that method is not
specified by the EL expression; rather, it is specified in the tag attribute definition of the
attribute using the method expression, as described in “Defining a Tag Attribute Type” on
page 156.

Using Functions

Functions can appear in static text and tag attribute values.

To use a function in a JSP page, you use a taglib directive to import the tag library containing
the function. Then you preface the function invocation with the prefix declared in the directive.

For example, the date example page index. j sp imports the /functions library and invokes the
function equals in an expression:

<%@ taglib prefix="f" uri="/functions"%>

Chapter5 - JavaServer Pages Technology 165

Unified Expression Language

166

<c:when
test="${f:equals(selectedLocaleString,
localeString)}" >

In this example, the expression referencing the function is using immediate evaluation syntax.
A page author can also use deferred evaluation syntax to reference a function in an expression,
assuming that the attribute that is referencing the function can accept deferred expressions.

Ifan attribute references a function with a deferred expression then the function is not invoked
immediately; rather, it is invoked whenever the underlying technology using the function
determines it should be invoked.

Defining Functions

To define a function, program it as a public static method in a public class. The
mypkg.MyLocales class in the date example defines a function that tests the equality of two
Strings as follows:

package mypkg;
public class MyLocales {

public static boolean equals(String 11, String 12) {
return 11l.equals(12);

}

Then map the function name as used in the EL expression to the defining class and function
signature in a TLD (see Chapter 8, “Custom Tags in JSP Pages”). The following functions. tld
file in the date example maps the equals function to the class containing the implementation of
the function equals and the signature of the function:

<function>
<name>equals</name>
<function-class>mypkg.MyLocales</function-class>
<function-signature>boolean equals(java.lang.String,
java.lang.String)</function-signature>
</function>

No two functions within a tag library can have the same name.

The Java EE 5 Tutorial « October 2008

JavaBeans Components

JavaBeans Components

JavaBeans components are Java classes that can be easily reused and composed together into
applications. Any Java class that follows certain design conventions is a JavaBeans component.

JavaServer Pages technology directly supports using JavaBeans components with standard JSP
language elements. You can easily create and initialize beans and get and set the values of their
properties.

JavaBeans Component Designh Conventions

JavaBeans component design conventions govern the properties of the class and govern the
public methods that give access to the properties.

A JavaBeans component property can be:

= Read/write, read-only, or write-only

= Simple, which means it contains a single value, or indexed, which means it represents an
array of values

A property does not have to be implemented by an instance variable. It must simply be
accessible using public methods that conform to the following conventions:

= For each readable property, the bean must have a method of the form:

PropertyClass getProperty() { ... }

= For each writable property, the bean must have a method of the form:

setProperty(PropertyClass pc) { ... }

In addition to the property methods, a JavaBeans component must define a constructor that
takes no parameters.

The Duke’s Bookstore application JSP pages bookstore. jsp, bookdetails. jsp, catalog.jsp,

and showcart. jsp, all located at

tut-install/ javaeetutorial5/examples/web/bookstore2/web, use the

tut-install/ javaeetutorial5/examples/web/bookstore2/src/java/com/sun/bookstore2/database
JavaBeans component.

BookDB provides a JavaBeans component front end to the access object BookDBAO. The JSP pages
showcart.jspand cashier.jsp access the bean

tut-install/ javaeetutorial5/examples/web/bookstore/src/com/sun/bookstore/cart/ShoppingCa
which represents a user’s shopping cart.

The BookDB bean has two writable properties, bookId and database, and three readable
properties: bookDetails, number0fBooks, and books. These latter properties do not correspond
to any instance variables but rather are a function of the bookId and database properties.

Chapter5 - JavaServer Pages Technology 167

JavaBeans Components

168

package database;
public class BookDB {

private String bookId = "0"

private BookDBAO database = null;

public BookDB () {

}

public void setBookId(String bookId) {

this.bookId = bookId;

}

public void setDatabase(BookDBAO database) {

this.database = database;

}

public Book getBook() throws
BookNotFoundException {
return (Book)database.getBook(bookId);

}

public List getBooks() throws BooksNotFoundException {
return database.getBooks();

}

public void buyBooks(ShoppingCart cart)
throws OrderException {
database.buyBooks(cart);

}

public int getNumberOfBooks() throws BooksNotFoundException {
return database.getNumberOfBooks();

Creating and Using a JavaBeans Component

To declare that your JSP page will use a JavaBeans component, you use a jsp: useBean element.
There are two forms:

<jsp:useBean id="beanName"
class="fully-qualified-classname" scope="scope"/>

and

<jsp:useBean id="beanName"
class="fully-qualified-classname" scope="scope">
<jsp:setProperty .../>

</jsp:useBean>

The second form is used when you want to include jsp: setProperty statements, described in
the next section, for initializing bean properties.

The Java EE 5 Tutorial « October 2008

JavaBeans Components

The jsp:useBean element declares that the page will use a bean that is stored within and is
accessible from the specified scope, which can be application, session, request, or page. If
no such bean exists, the statement creates the bean and stores it as an attribute of the scope
object (see “Using Scope Objects” on page 105). The value of the id attribute determines the
name of the bean in the scope and the identifier used to reference the bean in EL expressions,
other JSP elements, and scripting expressions (see Chapter 9, “Scripting in JSP Pages”). The
value supplied for the class attribute must be a fully qualified class name. Note that beans
cannot be in the unnamed package. Thus the format of the value must be
package-name.class-name.

The following element creates an instance of mypkg.myLocales if none exists, stores it as an
attribute of the application scope, and makes the bean available throughout the application by
the identifier locales:

<jsp:useBean id="locales" scope="application"
class="mypkg.MyLocales"/>

Setting JavaBeans Component Properties

The standard way to set JavaBeans component properties in a JSP page is by using the
jsp:setProperty element. The syntax of the jsp:setProperty element depends on the source
of the property value. Table 5-6 summarizes the various ways to set a property of a JavaBeans
component using the jsp:setProperty element.

Note -

Syntax rules of attribute values used in this table:
1. beanName must be the same as that specified for the id attribute in a useBean element.
2. There must be a setPropName method in the JavaBeans component.

3. paramName must be a request parameter name.

TABLE5-6 Valid Bean Property Assignments from String Values

Value Source Element Syntax

String constant <jsp:setProperty name="beanName"
property="propName" value="string-constant"/>

Request parameter <jsp:setProperty name="beanName"
property="propName" param="paramName"/>

Chapter5 - JavaServer Pages Technology 169

JavaBeans Components

TABLE5-6 Valid Bean Property Assignments from String Values (Continued)

Value Source Element Syntax

Request parameter name that <jsp:setProperty name="beanName"

matches bean property property="propName"/>
<jsp:setProperty name="beanName"
property="*"/>
Expression <jsp:setProperty name="beanName"

property="propName" value="expression"/>
<jsp:setProperty name="beanName"
property="propName" >
<jsp:attribute name="value">
expression
</jsp:attribute>
</jsp:setProperty>

A property set from a constant string or request parameter must have one of the types listed in
Table 5-7. Because constants and request parameters are strings, the web container
automatically converts the value to the property’s type; the conversion applied is shown in the
table.

String values can be used to assign values to a property that has a PropertyEditor class. When
that is the case, the setAsText (String) method is used. A conversion failure arises if the
method throws an I1legalArgumentException.

The value assigned to an indexed property must be an array, and the rules just described apply
to the elements.

You use an expression to set the value of a property whose type is a compound Java
programming language type. The type returned from an expression must match or be castable
to the type of the property.

TABLE5-7 Valid Property Value Assignments from String Values

Property Type Conversion on String Value

Bean Property Uses setAsText (string-literal)

boolean or Boolean Asindicated in java.lang.Boolean.valueOf (String)
byte or Byte Asindicated in java.lang.Byte.valueOf (String)

charor Character Asindicated in java.lang.String.charAt(0)

170

double or Double

int or Integer

Asindicated in java

Asindicated in java

.lang.

.lang.

Double.valueOf (String)

Integer.valueOf(String)

The Java EE 5 Tutorial « October 2008

JavaBeans Components

TABLE5-7 Valid Property Value Assignments from String Values (Continued)
Property Type Conversion on String Value

float or Float Asindicated in java.lang.Float.valueOf(String)
long or Long Asindicated in java.lang.Long.valueOf (String)
short or Short Asindicated in java.lang.Short.valueOf (String)
Object new String (string-literal)

The Duke’s Bookstore application demonstrates how to use the setProperty element to set the
current book from a request parameter in the database bean in
tut-install/ javaeetutorial5/examples/web/bookstore2/web/books/bookdetails. jsp:

<c:set var="bid" value="${param.bookId}"/>
<jsp:setProperty name="bookDB" property="bookId"
value="${bid}" />

The following fragment from the page

tut-install/ javaeetutorial5/examples/web/bookstore2/web/books/bookshowcart.jsp
illustrates how to initialize a BookDB bean with a database object. Because the initialization is
nested in a useBean element, it is executed only when the bean is created.

<jsp:useBean id="bookDB" class="database.BookDB" scope="page">
<jsp:setProperty name="bookDB" property="database"
value="${bookDBAO}" />
</jsp:useBean>

Retrieving JavaBeans Component Properties

The main way to retrieve JavaBeans component properties is by using the unified EL
expressions. Thus, to retrieve a book title, the Duke’s Bookstore application uses the following
expression:

${bookDB.bookDetails.title}

Another way to retrieve component properties is to use the jsp:getProperty element. This
element converts the value of the property into a String and inserts the value into the response
stream:

<jsp:getProperty name="beanName" property="propName"/>

Note that beanName must be the same as that specified for the id attribute in a useBean
element, and there must be a getPropName method in the JavaBeans component. Although the
preferred approach to getting properties is to use an EL expression, the getProperty element is
available if you need to disable expression evaluation.

Chapter5 - JavaServer Pages Technology 171

Using Custom Tags

Using Custom Tags

172

Custom tags are user-defined JSP language elements that encapsulate recurring tasks. Custom
tags are distributed in a tag library, which defines a set of related custom tags and contains the
objects that implement the tags.

Custom tags have the syntax

<prefix:tag attrl="value" ... attrN="value" />
or
<prefix:tag attrl="value" ... attrN="value" >

body</prefix:tag>

where prefix distinguishes tags for a library, tag is the tag identifier, and attrl ... attrNare
attributes that modify the behavior of the tag.

To use a custom tag in a JSP page, you must

= Declare the taglibrary containing the tag
= Make the tag library implementation available to the web application

See Chapter 8, “Custom Tags in JSP Pages,” for detailed information on the different types of
tags and how to implement tags.

Declaring Tag Libraries

To declare that a JSP page will use tags defined in a tag library, you include a taglib directive in
the page before any custom tag from that tag library is used. If you forget to include the taglib
directive for a tag library in a JSP page, the JSP compiler will treat any invocation of a custom tag
from that library as static data and will simply insert the text of the custom tag call into the
response.

<%@ taglib prefix="tt" [tagdir=/WEB-INF/tags/dir | uri=URI] %>

The prefix attribute defines the prefix that distinguishes tags defined by a given taglibrary
from those provided by other tag libraries.

If the tag library is defined with tag files (see “Encapsulating Reusable Content Using Tag Files”
on page 233), you supply the tagdir attribute to identify the location of the files. The value of
the attribute must start with /WEB- INF/tags/. A translation error will occur if the value points
to a directory that doesn’t exist or if it is used in conjunction with the uri attribute.

The uri attribute refers to a URI that uniquely identifies the tag library descriptor (TLD), a
document that describes the tag library (see “Tag Library Descriptors” on page 247).

The Java EE 5 Tutorial « October 2008

Using Custom Tags

Tag library descriptor file names must have the extension . t1d. TLD files are stored in the
WEB- INF directory or subdirectory of the WAR file, or in the META- INF directory or subdirectory
of a taglibrary packaged in a JAR. You can reference a TLD directly or indirectly.

The following taglib directive directly references a TLD file name:

<%@ taglib prefix="tlt" uri="/WEB-INF/iterator.tld"s>

This taglib directive uses a short logical name to indirectly reference the TLD:
<%@ taglib prefix="t1t" uri="/tlt"%>

The iterator example defines and uses a simple iteration tag. The JSP pages use a logical name
to reference the TLD.
To deploy and run the iterator application with NetBeans IDE, follow these steps:

1. InNetBeans IDE, select File—Open Project.
2. Inthe Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/

Select the iterator folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the iterator project, and select Undeploy and Deploy.

NS 9ok w

To run the application, open the bookstore URL http://localhost:8080/iterator.

To deploy and run the iterator application with Ant, follow these steps:

1. Inaterminal window, go to tut-install/ javaeetutorial5/examples/web/iterator/.

2. Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/ javaeetutorial5/examples/web/iterator/build/ directory, and create a
WAR file.

Start the Application Server.
4. Type ant deploy.

5. Torun the example, open your browser to http://localhost:8080/iterator.

Chapter5 - JavaServer Pages Technology 173

Using Custom Tags

174

To learn how to configure the example, refer to the deployment descriptor, which includes the
following configurations:

= Adisplay-name element that specifies the name that tools use to identify the application.

= Nested inside a jsp-config elementis a taglib element, which provides information on a
tag library used by the pages of the application. Inside the taglib element are the
taglib-uri element and the taglib-location element. The taglib-uri element identifies
the logical name of the tag library. The taglib-location element gives the absolute
location or the absolute URI of the tag library.

The absolute URISs for the JSTL library are as follows:

m Core:http://java.sun.com/jsp/jstl/core

= XML: http://java.sun.com/jsp/jstl/xml

= Internationalization: http://java.sun.com/jsp/jstl/fmt
m SQL:http://java.sun.com/jsp/jstl/sql

= Functions: http://java.sun.com/jsp/jstl/functions

When you reference a tag library with an absolute URI that exactly matches the URI declared in
the taglib element of the TLD (see “T'ag Library Descriptors” on page 247), you do not have to
add the taglib element to web. xml; the JSP container automatically locates the TLD inside the

JSTL library implementation.

Including the Tag Library Implementation

In addition to declaring the tag library, you also must make the tag library implementation
available to the web application. There are several ways to do this. Tag library implementations
can be included in a WAR in an unpacked format: Tag files are packaged in the /WEB-INF/tag/
directory, and tag handler classes are packaged in the /WEB-INF/classes/ directory of the
WAR. Taglibraries already packaged into a JAR file are included in the /WEB-INF/1lib/
directory of the WAR. Finally, an application server can load a tag library into all the web
applications running on the server. For example, in the Application Server, the JSTL TLDs and
libraries are distributed in the archive appserv-jstl. jar in as-install/1ib/. This library is
automatically loaded into the classpath of all web applications running on the Application
Server, so you don’t need to add it to your web application.

The iterator taglibrary is implemented with tag handlers. Therefore, its implementation
classes are packaged in the /WEB-INF/classes/ directory.

The Java EE 5 Tutorial « October 2008

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/functions

Reusing Contentin JSP Pages

Reusing Content in JSP Pages

There are many mechanisms for reusing JSP content in a JSP page. Three mechanisms that can
be categorized as direct reuse are discussed here:

m The include directive
= Preludes and codas
= The jsp:include element

An indirect method of content reuse occurs when a tag file is used to define a custom tag that is
used by many web applications. Tag files are discussed in the section “Encapsulating Reusable
Content Using Tag Files” on page 233 in Chapter 8, “Custom Tags in JSP Pages”

The include directive is processed when the JSP page is translated into a servlet class. The effect
of the directive is to insert the text contained in another file (either static content or another JSP
page) into the including JSP page. You would probably use the include directive to include
banner content, copyright information, or any chunk of content that you might want to reuse in
another page. The syntax for the include directive is as follows:

<%@ include file="filename" %>

For example, all the Duke’s Bookstore application pages could include the file banner. jspf,
which contains the banner content, by using the following directive:

<%@ include file="banner.jspf" %>

Another way to do a static include is to use the prelude and coda mechanisms described in
“Defining Implicit Includes” on page 181. This is the approach used by the Duke’s Bookstore
application.

Because you must put an include directive in each file that reuses the resource referenced by
the directive, this approach has its limitations. Preludes and codas can be applied only to the
beginnings and ends of pages. For a more flexible approach to building pages out of content
chunks, see “A Template Tag Library” on page 267.

The jsp:include element is processed when a JSP page is executed. The include action allows
you to include either a static or a dynamic resource in a JSP file. The results of including static
and dynamic resources are quite different. If the resource is static, its content is inserted into the
calling JSP file. If the resource is dynamic, the request is sent to the included resource, the
included page is executed, and then the result is included in the response from the calling JSP
page. The syntax for the jsp:include element is:

<jsp:include page="includedPage" />

The hellol application discussed in “Packaging Web Modules” on page 83 uses the following
statement to include the page that generates the response:

<jsp:include page="response.jsp"/>

Chapter5 - JavaServer Pages Technology 175

Transferring Control to Another Web Component

Transferring Control to Another Web Component

The mechanism for transferring control to another web component from a JSP page uses the
functionality provided by the Java Servlet API as described in “Accessing a Session” on
page 125. You access this functionality from a JSP page by using the jsp: forward element:

<jsp:forward page="/main.jsp" />

Note that if any data has already been returned to a client, the jsp: forward element will fail
with an I1legalStateException.

jsp:paramElement

When an include or forward element is invoked, the original request object is provided to the
target page. If you wish to provide additional data to that page, you can append parameters to
the request object by using the jsp: paramelement:
<jsp:include page="..." >

<jsp:param name="paraml" value="valuel"/>
</jsp:include>

When jsp:include or jsp: forward is executed, the included page or forwarded page will see
the original request object, with the original parameters augmented with the new parameters
and new values taking precedence over existing values when applicable. For example, if the
request has a parameter A=foo and a parameter A=bar is specified for forward, the forwarded
request will have A=bar, foo. Note that the new parameter has precedence.

The scope of the new parameters is the jsp:include or jsp: forward call; that s, in the case of
an jsp:include the new parameters (and values) will not apply after the include.

Including an Applet

176

You can include an applet or a JavaBeans component in a JSP page by using the jsp:plugin
element. This element generates HTML that contains the appropriate
client-browser-dependent construct (<object> or <embed>) that will result in the download of
the Java Plug-in software (if required) and the client-side component, and in the subsequent
execution of any client-side component. The syntax for the jsp:plugin element is as follows:

<jsp:plugin
type="bean|applet"
code="objectCode"
codebase="objectCodebase"
{ align="alignment" }

The Java EE 5 Tutorial « October 2008

Including an Applet

archive="archiveList" }
height="height" }
hspace="hspace" }
jreversion="jreversion" }
name="componentName" }
vspace="vspace" }
width="width" }
nspluginurl="url" }
iepluginurl="url" } >
<jsp:params>
{ <jsp:param name="paramName" value= paramValue" /> }+
</jsp:params> }
{ <jsp:fallback> arbitrary-text </jsp:fallback> }
</jsp:plugin>

e e i e

The jsp:plugin tagis replaced by either an <object> or an <embed> tag as appropriate for the
requesting client. The attributes of the jsp:plugin tag provide configuration data for the
presentation of the element as well as the version of the plug-in required. The nspluginurl and
iepluginurl attributes override the default URL where the plug-in can be downloaded.

The jsp:params element specifies parameters to the applet or JavaBeans component. The
jsp:fallback element indicates the content to be used by the client browser if the plug-in
cannot be started (either because <object> or <embed> is not supported by the client or because
of some other problem).

If the plug-in can start but the applet or JavaBeans component cannot be found or started, a
plug-in-specific message will be presented to the user, most likely a pop-up window reporting a
ClassNotFoundException.

The Duke’s Bookstore page /template/prelude. jspf creates the banner that displays a
dynamic digital clock generated by DigitalClock (see Figure 5-3).

Chapter5 - JavaServer Pages Technology 177

Including an Applet

) Duke’s Bookstore - Mozilla Firefox |;|E|r)_—<|
File Edit Miew History Bookmarks Tools Help

@ - - @ m |IJ http: fflocalhost: 8080/bookstore2 fbooks/bookstore |‘| D‘| 'v| e

Duke's E‘* Bookstore

monday, July 30, 2007 4:41:42 PM

What We're Reading

Web Componants for Weh Developers, talks about how web components can transform
the way vou develop applications for the web. This 12 a must read for any sell respecting web

developer!
Start Shopping
Capyright © 2003-2007 Sun Micragystems, Ine.
Applet comysunfbookstore2jclockDigitalClock started [/]

FIGURE5-3 Duke’s Bookstore with Applet

Here is the jsp:plugin element that is used to download the applet:

<jsp:plugin
type="applet"
code="DigitalClock.class"
codebase="/bookstore2"
jreversion="1.4"
align="center" height="25" width="300"
nspluginurl="http://java.sun.com/j2se/1.4.2/download.html"
iepluginurl="http://java.sun.com/j2se/1.4.2/download.html" >
<jsp:params>
<jsp:param name="language"
value="${pageContext.request.locale.language}" />
<jsp:param name="country"
value="${pageContext.request.locale.country}" />
<jsp:param name="bgcolor" value="FFFFFF" />
<jsp:param name="fgcolor" value="CC0066" />
</jsp:params>
<jsp:fallback>
<p>Unable to start plugin.</p>

178 The Java EE 5 Tutorial « October 2008

Setting Properties for Groups of JSP Pages

</jsp:fallback>

</jsp:plugin>

Setting Properties for Groups of JSP Pages

It is possible to specify certain properties for a group of JSP pages:

Expression language evaluation

Treatment of scripting elements (see “Disabling Scripting” on page 275)
Page encoding

Automatic prelude and coda includes

A JSP property group is defined by naming the group and specifying one or more URL patterns;
all the properties in the group apply to the resources that match any of the URL patterns. Ifa
resource matches URL patterns in more than one group, the pattern that is most specific
applies.

To define a property group in a deployment descriptor using NetBeans IDE, follow these steps:

AN S o o

In NetBeans IDE, expand your project’s folder in the Projects pane.
Expand the Web Pages node and then the WEB-INF node.
Double-click web . xml to open it in the editor pane.

Click Pages at the top of the editor pane.

Click Add JSP Property Group.

In the Add JSP Property Group dialog:

a. Enter a name for the JSP property group in the Display Name field.

b. Entera URL pattern (a regular expression, such as *. jsp) or click Browse to indicate to
which page or set of pages to apply the properties specified by the JSP property group.

c. Click OK.

Instead of performing the preceding steps, you can define a JSP property group by editing the
XML by hand using NetBeans IDE by doing the following:

AR e

Perform steps 1 through 3 in the preceding set of steps.

Click XML at the top of the editor pane.

Include a jsp-config element if the deployment descriptor doesn’t already have one.
Adda jsp-property-group element inside the jsp-config element.

Add a display-name element inside the jsp-property-group element and give it a name.

Addaurl-pattern elementinside the jsp-property-group element and give ita URL
pattern (a regular expression, such as *. jsp).

Chapter5 - JavaServer Pages Technology 179

Setting Properties for Groups of JSP Pages

The following sections discuss the properties and explain how they are interpreted for various
combinations of group properties, individual page directives, and web application deployment
descriptor versions.

Deactivating EL Expression Evaluation

Each JSP page has a default mode for EL expression evaluation. The default value varies
depending on the version of the web application deployment descriptor. The default mode for
JSP pages delivered with a Servlet 2.4 descriptor is to evaluate EL expressions; this automatically
provides the default that most applications want. The default mode for JSP pages delivered
using a descriptor from Servlet 2.3 or before is to ignore EL expressions; this provides backward
compatibility. For tag files (see “Encapsulating Reusable Content Using Tag Files” on page 233),
the default is to always evaluate expressions.

You can override the default mode through the isELIgnored attribute of the page directive in
JSP pages and through the isELIgnored attribute of the tag directive in tag files. You can also
explicitly change the default mode by doing one of the following:

= Ifyou are using the Pages section of the web . xm1 editor pane in NetBeans IDE:

1. Expand the JSP Property Group node.
2. Select the Ignore Expression Language check box.

= Ifyouare editing the web.xml file by hand, add an el-ignored element to the
jsp-property-group element in the deployment descriptor and set it to true.

Table 5-8 summarizes the EL evaluation settings for JSP pages.

TABLE5-8 EL Evaluation Settings for JSP Pages

JSP Configuration Page Directive isELIgnored EL Encountered

Unspecified Unspecified Evaluated if 2.4 web . xml

Ignored if <=2.3 web.xml

false Unspecified Evaluated
true Unspecified Ignored
Overridden by page directive ~ false Evaluated
Overridden by page directive ~ true Ignored

Table 5-9 summarizes the EL evaluation settings for tag files.

180 The Java EE 5 Tutorial « October 2008

Setting Properties for Groups of JSP Pages

TABLE5-9 EL Evaluation Settings for Tag Files

Tag Directive isELIgnored EL Encountered
Unspecified Evaluated
false Evaluated
true Ignored

Declaring Page Encodings

You set the page encoding of a group of JSP pages using the JSP property group configuration in
the deployment descriptor by doing one of the following:

= Ifyou are using the Pages section of the web. xml editor pane in NetBeans IDE:

1. Expand the JSP Property Group node.
2. Enter the page encoding in the Page Encoding field.

= Ifyouare editing the web . xml file by hand, add a page-encoding element to the
jsp-property-group element in the deployment descriptor and set it to one of the valid
character encoding codes, which are the same as those accepted by the pageEncoding
attribute of the page directive.

A translation-time error results if you define the page encoding of a JSP page with one value in
the JSP configuration element and then give it a different value in a pageEncoding directive.

Defining Implicit Includes

You can implicitly include preludes and codas for a group of JSP pages by adding items to the
Include Preludes and Codas lists. Their values are context-relative paths that must correspond
to elements in the web application. When the elements are present, the given paths are
automatically included (as in an include directive) at the beginning and end, respectively, of
each JSP page in the property group. When there is more than one include or coda element in a
group, they are included in the order they appear. When more than one JSP property group
applies to a JSP page, the corresponding elements will be processed in the same order as they
appear in the JSP configuration section.

For example, the Duke’s Bookstore application uses the files /template/prelude.jspf and
/template/coda. jspf to include the banner and other boilerplate in each screen. To add these
files to the Duke’s Bookstore property group using the deployment descriptor, follow these
steps:

1. InNetBeans IDE, expand your project’s folder in the Projects pane.
2. Expand the Web Pages node and then the WEB-INF node.

3. Double-click web. xml to open it in the editor pane.

4. Click Pages at the top of the editor pane.

Chapter5 - JavaServer Pages Technology 181

Setting Properties for Groups of JSP Pages

182

5. Add anew JSP property group if you haven’t already (see “Setting Properties for Groups of
JSP Pages” on page 179) and give it the name bookstore2 and the URL pattern *. jsp.

6. Expand the JSP Property Group node.

7. Click the Browse button to the right of the Include Preludes field to locate the file that you
want to include at the beginning of all pages matching the pattern in the URL pattern field.
In this case, you want the /template/prelude. jspf file.

8. Click the Browse button to the right of the Include Codas field to locate the file that you want
to include at the end of all pages matching the URL pattern. In this case, you want the
/template/coda. jspf file.

Instead of performing the preceding steps, you can add preludes and codas by editing the XML
by hand using NetBeans IDE by doing the following:

1. Perform steps 1 through 3 in the preceding set of steps.
2. Click XML at the top of the editor pane.

3. Add anew]JSP property group (see “Setting Properties for Groups of JSP Pages” on
page 179) and give it the name bookstore2 and URL pattern *. jsp.

4. Addan include-prelude element to the jsp-property-group element and give it the
name of the file to include, in this case, /template/prelude. jspf.

5. Addan include-coda element to the jsp-property-group element and give it the name of
the file to include, in this case, /template/coda. jspf.

Preludes and codas can put the included code only at the beginning and end of each file. For a
more flexible approach to building pages out of content chunks, see “A Template Tag Library”
on page 267.

Eliminating Extra White Space

White space included in the template text of JSP pages is preserved by default. This can have
undesirable effects. For example, a carriage return added after a taglib directive would be
added to the response output as an extra line.

If you want to eliminate the extra white space from the page, you canadd a
trim-directive-whitespaces elementtoa jsp-property-group elementin the deployment
descriptor and set it to true.

Toset the trim-directive-whitespaces element to true using NetBeans 5.5, do the following:

Open the deployment descriptor file in the editor.
Click the Pages button at the top of the editor.
Select a JSP property group.

Select the Trim Directive Whitespaces check box.
Save the deployment descriptor.

MRS

The Java EE 5 Tutorial « October 2008

Further Information about JavaServer Pages Technology

Alternatively, a page author can set the value of the trimDirectiveWhitespaces attribute of the
page directive to true or false. This will override the value specified in the deployment
descriptor.

Custom tag authors can eliminate white space from the output generated by a tag file by setting
the trimDirectiveWhiteSpace attribute of the tag directive to true.

Further Information about JavaServer Pages Technology

For more information on JavaServer Pages technology, see:

= JavaServer Pages 2.0 specification:
http://java.sun.com/products/jsp/download.html#specs

= The JavaServer Pages web site:
http://java.sun.com/products/jsp

= The Unified Expression Language, Ryan Lubke et al.:
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

Chapter5 - JavaServer Pages Technology 183

http://java.sun.com/products/jsp/download.html#specs
http://java.sun.com/products/jsp
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

184

L K R 4 CHAPTER 6

JavaServer Pages Documents

A JSP document is a JSP page written in XML syntax as opposed to the standard syntax
described in Chapter 5, “JavaServer Pages Technology.” Because it is written in XML syntax, a
JSP document is also an XML document and therefore gives you all the benefits oftered by the
XML standard:

= You can author a JSP document using one of the many XML-aware tools on the market,
enabling you to ensure that your JSP document is well-formed XML.

= You can validate the JSP document against a document type definition (DTD).
= You can nest and scope namespaces within a JSP document.
= You can use a JSP document for data interchange between web applications and as part of a

compile-time XML pipeline.

In addition to these benefits, the XML syntax gives the JSP page author less complexity and
more flexibility. For example, a page author can use any XML document as a JSP document.
Also, elements in XML syntax can be used in JSP pages written in standard syntax, allowing a
gradual transition from JSP pages to JSP documents.

This chapter gives you details on the benefits of JSP documents and uses a simple example to
show you how easy it is to create a JSP document.

You can also write tag files in XML syntax. This chapter covers only JSP documents. Writing tag
files in XML syntax will be addressed in a future release of the tutorial.

The Example JSP Document

This chapter uses the Duke’s Bookstore application, version bookstore5, and the books
application to demonstrate how to write JSP pages in XML syntax. The JSP pages of the

bookstore5 application use the JSTL XML tags (see “XML Tag Library” on page 211) to
manipulate the book data from an XML stream. The books application contains the JSP

185

The Example JSP Document

186

document books . j spx, which accesses the book data from the database and converts it into the
XML stream. The bookstore5 application accesses this XML stream to get the book data.

These applications show how easy it is to generate XML data and stream it between web
applications. The books application can be considered the application hosted by the book
warehouse’s server. The bookstore5 application can be considered the application hosted by
the book retailer’s server. In this way, the customer of the bookstore web site sees the list of
books currently available, according to the warehouse’s database.

The source for the Duke’s Bookstore application is located in the
tut-install/ javaeetutorial5/examples/web/bookstore5/ directory, which is created when
you unzip the tutorial bundle (see Chapter 2, “Using the Tutorial Examples”).

To deploy the books application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

b

In NetBeans IDE, select File—Open Project.

@

In the Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/
4. Select the books folder.
5. Select the Open as Main Project check box and the Open Required Projects check box.
6. Click Open Project.
7. Inthe Projects tab, right-click the books project, and select Undeploy and Deploy.

To deploy the books application using the Ant utility, follow these steps:

1. Inaterminal window, go to tut-install/ javaeetutorial5/examples/web/books/.

2. Type ant build. This target will spawn any necessary compilations, copy files to the
tut-install/ javaeetutorial5/examples/web/books/build/ directory, build a WAR file,
and copy the WAR file to the tut-install/ javaeetutorial5/examples/web/books/dist/
directory.

3. To deploy the application, type ant deploy.
To deploy and run the bookstore5 application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

2. InNetBeans IDE, select File—Open Project.
3. Inthe Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/

4. Select the bookstore5 folder.

The Java EE 5 Tutorial « October 2008

The Example JSP Document

5. Select the Open as Main Project check box and the Open Required Projects check box.
6. Click Open Project.
7. Inthe Projects tab, right-click the bookstore5 project, and select Undeploy and Deploy.

8. To run the applications, open the bookstore URL
http://localhost:8080/bookstore5/books/bookstore.

To deploy and run the application using Ant, follow these steps:

1. Inaterminal window, go to tut-install/ javaeetutorial5/examples/web/bookstore5/.

2. Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/ javaeetutorial5/examples/web/bookstore5/build/ directory, and create a
WAR file and copy it to the
tut-install/ javaeetutorial5/examples/web/bookstore5/dist/ directory.

3. Startthe Application Server.

4. Perform all the operations described in “Creating a Data Source in the Application Server”
on page 98.

u

To deploy the example, type ant deploy. The deploy target outputs a URL for running the
application. Ignore this URL, and instead use the one shown in the next step.

6. To run the applications, open the bookstore URL
http://localhost:8080/bookstore5/books/bookstore.

To learn how to configure the bookstore5 example, refer to the web . xml file, which includes the
following configurations:

= Adisplay-name element that specifies the name that tools use to identify the application.
= A context-paramelement that identifies the context path to the XML stream.

= A context-paramelement that specifies the JSTL resource bundle base name.

= Asetofserviet elements that identify the JSP files in the application.

= Asetof servlet-mapping elements that identify aliases to the JSP pages identified by the
servlet elements.

m Nested inside a jsp-config element are two jsp-property-group elements, which define
the preludes and coda to be included in each page. See “Setting JavaBeans Component
Properties” on page 169 for more information.

To learn how to configure the books example, refer to the web. xm file, which includes the
following configurations:

= Adisplay-name element that specifies the name that tools use to identify the application.

m A listener element that identifies the ContextListener class used to create and remove
the database access.

= Aservlet element that identifies the JSP page.

Chapter6 - JavaServer Pages Documents 187

Creating a JSP Document

Creating a

188

m Nested inside a jsp-config elementisa jsp-property-group element, which identifies the
JSP page as an XML document. See “Identifying the JSP Document to the Container” on
page 200 for more information.

JSP Document

A JSP document is an XML document and therefore must comply with the XML standard.
Fundamentally, this means that a JSP document must be well formed, meaning that each start
tag must have a corresponding end tag and that the document must have only one root element.
In addition, JSP elements included in the JSP document must comply with the XML syntax.

Much of the standard JSP syntax is already XML-compliant, including all the standard actions.
Those elements that are not compliant are summarized in Table 6-1 along with the equivalent
elements in XML syntax. As you can see, JSP documents are not much different from JSP pages.
If you know standard JSP syntax, you will find it easy to convert your current JSP pages to XML
syntax and to create new JSP documents.

TABLE6-1 Standard Syntax Versus XML Syntax

Syntax Elements Standard Syntax XML Syntax
Comments <%--.. --%> <loo . o>
Declarations <S! ..%> <jsp:declaration> .. </jsp:declaration>
Directives <%@ include .. %> <jsp:directive.include .. />

<%@Q page .. %> <jsp:directive.page .. />

<%@ taglib .. %> xmlns:prefix="tag library URL"
Expressions <%= ..%> <jsp:expression> .. </jsp:expression>
Scﬁpdem <% ..%> <jsp:scriptlet> .. </jsp:scriptlet>

To illustrate how simple it is to transition from standard syntax to XML syntax, let’s convert a
simple JSP page to a JSP document. The standard syntax version is as follows:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/functions"
prefix="fn" %>
<html>
<head><title>Hello</title></head>
<body bgcolor="white">

<h2>My name is Duke. What is yours?</h2>

The Java EE 5 Tutorial « October 2008

Creating a JSP Document

<form method="get">
<input type="text" name="username" size="25">
<p></p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>
<jsp:useBean id="userNameBean" class="hello.UserNameBean
scope="request"/>
<jsp:setProperty name="userNameBean" property="name"
value="¢${param.username}" />
<c:if test="${fn:length(userNameBean.name) > 0}" >
<%@include file="response.jsp"
</c:if>
</body>
</html>

%>

Here is the same page in XML syntax:

<html

xmlns:c="http://java.sun.com/jsp/jstl/core"

xmlns:fn="http://java.sun.com/jsp/jstl/functions" >

<head><title>Hello</title></head>

<body bgcolor="white" />

<h2>My name is Duke. What is yours?</h2>

<form method="get">
<input type="text" name="username" size="25" />
<p></p>
<input type="submit" value="Submit" />
<input type="reset" value="Reset" />

</form>

<jsp:useBean id="userNameBean" class="hello.UserNameBean"

scope="request"/>
<jsp:setProperty name="userNameBean" property="name"
value="¢${param.username}" />

<c:if test="${fn:length(userNameBean.name) gt 0}" >
<jsp:directive.include="response.jsp" />

</c:if>

</body>

</html>

Asyou can see, a number of constructs that are legal in standard syntax have been changed to
comply with XML syntax:

= The taglib directives have been removed. Tag libraries are now declared using XML
namespaces, as shown in the html element.

= The img and input tags did not have matching end tags and have been made
XML-compliant by the addition of a / to the start tag.

Chapter6 - JavaServer Pages Documents 189

Creating a JSP Document

190

= The>symbol in the EL expression has been replaced with gt.

= The include directive has been changed to the XML-compliant jsp:directive.include
tag.

With only these few small changes, when you save the file with a . j spx extension, this pageis a
JSP document.

Using the example described in “The Example JSP Document” on page 185, the rest of this
chapter gives you more details on how to transition from standard syntax to XML syntax. It
explains how to use XML namespaces to declare tag libraries, include directives, and create
static and dynamic content in your JSP documents. It also describes jsp: root and jsp:output,
two elements that are used exclusively in JSP documents.

Declaring Tag Libraries

This section explains how to use XML namespaces to declare tag libraries.

In standard syntax, the taglib directive declares tag libraries used in a JSP page. Here is an
example of a taglib directive:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

This syntax is not allowed in JSP documents. To declare a tag library in a JSP document, you use
the xmlns attribute, which is used to declare namespaces according to the XML standard:

xmlns:c="http://java.sun.com/jsp/jstl/core"

The value that identifies the location of the tag library can take three forms:

= A plain URI that is a unique identifier for the tag library. The container tries to match it
against any <taglib-uri> elements in the application’s web. xml file or the <uri> element of
tag library descriptors (TLDs) in JAR files in /WEB-INF/lib/ or TLDs under WEB- INF.

= A URN oftheformurn:jsptld:path.
= A URN oftheformurn:jsptagdir:path.

The URN of the form urn: jsptld: path points to one tag library packaged with the application:

xmlns:u="urn:jsptld:/WEB-INF/tlds/my.t1d"

The URN of the form urn: jsptagdir:path must start with /WEB- INF/tags/ and identifies tag
extensions (implemented as tag files) installed in the /WEB-INF/tags/ directory or a
subdirectory of it:

xmlns:u="urn:jsptagdir:/WEB-INF/tags/mytaglibs/"

The Java EE 5 Tutorial « October 2008

Creating a JSP Document

You can include the xmUns attribute in any element in your JSP document, just as you can in an
XML document. This capability has many advantages:

= It follows the XML standard, making it easier to use any XML document as a JSP document.
= Itallows you to scope prefixes to an element and override them.

= Ttallows you to use xmlns to declare other namespaces and not just tag libraries.

The books . j spx page declares the tag libraries it uses with the xmlns attributes in the root
element, books:

<books
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
>

In this way, all elements within the books element have access to these tag libraries.

As an alternative, you can scope the namespaces:
<books>

<jsp:useBean xmlns:jsp="http://java.sun.com/JSP/Page"
id="bookDB"
class="database.BookDB"
scope="page">
<jsp:setProperty name="bookDB"
property="database" value="${bookDBAO}" />
</jsp:useBean>
<c:forEach xmlns:c="http://java.sun.com/jsp/jstl/core"
var="book" begin="0" items="${bookDB.books}">

</c:forEach>
</books>

In this way, the tag library referenced by the jsp prefix is available only to the jsp:useBean
element and its subelements. Similarly, the tag library referenced by the c prefix is only available
to the c: forEach element.

Scoping the namespaces also allows you to override the prefix. For example, in another part of
the page, you could bind the c prefix to a different namespace or tag library. In contrast, the jsp
prefix must always be bound to http://java. sun.com/JSP/Page, the JSP namespace.

Including Directives in a JSP Document

Directives are elements that relay messages to the JSP container and affect how it compiles the
JSP page. The directives themselves do not appear in the XML output.

Chapter6 - JavaServer Pages Documents 191

Creating a JSP Document

192

There are three directives: include, page, and taglib. The taglib directive is covered in the
preceding section.

The jsp:directive.page element defines a number of page-dependent properties and
communicates these to the JSP container. This element must be a child of the root element. Its
syntax is

<jsp:directive.page page-directive-attr-list />

The page-directive-attr-list is the same list of attributes that the <@ page . . .> directive has.
These are described in Chapter 5, “JavaServer Pages Technology.” All the attributes are optional.
Except for the import and pageEncoding attributes, there can be only one instance of each
attribute in an element, but an element can contain more than one attribute.

An example of a page directive is one that tells the JSP container to load an error page when it
throws an exception. You can add this error page directive to the books. jspx page:

<books xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:directive.page errorPage="errorpage.jsp" />

</books>
If there is an error when you try to execute the page (perhaps when you want to see the XML

output of books . jspx), the error page is accessed.

The jsp:directive.include element is used to insert the text contained in another file (either
static content or another JSP page) into the including JSP document. You can place this element
anywhere in a document. Its syntax is:

<jsp:directive.include file="relativeURLspec" />

The XML view of a JSP document does not contain jsp:directive.include elements; rather
the included file is expanded in place. This is done to simplify validation.

Suppose that you want to use an include directive to add a JSP document containing magazine
data inside the JSP document containing the books data. To do this, you can add the following
include directive to books . j spx, assuming that magazines. j spx generates the magazine XML
data.

<jsp:root version="2.0" >

<books ...>

</books>

<jsp:directive.include file="magazine.jspx" />
</jsp:root>

The Java EE 5 Tutorial « October 2008

Creating a JSP Document

Note that jsp: root is required because otherwise books . j spx would have two root elements:
<books>and <magazines>. The output generated from books . j spx will be a sequence of XML
documents: one with <books> and the other with <magazines> as its root element.

The output of this example will not be well-formed XML because of the two root elements, so
the client might refuse to process it. However, it is still a legal JSP document.

In addition to including JSP documents in JSP documents, you can also include JSP pages
written in standard syntax in JSP documents, and you can include JSP documents in JSP pages
written in standard syntax. The container detects the page you are including and parses it as
either a standard syntax JSP page or a JSP document and then places it into the XML view for
validation.

Creating Staticand Dynamic Content

This section explains how to represent static text and dynamic content in a JSP document. You
can represent static text in a JSP document using uninterpreted XML tags or the jsp: text
element. The jsp:text element passes its content through to the output.

If you use jsp: text, all white space is preserved. For example, consider this example using
XML tags:

<books>
<book>
Web Servers for Fun and Profit
</book>
</books>

The output generated from this XML has all white space removed:

<books><book>
Web Servers for Fun and Profit
</book></books>

If you wrap the example XML with a <jsp: text> tag, all white space is preserved. The white
space characters are #x20, #x9, #xD, and #xA.

You can also use jsp: text to output static data that is not well formed. The ${counter}
expression in the following example would be illegal in a JSP document if it were not wrapped
ina jsp:text tag.

<c:forEach var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>

</c:forEach>

This example will output

Chapter6 - JavaServer Pages Documents 193

Creating a JSP Document

194

123

The jsp: text tag must not contain any other elements. Therefore, if you need to nest a tag
inside jsp:text, you must wrap the tag inside CDATA.

You also need to use CDATA if you need to output some elements that are not well-formed. The
following example requires CDATA wrappers around the blockquote start and end tags because
the blockquote element is not well formed. This is because the blockquote element overlaps
with other elements in the example.
<c:forEach var="i" begin="1" end="${x}">

<! [CDATA[<blockquote>]]>
</c:forEach>

<c:forEach var="i" begin="1" end="${x}">
<! [CDATA[</blockquote>]]>
</c:forEach>

Just like JSP pages, JSP documents can generate dynamic content using expressions language
(EL) expressions, scripting elements, standard actions, and custom tags. The books . j spx
document uses EL expressions and custom tags to generate the XML book data.

As shown in this snippet from books . jspx, the c: forEach JSTL tag iterates through the list of
books and generates the XML data stream. The EL expressions access the JavaBeans
component, which in turn retrieves the data from the database:

<c:forEach var="book" begin="0" items="${bookDB.books}">
<book id="${book.bookId}" >
<surname>${book.surname}</surname>
<firstname>${book.firstName}</firstname>
<title>${book.title}</title>
<price>${book.price}</price>
<year>${book.year}</year>
<description>${book.description}</description>
<inventory>${book.inventory}</inventory>
</book>
</c:forEach>

When using the expression language in your JSP documents, you must substitute alternative
notation for some of the operators so that they will not be interpreted as XML markup.
Table 6-2 enumerates the more common operators and their alternative syntax in JSP
documents.

The Java EE 5 Tutorial « October 2008

Creating a JSP Document

TABLE6-2 EL Operators and JSP Document-Compliant Alternative Notation

EL Operator JSP Document Notation
< 1t
> gt
<= le
>= ge

1= ne

You can also use EL expressions with jsp:element to generate tags dynamically rather than
hard code them. This example could be used to generate an HTML header tag with a lang
attribute:

<jsp:element name="${content.headerName}"
xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:attribute name="lang">${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>
</jsp:element>

The name attribute identifies the generated tag’s name. The jsp:attribute tag generates the
lang attribute. The body of the jsp:attribute tagidentifies the value of the lang attribute. The
jsp:body tag generates the body of the tag. The output of this example jsp:element could be

<hl lang="fr">Heading in French</hl>

As shown in Table 6-1, scripting elements (described in Chapter 9, “Scripting in JSP Pages”) are
represented as XML elements when they appear in a JSP document. The only exception isa
scriptlet expression used to specify a request-time attribute value. Instead of using <%=expr %>,
a JSP document uses %= expr % to represent a request-time attribute value.

The three scripting elements are declarations, scriptlets, and expressions.

A jsp:declaration element declares a scripting language construct that is available to other
scripting elements. A jsp:declaration element has no attributes and its body is the
declaration itself. Its syntax is

<jsp:declaration> declaration goes here </jsp:declaration>

A jsp:scriptlet element contains a Java program fragment called a scriptlet. This element has
no attributes, and its body is the program fragment that constitutes the scriptlet. Its syntax is

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

Chapter6 - JavaServer Pages Documents 195

Creating a JSP Document

196

The jsp:expression element inserts the value of a scripting language expression, converted
into a string, into the data stream returned to the client. A jsp:expression element has no
attributes and its body is the expression. Its syntax is

<jsp:expression> expression goes here </jsp:expression>

Using the jsp: root Element

The jsp: root element represents the root element of a JSP document. A jsp: root element is
not required for JSP documents. You can specify your own root element, enabling you to use
any XML document as a JSP document. The root element of the books . j spx example JSP
document is books.

Although the jsp: root element is not required, it is still useful in these cases:

= When you want to identify the document as a JSP document to the JSP container without
having to add any configuration attributes to the deployment descriptor or name the
document with a . j spx extension

= When you want to generate, from a single JSP document, more than one XML document or
XML content mixed with non-XML content

The version attribute is the only required attribute of the jsp: root element. It specifies the JSP
specification version that the JSP document is using.

The jsp:root element can also include xmlns attributes for specifying tag libraries used by the
other elements in the page.

The books. jspx page does not need a jsp: root element and therefore doesn’t include one.
However, suppose that you want to generate two XML documents from books . j spx: one that
lists books and another that lists magazines (assuming magazines are in the database). This
example is similar to the one in the section “Including Directives in a JSP Document” on

page 191. To do this, you can use this jsp: root element:

<jsp:root
xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0" >
<books>...</books>
<magazines>...</magazines>

</jsp:root>

Notice in this example that jsp: root defines the JSP namespace because both the books and the
magazines elements use the elements defined in this namespace.

Using the jsp:output Element

The jsp:output element specifies the XML declaration or the document type declaration in the
request output of the JSP document.

The Java EE 5 Tutorial « October 2008

Creating a JSP Document

The XML declaration and document type declaration that are declared by the jsp:output
element are not interpreted by the JSP container. Instead, the container simply directs them to
the request output.

To illustrate this, here is an example of specifying a document type declaration with

jsp:output:

<jsp:output doctype-root-element="books"
doctype-system="books.dtd" />

The resulting output is:

<!DOCTYPE books SYSTEM "books.dtd" >

Specifying the document type declaration in the jsp:output element will not cause the JSP
container to validate the JSP document against the books . dtd.

If you want the JSP document to be validated against the DTD, you must manually include the
document type declaration within the JSP document, just as you would with any XML
document.

Table 6-3 shows all the jsp:output attributes. They are all optional, but some attributes
depend on other attributes occurring in the same jsp:output element, as shown in the table.
The rest of this section explains more about using jsp:output to generate an XML declaration
and a document type declaration.

TABLE6-3 jsp:output Attributes

Attribute What It Specifies

omit-xml-declaration A value of true or yes omits the XML declaration. A value of false or no
generates an XML declaration.

doctype-root-element Indicates the root element of the XML document in the DOCTYPE. Can be specified
onlyif doctype-systemis specified.

doctype-system Specifies that a DOCTYPE is generated in output and gives the SYSTEM literal.

doctype-public Specifies the value for the Public ID of the generated DOCTYPE. Can be specified
onlyif doctype-systemis specified.

Generating XML Declarations

Here is an example of an XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>

This declaration is the default XML declaration. It means that if the JSP container is generating
an XML declaration, this is what the JSP container will include in the output of your JSP
document.

Chapter6 - JavaServer Pages Documents 197

Creating a JSP Document

198

Neither a JSP document nor its request output is required to have an XML declaration. In fact, if
the JSP document is not producing XML output then it shouldn’t have an XML declaration.

The JSP container will not include the XML declaration in the output when either of the
following is true:

® Youset the omit-xml-declaration attribute of the jsp:output element to either true or
yes.

= Youhavea jsp:root element in your JSP document, and you do not specify
omit-xml-declaration="false"in jsp:output.

The JSP container will include the XML declaration in the output when either of the following is
true:

® Youset the omit-xml-declaration attribute of the jsp:output element to either false or
no.

= Youdonothavea jsp:root action in your JSP document, and you do not specify the
omit-xml-declaration attribute in jsp:output.

The books . jspx JSP document does not include a jsp: root action nora jsp:output.
Therefore, the default XML declaration is generated in the output.

Generating a Document Type Declaration

A document type declaration (DTD) defines the structural rules for the XML document in
which the document type declaration occurs. XML documents are not required to have a DTD
associated with them. In fact, the books example does not include one.

This section shows you how to use the jsp:output element to add a document type declaration
to the XML output of books . j spx. It also shows you how to enter the document type
declaration manually into books . j spx so that the JSP container will interpret it and validate the
document against the DTD.

As shown in Table 6-3, the jsp:output element has three attributes that you use to generate the
document type declaration:

= doctype-root-element: Indicates the root element of the XML document.
m doctype-system: Indicates the URI reference to the DTD.

= doctype-public: A more flexible way to reference the DTD. This identifier gives more
information about the DTD without giving a specific location. A public identifier resolves to
the same actual document on any system even though the location of that document on each
system may vary. See the XML 1.0 specification (http://www.w3.0rg/XML/) for more
information.

The Java EE 5 Tutorial « October 2008

http://www.w3.org/XML/

Creating a JSP Document

The rules for using the attributes are as follows:

= The doctype attributes can appear in any order.
= Thedoctype-root attribute must be specified if the doctype- system attribute is specified.
= Thedoctype-public attribute must not be specified unless doctype-system is specified.

This syntax notation summarizes these rules:

<jsp:output (omit-xmldeclaration=
"yes"|"no"|"true"|"false") {doctypeDecl} />
doctypeDecl:= (doctype-root-element="rootElement"
doctype-public="PublicLiteral"
doctype-system="SystemLiteral")
| (doctype-root-element="rootElement"
doctype-system="SystemLiteral")

Suppose that you want to reference a DTD, called books . DTD, from the output of the
books . jspx page. The DTD would look like this:

<!ELEMENT books (book+) >

<!ELEMENT book (surname, firstname, title, price, year,
description, inventory) >

<!ATTLIST book id CDATA #REQUIRED >

<!ELEMENT surname (#PCDATA) >

<!ELEMENT firstname (#PCDATA) >

<!ELEMENT title (#PCDATA) >

<!ELEMENT price (#PCDATA) >

<!ELEMENT year (#PCDATA) >

<!ELEMENT description (#PCDATA) >

<!ELEMENT inventory (#PCDATA) >

To add a document type declaration that references the DTD to the XML request output
generated from books . j spx, include this jsp:output element in books . j spx:

<jsp:output doctype-root-element="books"
doctype-system="books.DTD" />

With this jsp:output action, the JSP container generates this document type declaration in the
request output:

<!DOCTYPE books SYSTEM "books.DTD" />

The jsp:output need not be located before the root element of the document. The JSP
container will automatically place the resulting document type declaration before the start of
the output of the JSP document.

Note that the JSP container will not interpret anything provided by jsp:output. This means
that the JSP container will not validate the XML document against the DTD. It only generates

Chapter6 - JavaServer Pages Documents 199

Identifying the JSP Document to the Container

the document type declaration in the XML request output. To see the XML output, run
http://localhost:8080/books/books. jspx in your browser after you have updated
books .WAR with books .DTD and the jsp:output element. When using some browsers, you
might need to view the source of the page to actually see the output.

Directing the document type declaration to output without interpreting it is useful in situations
when another system receiving the output expects to see it. For example, two companies that do
business by means of a web service might use a standard DTD, against which any XML content
exchanged between the companies is validated by the consumer of the content. The document
type declaration tells the consumer what DTD to use to validate the XML data that it receives.

For the JSP container to validate books . j spx against book.DTD, you must manually include the
document type declaration in the books . jspx file rather than use jsp:output. However, you
must add definitions for all tags in your DTD, including definitions for standard elements and
custom tags, such as jsp:useBean and c: forEach. You also must ensure that the DTD is
located in the domain-dir/config/ directory so that the JSP container will validate the JSP
document against the DTD.

Identifying the JSP Document to the Container

200

A JSP document must be identified as such to the web container so that the container interprets
itas an XML document. There are three ways to do this:

= Inyourapplication’s web.xml file, set the is-xml element of the jsp-property-group
element to true.

= Usea Java Servlet Specification version 2.4 web . xml file and give your JSP document the
. j spx extension.

= Includea jsp:root element in your JSP document. This method is backward-compatible
with JSP 1.2.

The Java EE 5 Tutorial « October 2008

L K R 4 CHAPTER 7

JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality common to
many JSP applications. Instead of mixing tags from numerous vendors in your JSP applications,
JSTL allows you to employ a single, standard set of tags. This standardization allows you to
deploy your applications on any JSP container supporting JSTL and makes it more likely that
the implementation of the tags is optimized.

JSTL has tags such as iterators and conditionals for handling flow control, tags for manipulating
XML documents, internationalization tags, tags for accessing databases using SQL, and
commonly used functions.

This chapter demonstrates JSTL through excerpts from the JSP version of the Duke’s Bookstore
application discussed in the earlier chapters. It assumes that you are familiar with the material
in the “Using Custom Tags” on page 172 section of Chapter 5, “JavaServer Pages Technology.”

This chapter does not cover every JSTL tag, only the most commonly used ones. Please refer to
the reference pages at
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html for a complete
list of the JSTL tags and their attributes.

The Example JSP Pages

This chapter illustrates JSTL using excerpts from the JSP version of the Duke’s Bookstore
application discussed in Chapter 5, “JavaServer Pages Technology.” Here, they are rewritten to
replace the JavaBeans component database access object with direct calls to the database using
the JSTL SQL tags. For most applications, it is better to encapsulate calls to a database in a bean.
JSTL includes SQL tags for situations where a new application is being prototyped and the
overhead of creating a bean may not be warranted.

The source for the Duke’s Bookstore application is located in the
tut-install/ javaeetutorial5/examples/web/bookstore4/ directory created when you unzip
the tutorial bundle (see Chapter 2, “Using the Tutorial Examples”).

201

http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html

The Example JSP Pages

202

To deploy and run the application using NetBeans IDE, follow these steps:

1.

w »

4.
5.
6.
7.
8.

Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

In NetBeans IDE, select File—Open Project.
In the Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/

Select the bookstore4 folder.

Select the Open as Main Project check box and the Open Required Projects check box.
Click Open Project.

In the Projects tab, right-click the bookstore4 project, and select Undeploy and Deploy.

To run the application, open the bookstore URL
http://localhost:8080/bookstore4/books/bookstore.

To deploy and run the application using Ant, follow these steps:

L.

N

et

wl

In a terminal window, go to tut-install/ javaeetutorial5/examples/web/bookstored/.

Type ant. This command will spawn any necessary compilations, copy files to the
tut-install/ javaeetutorial5/examples/web/bookstore4/build/ directory, and create a
WAR file and copy it to the

tut-install/ javaeetutorial5/examples/web/bookstore4/dist/ directory.

Start the Application Server.

Perform all the operations described in “Creating a Data Source in the Application Server”
on page 98.

. To deploy the example, type ant deploy. The deploy target outputs a URL for running the

application. Ignore this URL, and instead use the one shown in the next step.

To run the application, open the bookstore URL
http://localhost:8080/bookstore4/books/bookstore.

To learn how to configure the example, refer to the web. xml file, which includes the following
configurations:

A display-name element that specifies the name that tools use to identify the application.
A context-param element that specifies the JSTL resource bundle base name.

A set of servlet elements that identify the application’s JSP files.

A set of servlet-mapping elements that define the aliases to the JSP files.

Nested inside a jsp-config element are two jsp-property-group elements, which define
the preludes and coda to be included in each page. See “Setting JavaBeans Component
Properties” on page 169 for more information.

The Java EE 5 Tutorial « October 2008

Using JSTL

See “Troubleshooting Duke's Bookstore Database Problems” on page 102 for help with
diagnosing common problems.

Using JSTL

JSTL includes a wide variety of tags that fit into discrete functional areas. To reflect this, as well
as to give each area its own namespace, JSTL is exposed as multiple tag libraries. The URIs for
the libraries are as follows:

Core: http://java.sun.com/jsp/jstl/core

XML: http://java.sun.com/jsp/jstl/xml
Internationalization: http://java.sun.com/jsp/jstl/fmt
SQL: http://java.sun.com/jsp/jstl/sql

Functions: http://java.sun.com/jsp/jstl/functions

Table 7-1 summarizes these functional areas along with the prefixes used in this tutorial.

TABLE7-1 JSTL Tags

Area Subfunction Prefix

Core Variable support c
Flow control
URL management
Miscellaneous

XML Core X
Flow control
Transformation

118N Locale fmt
Message formatting

Number and date formatting

Database SQL sql
Functions Collection length fn
String manipulation

Thus, the tutorial references the JSTL core tags in JSP pages by using the following taglib
directive:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

Chapter7 - JavaServer Pages Standard Tag Library 203

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/functions

Using JSTL

204

In addition to declaring the tag libraries, tutorial examples access the JSTL API and
implementation. In the Application Server, the JSTL TLDs and libraries are distributed in the
archive as-install/1ib/appserv-jstl.jar. Thislibrary is automatically loaded into the
classpath of all web applications running on the Application Server, so you don’t need to add it
to your web application.

Tag Collaboration

Tags usually collaborate with their environment in implicit and explicit ways. Implicit
collaboration is done by means of a well-defined interface that allows nested tags to work
seamlessly with the ancestor tag that exposes that interface. The JSTL conditional tags employ
this mode of collaboration.

Explicit collaboration happens when a tag exposes information to its environment. JSTL tags
expose information as JSP EL variables; the convention followed by JSTL is to use the name var
for any tag attribute that exports information about the tag. For example, the forEach tag
exposes the current item of the shopping cart it is iterating over in the following way:

<c:forEach var="item" items="${sessionScope.cart.items}">
</c:forEach>

In situations where a tag exposes more than one piece of information, the name var is used for
the primary piece of information being exported, and an appropriate name is selected for any
other secondary piece of information exposed. For example, iteration status information is
exported by the forEach tag through the attribute status.

When you want to use an EL variable exposed by a JSTL tag in an expression in the page’s
scripting language (see Chapter 9, “Scripting in JSP Pages”), you use the standard JSP element
jsp:useBean to declare a scripting variable.

For example,

tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookshowcart.jsp
removes a book from a shopping cart using a scriptlet. The ID of the book to be removed is
passed as a request parameter. The value of the request parameter is first exposed as an EL
variable (to be used later by the JSTL sql: query tag) and then is declared as a scripting variable
and passed to the cart. remove method:

<c:set var="bookId" value="${param.Remove}"/>

<jsp:useBean id="bookId" type="java.lang.String" />

<% cart.remove(bookId); %>

<sql:query var="books"
dataSource="¢${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?
<sql:param value="${bookId}" />

</sql:query>

The Java EE 5 Tutorial « October 2008

CoreTag Library

CoreTag Library
Table 7-2 summarizes the core tags, which include those related to variables and flow control,
as well as a generic way to access URL-based resources whose content can then be included or

processed within the JSP page.

TABLE7-2 Core Tags

Area Function Tags Prefix

Core Variable support remove C
set

Flow control choose
when
otherwise
forEach
forTokens
if

URL management import
param
redirect
param
url
param

Miscellaneous catch
out

Variable SupportTags

The set tag sets the value of an EL variable or the property of an EL variable in any of the JSP
scopes (page, request, session, or application). If the variable does not already exist, it is created.

The JSP EL variable or property can be set either from the attribute value:
<c:set var="foo" scope="session" value="..."/>
or from the body of the tag:
<c:set var="foo">
</c:;é£>
For example, the following sets an EL variable named bookID with the value of the request
parameter named Remove:

Chapter7 - JavaServer Pages Standard Tag Library 205

CoreTag Library

206

<c:set var="bookId" value="${param.Remove}"/>

To remove an EL variable, you use the remove tag. When the bookstore JSP page
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookreceipt.jsp is
invoked, the shopping session is finished, so the cart session attribute is removed as follows:

<c:remove var="cart" scope="session"/>

The value attribute of the set tag can also take a deferred value expression (See “Immediate
and Deferred Evaluation Syntax” on page 148) so that JavaServer Faces component tags can
access the value at the appropriate stage of the page life cycle.

JavaServer Faces technology (see Chapter 10, “JavaServer Faces Technology”) supports a
multiphase life cycle, which includes separate phases for rendering components, validating
data, updating model values, and performing other tasks. What this means is that any
JavaServer Faces component tags that reference the value set by the set tag must have access to
this value at different phases of the life cycle, not just during the rendering phase. Consider the
following code:

<c:set var="bookId" scope="page" value="#{BooksBean.books}"/>

<h:inputText id="bookId" value="#{bookId}"/>

The value attribute of the c: set tag uses a deferred value expression, which means that the
bookId variable it references is available not only during the rendering phase of the JavaServer
Faces life cycle but also during the later stages of the life cycle. Therefore, whatever value the
user enters into the bookId component tag is updated to the external data object during the
appropriate stage of the life cycle.

If the expression referenced by the value attribute used immediate evaluation syntax then the
bookId variable would be available only when the component is rendered during the render
response phase. This would prevent the value the user enters into the component from being
converted, validated, or updated to the external data object during the later phases of the life
cycle.

Flow Control Tags

To execute flow control logic, a page author must generally resort to using scriptlets. For
example, the following scriptlet is used to iterate through a shopping cart:

A
o°

Iterator i = cart.getItems().iterator();
while (i.hasNext()) {
ShoppingCartItem item =

The Java EE 5 Tutorial « October 2008

CoreTag Library

(ShoppingCartItem)i.next();

o°
\Y

<tr>

<td align="right" bgcolor="#ffffff">
${item.quantity}

</td>

A
o°

o°

>

Flow control tags eliminate the need for scriptlets. The next two sections have examples that
demonstrate the conditional and iterator tags.

Conditional Tags

The if tagallows the conditional execution of its body according to the value of the test
attribute. The following example from

tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog. jsp tests
whether the request parameter Add is empty. If the test evaluates to true, the page queries the
database for the book record identified by the request parameter and adds the book to the
shopping cart:

<c:if test="${!empty param.Add}">

<c:set var="bid" value="${param.Add}"/>

<jsp:useBean id="bid" type="java.lang.String" />

<sql:query var="books"
dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?
<sql:param value="${bid}" />

</sql:query>

<c:forEach var="bookRow" begin="0" items="${books.rows}">
<jsp:useBean id="bookRow" type="java.util.Map" />
<jsp:useBean id="addedBook"

class="database.Book" scope="page" />

<% cart.add(bid, addedBook); %>
</c:if>
The choose tag performs conditional block execution by the embedded when subtags. It renders
the body of the first when tag whose test condition evaluates to true. If none of the test

conditions of nested when tags evaluates to true, then the body of an otherwise tag is evaluated,
if present.

For example, the following sample code shows how to render text based on a customer’s
membership category.

Chapter7 - JavaServer Pages Standard Tag Library 207

CoreTag Library

208

<c:choose>

<c:when test="${customer.category == 'trial’}" >
</c:when>
<c:when test="${customer.category == 'member’}" >
</c:when>

<c:when test="${customer.category == 'preferred’}" >
</c:when>

<c:otherwise>

</c:otherwise>
</c:choose>

The choose, when, and otherwise tags can be used to construct an if-then-else statement as
follows:

<c:choose>

<c:when test="${count == 0}" >
No records matched your selection.
</c:when>

<c:otherwise>
${count} records matched your selection.
</c:otherwise>
</c:choose>

Iterator Tags

The forEach tag allows you to iterate over a collection of objects. You specify the collection
using the items attribute, and the current item is available through a variable named by the var
attribute.

A large number of collection types are supported by forEach, including all implementations of
java.util.Collectionand java.util.Map.If the items attribute is of type java.util.Map,
then the current item will be of type java.util.Map.Entry, which has the following properties:

= key: The key under which the item is stored in the underlying Map
= value: The value that corresponds to the key

Arrays of objects as well as arrays of primitive types (for example, int) are also supported. For
arrays of primitive types, the current item for the iteration is automatically wrapped with its
standard wrapper class (for example, Integer for int, Float for float, and so on).

Implementations of java.util.Iterator and java.util.Enumeration are supported, but
they must be used with caution. Iterator and Enumeration objects can't be reset, so they
should not be used within more than one iteration tag. Finally, java.lang.String objects can
be iterated over if the string contains a list of comma-separated values (for example:

Monday, Tuesday,Wednesday, Thursday, Friday).

The Java EE 5 Tutorial « October 2008

CoreTag Library

Here’s the shopping cart iteration from the preceding section, now with the forEach tag:
<c:forEach var="item" items="${sessionScope.cart.items}">

<tr>
<td align="right" bgcolor="#ffffff">
${item.quantity}

</td>

</c:forEach>
The forTokens tag is used to iterate over a collection of tokens separated by a delimiter.

Similarly to the value attribute of the c: set tag (see “Variable Support Tags” on page 205), the
items attribute of forEach and forTokens can also take a deferred value expression so that
JavaServer Faces tags can be included within these tags.

As described in “Variable Support Tags” on page 205, JavaServer Faces technology (see
Chapter 10, “JavaServer Faces Technology”) supports a multiphase life cycle. Therefore, any
JavaServer Faces component tags that are included in the forEach tag or the forTokens tag
must have access to the variable referenced by the items attribute at different phases of the life
cycle, not just during the rendering phase. Consider the following code:

<c:forEach var="book" items="#{BooksBean.books}">
<h:inputText id="quantity" value="#{book.quantity}"/>
</c:forEach>

The items attribute uses a deferred value expression, which means that the book variable it
references is available not only during the rendering phase of the JavaServer Faces life cycle but
also during the later stages of the life cycle. Therefore, whatever values the user enters into the
quantity component tags are updated to the external data object during the appropriate stage
of the life cycle.

If the expression referenced by the items attribute used immediate evaluation syntax then the
book variable would be available only when the component is rendered during the render
response phase. This would prevent the values the user enters into the components from being
converted, validated, or updated to the external data object during the later phases of the life
cycle. The JavaServer Faces version of Duke’s Bookstore includes a forEach tag on its
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog.jsp

page.

Chapter7 - JavaServer Pages Standard Tag Library 209

CoreTag Library

210

URL Tags

The jsp:include element provides for the inclusion of static and dynamic resources in the
same context as the current page. However, jsp:include cannot access resources that reside
outside the web application, and it causes unnecessary buffering when the resource included is
used by another element.

In the following example, the transform element uses the content of the included resource as
the input of its transformation. The jsp: include element reads the content of the response and
writes it to the body content of the enclosing transform element, which then rereads exactly the
same content. It would be more efficient if the transform element could access the input source
directly and thereby avoid the buffering involved in the body content of the transform tag.

<acme:transform>
<jsp:include page="/exec/employeesList"/>
<acme:transform/>

The import tag is therefore the simple, generic way to access URL-based resources, whose
content can then be included and or processed within the JSP page. For example, in “XML Tag
Library” on page 211, import is used to read in the XML document containing book
information and assign the content to the scoped variable xm1:

<c:import url="/books.xml" var="xml" />
<x:parse doc="${xml}" var="booklist"
scope="application" />

The param tag, analogous to the jsp:paramtag (see “jsp:param Element” on page 176), can be
used with import to specify request parameters.

“Session Tracking” on page 127 discusses how an application must rewrite URLSs to enable
session tracking whenever the client turns off cookies. You can use the url tag to rewrite URLs
returned from a JSP page. The tag includes the session ID in the URL only if cookies are
disabled; otherwise, it returns the URL unchanged. Note that this feature requires that the URL
be relative. The url tag takes param subtags to include parameters in the returned URL. For
example,

tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog.jsp
rewrites the URL used to add a book to the shopping cart as follows:

<c:url var="url" value="/catalog" >

<c:param name="Add" value="${bookId}" />
</c:url>
<p>

The redirect tag sends an HTTP redirect to the client. The redirect tag takes param subtags
for including parameters in the returned URL.

The Java EE 5 Tutorial « October 2008

XML Tag Library

Miscellaneous Tags

The catch tag provides a complement to the JSP error page mechanism. It allows page authors
to recover gracefully from error conditions that they can control. Actions that are of central
importance to a page should not be encapsulated in a catch; in this way their exceptions will
propagate instead to an error page. Actions with secondary importance to the page should be
wrapped in a catch so that they never cause the error page mechanism to be invoked.

The exception thrown is stored in the variable identified by var, which always has page scope. If
no exception occurred, the scoped variable identified by var is removed if it existed. If var is
missing, the exception is simply caught and not saved.

The out tag evaluates an expression and outputs the result of the evaluation to the current
JspWriter object. The syntax and attributes are as follows:

<c:out value="value" [escapeXml="{true|false}"]
[default="defaultValue"] />

If the result of the evaluation is a java. io.Reader object, then data is first read from the Reader
object and then written into the current JspWriter object. The special processing associated
with Reader objects improves performance when a large amount of data must be read and then
written to the response.

If escapeXml is true, the character conversions listed in Table 7-3 are applied.

TABLE7-3 Character Conversions

Character Character Entity Code
< <

> >

& &

’ '

" "

XML Tag Library

The JSTL XML tag set is listed in Table 7-4.

Chapter7 - JavaServer Pages Standard Tag Library 211

XML Tag Library

212

TABLE7-4 XML Tags

Area Function Tags Prefix
XML Core out X
parse
set
Flow control choose
when
otherwise
forEach
if
Transformation transform
param

A key aspect of dealing with XML documents is to be able to easily access their content. XPath
(seehttp://java.sun.com/webservices/jaxp/),a W3C recommendation since 1999,
provides an easy notation for specifying and selecting parts of an XML document. In the JSTL
XML tags, XPath expressions specified using the select attribute are used to select portions of
XML data streams. Note that XPath is used as a local expression language only for the select
attribute. This means that values specified for select attributes are evaluated using the XPath
expression language but that values for all other attributes are evaluated using the rules
associated with the JSP 2.0 expression language.

In addition to the standard XPath syntax, the JSTL XPath engine supports the following scopes
to access web application data within an XPath expression:

= $foo

® $param:
®m $header:
m $cookie:

® $initParam:

®m ¢$pageScope:

® $requestScope:

®m $sessionScope:

®m ¢$applicationScope:

These scopes are defined in exactly the same way as their counterparts in the JSP expression
language discussed in “Implicit Objects” on page 162. Table 7-5 shows some examples of using
the scopes.

The Java EE 5 Tutorial « October 2008

http://java.sun.com/webservices/jaxp/

XML Tag Library

TABLE7-5 Example XPath Expressions

XPath Expression Result
$sessionScope:profile The session-scoped EL variable named profile
$initParam:mycom.productId The String value of the mycom. productId context parameter

The XML tags are illustrated in another version (bookstore5) of the Duke’s Bookstore
application. This version replaces the database with an XML representation of the bookstore
database, which is retrieved from another web application. The directions for building and
deploying this version of the application are in “The Example JSP Document” on page 185.

CoreTags

The core XML tags provide basic functionality to easily parse and access XML data.

The parse tag parses an XML document and saves the resulting object in the EL variable
specified by attribute var. In bookstore5, the XML document is parsed and saved to a context
attribute in

tut-install/ javaeetutorial5s/examples/web/bookstore5/web/books/parsebooks. jsp,
which is included by all JSP pages that need access to the document:

<c:if test="¢${applicationScope:booklist == null}" >
<c:import url="¢${initParam.booksURL}" var="xml" />
<x:parse doc="${xml}" var="booklist" scope="application" />
</c:if>

The set and out tags parallel the behavior described in “Variable Support Tags” on page 205
and “Miscellaneous Tags” on page 211 for the XPath local expression language. The set tag
evaluates an XPath expression and sets the result into a JSP EL variable specified by attribute
var. The out tag evaluates an XPath expression on the current context node and outputs the
result of the evaluation to the current JspWriter object.

The JSP page

tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookdetails.jsp
selects a book element whose id attribute matches the request parameter bookId and sets the
abook attribute. The out tag then selects the book’s title element and outputs the result.

<x:set var="abook"
select="$applicationScope.booklist/
books/book[@id=$param:bookId]" />
<h2><x:out select="$abook/title"/></h2>

Asyou have just seen, x: set stores an internal XML representation of a node retrieved using an
XPath expression; it doesn’t convert the selected node into a String and store it. Thus, x: set is
primarily useful for storing parts of documents for later retrieval.

Chapter7 - JavaServer Pages Standard Tag Library 213

XML Tag Library

214

If you want to store a String, you must use x: out within c:set. The x: out tag converts the
node toaString, and c:set then stores the String as an EL variable. For example,

tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookdetails. jsp
stores an EL variable containing a book price, which is later provided as the value of a fmt tag, as
follows:

<c:set var="price">
<x:out select="$abook/price"/>
</c:set>
<h4><fmt:message key="ItemPrice"/>:
<fmt:formatNumber value="${price}" type="currency"/>

The other option, which is more direct but requires that the user have more knowledge of
XPath, is to coerce the node to a String manually by using XPath’s string function.

<x:set var="price" select="string($abook/price)"/>

Flow Control Tags

The XML flow control tags parallel the behavior described in “Flow Control Tags” on page 206
for XML data streams.

The JSP page
tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog. jsp uses
the forEach tag to display all the books contained in booklist as follows:

<x:forEach var="book"
select="$applicationScope:booklist/books/*">
<tr>
<c:set var="bookId">
<x:out select="$book/@id"/>
</c:set>=
<td bgcolor="#ffffaa">
<c:url var="url"
value="/bookdetails" >
<c:param name="bookId" value="${bookId}" />
<c:param name="Clear" value="0" />
</c:url>

<x:out select="$book/title"/>
</td>
<td bgcolor="#ffffaa" rowspan=2>
<c:set var="price">
<x:out select="$book/price"/>
</c:set>
<fmt:formatNumber value="${price}" type="currency"/>

The Java EE 5 Tutorial « October 2008

Internationalization Tag Library

</td>
<td bgcolor="#ffffaa" rowspan=2>
<c:url var="url" value="/catalog" >
<c:param name="Add" value="${bookId}" />
</c:url>
<p>
<fmt:message key="CartAdd"/>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
 <fmt:message key="By"/>
<x:out select="$book/firstname"/>
<x:out select="$book/surname"/></td></tr>
</x:forEach>

Transformation Tags

The transformtagapplies a transformation, specified by an XSLT stylesheet set by the attribute
xslt, to an XML document, specified by the attribute doc. If the doc attribute is not specified,
the input XML document is read from the tag’s body content.

The param subtag can be used along with transformto set transformation parameters. The
attributes name and value are used to specify the parameter. The value attribute is optional. If it
is not specified, the value is retrieved from the tag’s body.

Internationalization Tag Library

Chapter 15, “Internationalizing and Localizing Web Applications,” covers how to design web
applications so that they conform to the language and formatting conventions of client locales.
This section describes tags that support the internationalization of JSP pages.

JSTL defines tags for setting the locale for a page, creating locale-sensitive messages, and
formatting and parsing data elements such as numbers, currencies, dates, and times in a
locale-sensitive or customized manner. Table 7-6 lists the tags.

Chapter7 - JavaServer Pages Standard Tag Library 215

Internationalization Tag Library

216

TABLE7-6 Internationalization Tags

Area Function Tags Prefix

118N Setting Locale setlLocale fmt
requestEncoding

Messaging bundle
message
param
setBundle

Number and Date Formatting formatNumber
formatDate
parseDate
parseNumber
setTimeZone
timeZone

JSTL 118N tags use a localization context to localize their data. A localization context contains a
locale and a resource bundle instance. To specify the localization context at deployment time,
you define the context parameter javax.servlet.jsp.jstl.fmt.localizationContext,
whose value can be a javax.servlet.jsp.jstl.fmt.LocalizationContext oraString. A
String context parameter is interpreted as a resource bundle base name. For the Duke’s
Bookstore application, the context parameter is the String messages.BookstoreMessages.
When a request is received, JSTL automatically sets the locale based on the value retrieved from
the request header and chooses the correct resource bundle using the base name specified in the
context parameter.

Setting the Locale

The setLocale tagis used to override the client-specified locale for a page. The
requestEncoding tag is used to set the request’s character encoding, in order to be able to
correctly decode request parameter values whose encoding is different from I50-8859-1.

Messaging Tags
By default, the capability to sense the browser locale setting is enabled in JSTL. This means that

the client determines (through its browser setting) which locale to use, and allows page authors
to cater to the language preferences of their clients.

The Java EE 5 Tutorial « October 2008

Internationalization Tag Library

The setBundle and bundle Tags

You can set the resource bundle at runtime with the JSTL fmt : setBundle and fmt:bundle tags.
fmt:setBundle is used to set the localization context in a variable or configuration variable for a
specified scope. fmt : bundle is used to set the resource bundle for a given tag body.

Themessage Tag

The message tag is used to output localized strings. The following tag from
tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog. jsp is
used to output a string inviting customers to choose a book from the catalog.

<h3><fmt:message key="Choose"/></h3>

The param subtag provides a single argument (for parametric replacement) to the compound
message or pattern in its parent message tag. One param tag must be specified for each variable
in the compound message or pattern. Parametric replacement takes place in the order of the
param tags.

Formatting Tags
JSTL provides a set of tags for parsing and formatting locale-sensitive numbers and dates.

The formatNumber tagis used to output localized numbers. The following tag from
tut-install/javaeetutorial5/examples/web/bookstore4/web/books/bookshowcart. jsp is
used to display a localized price for a book.

<fmt:formatNumber value="${book.price}" type="currency"/>

Note that because the price is maintained in the database in dollars, the localization is somewhat
simplistic, because the formatNumber tag is unaware of exchange rates. The tag formats
currencies but does not convert them.

Analogous tags for formatting dates (formatDate) and for parsing numbers and dates
(parseNumber, parseDate) are also available. The timeZone tag establishes the time zone
(specified with the value attribute) to be used by any nested formatDate tags.

In tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookreceipt.jsp,a
“pretend” ship date is created and then formatted with the formatDate tag:

<jsp:useBean id="now" class="java.util.Date" />
<jsp:setProperty name="now" property="time"
value="${now.time + 432000000}" />
<fmt:message key="ShipDate"/>
<fmt:formatDate value="${now}" type="date
dateStyle="full"/>.

Chapter7 - JavaServer Pages Standard Tag Library 217

SQL Tag Library

SQL Tag Library

218

The JSTL SQL tags for accessing databases listed in Table 7-7 are designed for quick
prototyping and simple applications. For production applications, database operations are
normally encapsulated in JavaBeans components.

TABLE7-7 SQL Tags

Area Function Tags Prefix

Database Setting the data source setDataSource sql

SQL query
dateParam
param

transaction

update
dateParam
param

The setDataSource tagallows you to set data source information for the database. You can
provide a JNDI name or DriverManager parameters to set the data source information. All of
the Duke’s Bookstore pages that have more than one SQL tag use the following statement to set
the data source:

<sql:setDataSource dataSource="jdbc/BookDB" />

The query tag performs an SQL query that returns a result set. For parameterized SQL queries,
you use a nested param tag inside the query tag.

In tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog. jsp,
the value of the Add request parameter determines which book information should be retrieved
from the database. This parameter is saved as the attribute name bid and is passed to the param
tag.

<c:set var="bid" value="${param.Add}"/>
<sql:query var="books" >
select * from PUBLIC.books where id = ?
<sql:param value="${bid}" />
</sql:query>

The update tagis used to update a database row. The transaction tagis used to perform a
series of SQL statements atomically.

The JSP page
tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookreceipt.jsp uses

The Java EE 5 Tutorial « October 2008

SQL Tag Library

both tags to update the database inventory for each purchase. Because a shopping cart can
contain more than one book, the transaction tag is used to wrap multiple queries and updates.
First, the page establishes that there is sufficient inventory; then the updates are performed.

<c:set var="sufficientInventory" value="true" />
<sqgl:transaction>
<c:forEach var="item" items="${sessionScope.cart.items}">
<c:set var="book" value="${item.item}" />
<c:set var="bookId" value="${book.bookId}" />

<sql:query var="books"
sql="select * from PUBLIC.books where id = ?" >

<sql:param value="${bookId}" />

</sql:query>

<jsp:useBean id="inventory"
class="database.BookInventory" />

<c:forEach var="bookRow" begin="0"
items="${books.rowsByIndex}">
<jsp:useBean id="bookRow" type="java.lang.Object[]" />
<jsp:setProperty name="inventory" property="quantity"

value="${bookRow[7]}" />

<c:if test="¢${item.quantity > inventory.quantity}"s
<c:set var="sufficientInventory" value="false" />
<h3>
<fmt:message key="OrderError"/>
There is insufficient inventory for
<i>${bookRow[3]}</i>.</h3>

</c:if>

</c:forEach>
</c:forEach>

<c:if test="${sufficientInventory == 'true’}" />
<c:forEach var="item" items="${sessionScope.cart.items}">
<c:set var="book" value="${item.item}" />
<c:set var="bookId" value="${book.bookId}" />

<sql:query var="books"
sql="select * from PUBLIC.books where id = ?" >
<sql:param value="${bookId}" />
</sql:query>

<c:forEach var="bookRow" begin="0"
items="${books.rows}">
<sql:update var="books" sql="update PUBLIC.books set
inventory = inventory - ? where id = ?" >
<sql:param value="${item.quantity}" />
<sql:param value="${bookId}" />

Chapter7 - JavaServer Pages Standard Tag Library 219

SQLTag Library

220

</sql:update>
</c:forEach>
</c:forEach>
<h3><fmt:message key="ThankYou"/>
${param.cardname}.</h3>

</c:if>
</sql:transaction>

query Tag Result Interface

The Result interface is used to retrieve information from objects returned from a query tag.

public interface Result
public String[] getColumnNames();
public int getRowCount()
public Map[] getRows();
public Object[][] getRowsByIndex();
public boolean isLimitedByMaxRows();

For complete information about this interface, see the API documentation for the JSTL
packages.

The var attribute set by a query tag is of type Result. The getRows method returns an array of
maps that can be supplied to the items attribute of a forEach tag. The JSTL expression language
converts the syntax ${result. rows} to a call to result. getRows. The expression ${books. rows}
in the following example returns an array of maps.

When you provide an array of maps to the forEach tag, the var attribute set by the tag is of type
Map. To retrieve information from a row, use the get ("colname") method to get a column value.
The JSP expression language converts the syntax ${map . colname} to a call to

map .get ("colname"). For example, the expression ${book. title} returns the value of the title
entry of a book map.

The Duke’s Bookstore page
tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookdetails. jsp
retrieves the column values from the book map as follows.

<c:forEach var="book" begin="0" items="${books.rows}">
<h2>${book.title}</h2>
 <fmt:message key="By"/> ${book.firstname}
${book.surname}
(${book.year})

<h4><fmt:message key="Critics"/></h4>
<blockquote>${book.description}</blockquote>
<h4><fmt:message key="ItemPrice"/>:
<fmt:formatNumber value="${book.price}" type="currency"/>

The Java EE 5 Tutorial « October 2008

http://java.sun.com/products/jsp/jstl/1.1/docs/api/index.html

SQL Tag Library

</h4>
</c:forEach>

The following excerpt from

tut-install/ javaeetutorial5/examples/web/bookstore4/web/books/bookcatalog.jsp uses
the Row interface to retrieve values from the columns of a book row using scripting language
expressions. First, the book row that matches a request parameter (bid) is retrieved from the
database. Because the bid and bookRow objects are later used by tags that use scripting language
expressions to set attribute values and by a scriptlet that adds a book to the shopping cart, both
objects are declared as scripting variables using the jsp:useBean tag. The page creates a bean
that describes the book, and scripting language expressions are used to set the book properties
from book row column values. Then the book is added to the shopping cart.

You might want to compare this version of bookcatalog. jsp to the versions in Chapter 5,
“JavaServer Pages Technology,” and Chapter 8, “Custom Tags in JSP Pages,” that use a book
database JavaBeans component.

<sql:query var="books"
dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?
<sql:param value="${bid}" />
</sql:query>
<c:forEach var="bookRow" begin="0"
items="${books.rowsByIndex}">
<jsp:useBean id="bid" type="java.lang.String" />
<jsp:useBean id="bookRow" type="java.lang.Object[]" />
<jsp:useBean id="addedBook" class="database.Book"
scope="page" >
<jsp:setProperty name="addedBook" property="bookId"
value="${bookRow[0]}" />
<jsp:setProperty name="addedBook" property="surname"
value="${bookRow[1]}" />
<jsp:setProperty name="addedBook" property="firstName"
value="${bookRow[2]}" />
<jsp:setProperty name="addedBook" property="title"
value="${bookRow[3]}" />
<jsp:setProperty name="addedBook" property="price"
value="${bookRow[4])}" />
<jsp:setProperty name="addedBook" property="year"
value="${bookRow[6]}" />
<jsp:setProperty name="addedBook"
property="description"
value="${bookRow[7]}" />
<jsp:setProperty name="addedBook" property="inventory"
value="${bookRow[8]}" />
</jsp:useBean>
<% cart.add(bid, addedBook); %>

Chapter7 - JavaServer Pages Standard Tag Library 221

JSTL Functions

</c:forEach>

JSTL Functions

222

Table 7-8 lists the JSTL functions.

TABLE7-8 Functions

Area Function Tags Prefix

Functions Collection length length fn

String manipulation toUpperCase, toLowerCase
substring, substringAfter, substringBefore
trim
replace

indexOf, startsWith, endsWith, contains,
containsIgnoreCase

split, join

escapexXml

Although the java.util.Collection interface defines a size method, it does not conform to
the JavaBeans component design pattern for properties and so cannot be accessed by using the
JSP expression language. The length function can be applied to any collection supported by the
c: forEach and returns the length of the collection. When applied to a String, it returns the
number of characters in the string.

For example, the index. jsp page of the hellol application introduced in Chapter 3, “Getting
Started with Web Applications,” uses the fn: length function and the c: if tag to determine
whether to include a response page:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c"

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions"
prefix="fn" %>

<html>

<head><title>Hello</title></head>

%>

<input type="text" name="username" size="25">
<p></p>

<input type="submit" value="Submit">

<input type="reset" value="Reset">

The Java EE 5 Tutorial « October 2008

Further Information about JSTL

</form>

<c:if test="${fn:length(param.username) > 0}" >

<%@include file="response.jsp" %>

</c:if>
</body>
</html>

The rest of the JSTL functions are concerned with string manipulation:

toUpperCase, toLowerCase: Changes the capitalization of a string
substring, substringBefore, substringAfter: Gets a subset of a string
trim: Trims white space from a string

replace: Replaces characters in a string

index0f, startsWith, endsWith, contains, containsIgnoreCase: Checks whether a string
contains another string

split: Splits a string into an array
join:Joins a collection into a string

escapeXml: Escapes XML characters in a string

Further Information about JSTL

For more information on JSTL, see:

The tag reference documentation:
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html
The API reference documentation:
http://java.sun.com/products/jsp/jstl/1.1/docs/api/index.html
The JSTL 1.1 specification:
http://java.sun.com/products/jsp/jstl/downloads/index.html#specs
The JSTL web site:

http://java.sun.com/products/jsp/jstl

Chapter7 - JavaServer Pages Standard Tag Library 223

http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html
http://java.sun.com/products/jsp/jstl/1.1/docs/api/index.html
http://java.sun.com/products/jsp/jstl/downloads/index.html#specs
http://java.sun.com/products/jsp/jstl

224

CHAPTER 8

Custom Tagsin JSP Pages

The standard JSP tags simplify JSP page development and maintenance. JSP technology also
provides a mechanism for encapsulating other types of dynamic functionality in custom tags,
which are extensions to the JSP language. Some examples of tasks that can be performed by
custom tags include operating on implicit objects, processing forms, accessing databases and
other enterprise services such as email and directories, and implementing flow control. Custom
tags increase productivity because they can be reused in more than one application.

Custom tags are distributed in a tag library, which defines a set of related custom tags and
contains the objects that implement the tags. The object that implements a custom tag is called a
tag handler. JSP technology defines two types of tag handlers: simple and classic. Simple tag
handlers can be used only for tags that do not use scripting elements in attribute values or the
tag body. Classic tag handlers must be used if scripting elements are required. Simple tag
handlers are covered in this chapter, and classic tag handlers are discussed in Chapter 9,
“Scripting in JSP Pages”

You can write simple tag handlers using the JSP language or using the Java language. A tagfile is
a source file containing a reusable fragment of JSP code that is translated into a simple tag
handler by the web container. Tag files can be used to develop custom tags that are
presentation-centric or that can take advantage of existing tag libraries, or by page authors who
do not know Java. When the flexibility of the Java programming language is needed to define
the tag, JSP technology provides a simple API for developing a tag handler in the Java
programming language.

This chapter assumes that you are familiar with the material in Chapter 5, “JavaServer Pages
Technology,” especially the section “Using Custom Tags” on page 172. For more information
about tag libraries and for pointers to some freely available libraries, see
http://java.sun.com/products/jsp/taglibraries/index.jsp.

225

http://java.sun.com/products/jsp/taglibraries/index.jsp

What s a Custom Tag?

What s a Custom Tag?

A custom tag is a user-defined JSP language element. When a JSP page containing a custom tag
is translated into a servlet, the tag is converted to operations on a tag handler. The web
container then invokes those operations when the JSP page’s servlet is executed.

Custom tags have a rich set of features. They can

= Be customized by means of attributes passed from the calling page.
= Pass variables back to the calling page.
= Access all the objects available to JSP pages.

= Communicate with each other. You can create and initialize a JavaBeans component, create
a public EL variable that refers to that bean in one tag, and then use the bean in another tag.

= Be nested within one another and communicate by means of private variables.

The Example JSP Pages

This chapter describes the tasks involved in defining simple tags. It illustrates the tasks using
excerpts from the JSP version of the Duke’s Bookstore application discussed in “The Example
JSP Pages” on page 136, rewritten here to take advantage of several custom tags:

= A catalog tag for rendering the book catalog
= A shipDate tag for rendering the ship date of an order

= A template library for ensuring a common look and feel among all screens and composing
screens out of content chunks

The tutorial-template taglibrary defines a set of tags for creating an application template.
The template is a JSP page that has placeholders for the parts that need to change with each
screen. Each of these placeholders is referred to as a parameter of the template. For example, a
simple template might include a title parameter for the top of the generated screen and a body
parameter to refer to a JSP page for the custom content of the screen. The template is created
using a set of nested tags (definition, screen, and parameter) that are used to build a table of
screen definitions for Duke’s Bookstore. An insert tag to insert parameters from the table into
the screen.

226 The Java EE 5 Tutorial « October 2008

The Example JSP Pages

Figure 8-1 shows the flow of a request through the following Duke’s Bookstore web
components:

® tut-install/javaeetutorial5/examples/web/bookstore3/web/template/template.jsp,
which determines the structure of each screen. It uses the insert tag to compose a screen
from subcomponents.

® tut-install/javaeetutorial5/examples/web/bookstore3/web/template/screendefinitions.js
which defines the subcomponents used by each screen. All screens have the same banner but
different title and body content (specified by the JSP Pages column in Figure 5-1).

® f{ut-install/javaeetutorial5/examples/web/bookstore3/src/java/com/sun/bookstore3/dispa
a servlet, which processes requests and forwards to template. jsp.

Web Container

) ,)
HTTP
Request
Web
! Template
Client JSP Page \e
HttpServlet Catalog -
Response
) S \ /

FIGURE8-1 Request Flow through Duke’s Bookstore Components

The source code for the Duke’s Bookstore application is located in the

tut-install/ javaeetutorial5/examples/web/bookstore3/ directory created when you unzip
the tutorial bundle (see Chapter 2, “Using the Tutorial Examples”).

To deploy and run the application using NetBeans IDE, follow these steps:

1. Perform all the operations described in “Accessing Databases from Web Applications” on
page 97.

2. InNetBeans IDE, select File—Open Project.
3. Inthe Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/

Chapter8 « CustomTagsin JSP Pages 227

The Example JSP Pages

228

Select the bookstore3 folder.

Select the Open as Main Project check box and the Open Required Projects check box.
Click Open Project.

In the Projects tab, right-click the bookstore3 project, and select Undeploy and Deploy.

® N vk

To run the application, open the bookstore URL
http://localhost:8080/bookstore3/bookstore.

To deploy and run the application using Ant, follow these steps:

1. Inaterminal window, go to tut-install/ javaeetutorial5/examples/web/bookstore3/.

2. Typeant. This command will spawn any necessary compilations, copy files to the
tut-install/ javaeetutorials/examples/web/bookstore3/build/ directory, and create a
WAR file and copy it to the
tut-install/ javaeetutorial5/examples/web/bookstore3/dist/ directory.

3. Start the Application Server.

4. Perform all the operations described in “Creating a Data Source in the Application Server”
on page 98.

w

To deploy the example, type ant deploy. The deploy target outputs a URL for running the
application. Ignore this URL, and instead use the one shown in the next step.

6. To run the application, open the bookstore URL
http://localhost:8080/bookstore3/bookstore.

To learn how to configure the example, refer to the web . xml file, which includes the following
configurations:

= Adisplay-name element that specifies the name that tools use to identify the application.
= A context-paramelement that specifies the JSTL resource bundle base name.

® A listener element that identifies the ContextListener class used to create and remove
the database access.

= A servlet element that identifies the Dispatcher instance.

m Asetofservlet-mapping elements that map Dispatcher to URL patterns for each of the
JSP pages in the application.

m Nested inside a jsp-config elementisa jsp-property-group element, which sets the
properties for the group of pages included in this version of Duke’s Bookstore. See “Setting
Properties for Groups of JSP Pages” on page 179 for more information.

To run the example, open the bookstore URL
http://localhost:8080/bookstore3/bookstore.

See “Troubleshooting Duke's Bookstore Database Problems” on page 102 for help with
diagnosing common problems.

The Java EE 5 Tutorial « October 2008

Types of Tags

Types of Tags

Simple tags are invoked using XML syntax. They have a start tag and an end tag, and possibly a
body:

<tt:tag>
body</tt:tag>

A custom tag with no body is expressed as follows:

<tt:tag /> or <tt:tag></tt:tag>

Tags with Attributes

A simple tag can have attributes. Attributes customize the behavior of a custom tag just as
parameters customize the behavior of a method. There are three types of attributes:

= Simple attributes
= Fragment attributes
= Dynamic attributes

Simple Attributes

Simple attributes are evaluated by the container before being passed to the tag handler. Simple
attributes are listed in the start tag and have the syntax attr="value". You can set a simple
attribute value from a String constant, or an expression language (EL) expression, or by using a
jsp:attribute element (see “jsp:attribute Element” on page 231). The conversion process
between the constants and expressions and attribute types follows the rules described for
JavaBeans component properties in “Setting JavaBeans Component Properties” on page 169.

The Duke’s Bookstore page

tut-install/ javaeetutorial5/examples/web/bookstore3/web/bookcatalog. jsp calls the
catalog tag, which has two attributes. The first attribute, a reference to a book database object,
is set by an EL expression. The second attribute, which sets the color of the rows in a table that
represents the bookstore catalog, is set with a String constant.

<sc:catalog bookDB ="${bookDB}" color="#cccccc">

Fragment Attributes

A JSP fragment is a portion of JSP code passed to a tag handler that can be invoked as many
times as needed. You can think of a fragment as a template that is used by a tag handler to
produce customized content. Thus, unlike a simple attribute which is evaluated by the
container, a fragment attribute is evaluated by a tag handler during tag invocation.

Chapter8 - CustomTagsin JSP Pages 229

Types of Tags

230

To declare a fragment attribute, you use the fragment attribute of the attribute directive (see
“Declaring Tag Attributes in Tag Files” on page 237) or use the fragment subelement of the
attribute TLD element (see “Declaring Tag Attributes for Tag Handlers” on page 252). You
define the value of a fragment attribute by using a jsp:attribute element. When used to
specify a fragment attribute, the body of the jsp:attribute element can contain only static text
and standard and custom tags; it cannot contain scripting elements (see Chapter 9, “Scripting in
JSP Pages”).

JSP fragments can be parameterized by means of expression language (EL) variables in the JSP
code that composes the fragment. The EL variables are set by the tag handler, thus allowing the
handler to customize the fragment each time it is invoked (see “Declaring Tag Variables in Tag
Files” on page 238, and “Declaring Tag Variables for Tag Handlers” on page 254).

The catalog tag discussed earlier accepts two fragments: normalPrice, which is displayed for a
product that’s full price, and onSale, which is displayed for a product that’s on sale.

<sc:catalog bookDB ="${bookDB}" color="#cccccc">
<jsp:attribute name="normalPrice">
<fmt:formatNumber value="${price}" type="currency"/>
</jsp:attribute>
<jsp:attribute name="onSale">
<strike><fmt:formatNumber value="${price}"
type="currency"/></strike>

<fmt:formatNumber value="${salePrice}"
type="currency"/>
</jsp:attribute>
</sc:catalog>

The tag executes the normalPrice fragment, using the values for the price EL variable, if the
product is full price. If the product is on sale, the tag executes the onSale fragment using the
price and salePrice variables.

Dynamic Attributes

A dynamic attribute is an attribute that is not specified in the definition of the tag. Dynamic
attributes are used primarily by tags whose attributes are treated in a uniform manner but
whose names are not necessarily known at development time.

For example, this tag accepts an arbitrary number of attributes whose values are colors and
outputs a bulleted list of the attributes colored according to the values:

<colored:colored colorl="red" color2="yellow" color3="blue"/>

You can also set the value of dynamic attributes using an EL expression or using the
jsp:attribute element.

The Java EE 5 Tutorial « October 2008

Types of Tags

Deferred Value

A deferred value attribute is one that accepts deferred value expressions, which are described in
“Value Expressions” on page 150.

Deferred Method

A deferred method attribute is one that accepts deferred method expressions, which are
described in “Method Expressions” on page 154.

Dynamic Attribute or Deferred Expression

This kind of attribute can accept a String literal, a scriptlet expression, or an EL expression,
including deferred expressions.

jsp:attribute Element

The jsp:attribute elementallows you to define the value of a tag attribute in the body of an
XML element instead of in the value of an XML attribute.

For example, the Duke’s Bookstore template page screendefinitions.jsp uses
jsp:attribute to use the output of fmt :message to set the value of the value attribute of
tt:parameter:

<tt:screen id="/bookcatalog">
<tt:parameter name="title" direct="true">
<jsp:attribute name="value" >
<fmt:message key="TitleBookCatalog"/>
</jsp:attribute>
</tt:parameter>
<tt:parameter name="banner" value="/template/banner.jsp"
direct="false"/>
<tt:parameter name="body" value="/bookcatalog.jsp"
direct="false"/>
</tt:screen>

jsp:attribute acceptsa name attribute and a trim attribute. The name attribute identifies
which tag attribute is being specified. The optional t rimattribute determines whether or not
white space appearing at the beginning and end of the element body should be discarded. By
default, the leading and trailing white space is discarded. The white space is trimmed when the
JSP page is translated. If a body contains a custom tag that produces leading or trailing white
space, that white space is preserved regardless of the value of the trim attribute.

An empty body is equivalent to specifying "" as the value of the attribute.

Chapter8 - CustomTagsin JSP Pages 231

Types of Tags

232

The body of jsp:attribute is restricted according to the type of attribute being specified:

= For simple attributes that accept an EL expression, the body can be any JSP content.

= For simple attributes that do not accept an EL expression, the body can contain only static
text.

= For fragment attributes, the body must not contain any scripting elements (see Chapter 9,
“Scripting in JSP Pages”).

Tags with Bodies

A simple tag can contain custom and core tags, HTML text, and tag-dependent body content
between the start tag and the end tag.

In the following example, the Duke’s Bookstore application page
tut-install/ javaeetutorial5/examples/web/bookstore3/web/bookshowcart. jsp uses the
JSTL c:if tagto print the body if the request contains a parameter named Clear:

<c:if test="${param.Clear}">

You just cleared your shopping cart!

</c:if>

jsp:body Element

You can also explicitly specify the body of a simple tag by using the jsp:body element. If one or
more attributes are specified with the jsp:attribute element, then jsp:body is the only way to
specify the body of the tag. If one or more jsp:attribute elements appear in the body of a tag
invocation but you don’t include a jsp:body element, the tag has an empty body.

Tags That Define Variables

A simple tag can define an EL variable that can be used within the calling page. In the following
example, the iterator tag sets the value of the EL variable departmentName as it iterates
through a collection of department names.

<tlt:iterator var="departmentName" type="java.lang.String"
group="${myorg.departmentNames}">
<tr>
<td>
${departmentName}</td>
</tr>
</tlt:iterator>

The Java EE 5 Tutorial « October 2008

Encapsulating Reusable Content Using Tag Files

Communication between Tags

Custom tags communicate with each other through shared objects. There are two types of
shared objects: public and private.

In the following example, the c: set tag creates a public EL variable called avariable, which is
then reused by anotherTag.

<c:set var="aVariable" value="aValue" />
<tt:anotherTag attrl="¢${aVariable}" />

Nested tags can share private objects. In the next example, an object created by outerTag is
available to innerTag. The inner tag retrieves its parent tag and then retrieves an object from
the parent. Because the object is not named, the potential for naming conflicts is reduced.

<tt:outerTag>
<tt:innerTag />
</tt:outerTag>

The Duke’s Bookstore page

tut-install/ javaeetutorial5/examples/web/bookstore3/web/template/template. jsp uses
a set of cooperating tags that share public and private objects to define the screens of the
application. These tags are described in “A Template Tag Library” on page 267.

Encapsulating Reusable Content Using Tag Files

A tagfile is a source file that contains a fragment of JSP code that is reusable as a custom tag. Tag
files allow you to create custom tags using JSP syntax. Just as a JSP page gets translated into a
servlet class and then compiled, a tag file gets translated into a tag handler and then compiled.

The recommended file extension for a tag file is . tag. As is the case with JSP files, the tag can be
composed of a top file that includes other files that contain either a complete tag or a fragment
of a tag file. Just as the reccommended extension for a fragment of a JSP file is . jspf, the
recommended extension for a fragment of a tag file is . tagf.

The following version of the Hello, World application introduced in Chapter 3, “Getting Started
with Web Applications,” uses a tag to generate the response. The response tag, which accepts
two attributes (a greeting string and a name) is encapsulated in response. tag:

n
%>

<%@ attribute name="greeting" required="true
<%@ attribute name="name" required="true" %>

<h2>${greeting}, ${name}!</h2>

The highlighted line in the greeting. jsp page invokes the response tag if the length of the
username request parameter is greater than 0:

Chapter8 - CustomTagsin JSP Pages 233

Encapsulating Reusable Content Using Tag Files

234

<%@ taglib tagdir="/WEB-INF/tags" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions"
prefix="fn" %>

<html>

<head><title>Hello</title></head>

<body bgcolor="white">

<c:set var="greeting" value="Hello" />

<h2>${greeting}, my name is Duke. What’'s yours?</h2>

<form method="get">

<input type="text" name="username" size="25">

<p></p>

<input type="submit" value="Submit">

<input type="reset" value="Reset">

</form>

<c:if test="${fn:length(param.username) > 0}" >
<h:response greeting="${greeting}"
name="${param.username}"/></c:if>
</body>
</html>

To deploy and run the hello3 application with NetBeans IDE, follow these steps:

1. InNetBeans IDE, select File—Open Project.

o

In the Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/
3. Select the hello3 folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6
7

In the Projects tab, right-click the hello3 project, and select Undeploy and Deploy.
To run the application, open the bookstore URL http://localhost:8080/hello3.

To deploy and run the hello3 application with Ant, follow these steps:

1. Inaterminal window, go to tut-install/ javaeetutorial5/examples/web/hello3/.

2. Type ant. This target will spawn any necessary compilations, copy files to the
tut-install/ javaeetutorial5/examples/web/hello3/build/ directory, and createa WAR
file.

3. Start the Application Server.

4. To deploy the example, type ant deploy.

5. To run the example, open your browser to http://localhost:8080/hello3.

The Java EE 5 Tutorial « October 2008

Encapsulating Reusable Content Using Tag Files

To learn how to configure the example, refer to the deployment descriptor (the web. xm1 file),
which includes the following configurations:

= Adisplay-name element that specifies the name that tools use to identify the application.

= Awelcome-file-list element that sets a particular page to be a welcome file.

Tag File Location

Tag files can be placed in one of two locations: in the /WEB- INF/tags/ directory or subdirectory
of aweb application or in a JAR file (see “Packaged Tag Files” on page 250) in the
/WEB-INF/1lib/ directory of a web application. Packaged tag files require a tag library descriptor
(see “Tag Library Descriptors” on page 247), an XML document that contains information
about a library as a whole and about each tag contained in the library. Tag files that appear in
any other location are not considered tag extensions and are ignored by the web container.

Tag File Directives

Directives are used to control aspects of tag file translation to a tag handler, and to specify
aspects of the tag, attributes of the tag, and variables exposed by the tag. Table 8-1 lists the
directives that you can use in tag files.

TABLE8-1 Tag File Directives

Directive Description

taglib Identical to taglib directive (see “Declaring Tag Libraries” on page 172) for JSP pages.

include Identical to include directive (see “Reusing Content in JSP Pages” on page 175) for JSP pages.
Note that if the included file contains syntax unsuitable for tag files, a translation error will
occur.

tag Similar to the page directive in a JSP page, but applies to tag files instead of JSP pages. As with

the page directive, a translation unit can contain more than one instance of the tag directive. All
the attributes apply to the complete translation unit. However, there can be only one occurrence
of any attribute or value defined by this directive in a given translation unit. With the exception
of the import attribute, multiple attribute or value (re)definitions result in a translation error.

Also used for declaring custom tag properties such as display name. See “Declaring Tags” on
page 236.

attribute Declares an attribute of the custom tag defined in the tag file. See “Declaring Tag Attributes in
Tag Files” on page 237.

variable Declares an EL variable exposed by the tag to the calling page. See “Declaring Tag Variables in
Tag Files” on page 238.

Chapter8 - CustomTagsin JSP Pages 235

Encapsulating Reusable Content Using Tag Files

Declaring Tags

The tag directive is similar to the JSP page’s page directive but applies to tag files. Some of the
elements in the tag directive appear in the tag element of a TLD (see “Declaring Tag Handlers’
on page 251). Table 8-2 lists the tag directive attributes.

>

TABLE8-2 tag Directive Attributes

Attribute Description

display-name (optional) A short name that is intended to be displayed by tools. Defaults to the
name of the tag file without the extension . tag.

body-content (optional) Provides information on the content of the body of the tag. Can be either
empty, tagdependent, or scriptless. A translation error will result if ISP or any
other value is used. Defaults to scriptless. See “body-content Attribute” on
page 237.

dynamic-attributes (optional) Indicates whether this tag supports additional attributes with dynamic
names. The value identifies a scoped attribute in which to place a Map containing the
names and values of the dynamic attributes passed during invocation of the tag.

A translation error results if the value of the dynamic-attributes of a tag directive
is equal to the value of a name-given of a variable directive or the value of a name
attribute of an attribute directive.

small-icon (optional) Relative path, from the tag source file, of an image file containing a small
icon that can be used by tools. Defaults to no small icon.

large-icon (optional) Relative path, from the tag source file, of an image file containing a large
icon that can be used by tools. Defaults to no large icon.

description (optional) Defines an arbitrary string that describes this tag. Defaults to no
description.
example (optional) Defines an arbitrary string that presents an informal description of an

example of a use of this action. Defaults to no example.

language (optional) Carries the same syntax and semantics of the language attribute of the
page directive.

import (optional) Carries the same syntax and semantics of the import attribute of the page
directive.
pageEncoding (optional) Carries the same syntax and semantics of the page-Encoding attribute in

the page directive.

isELIgnored (optional) Carries the same syntax and semantics of the 1sEL-Ignored attribute of
the page directive.

236 The Java EE 5 Tutorial « October 2008

Encapsulating Reusable Content Using Tag Files

body-content Attribute
You specify the type of a tag’s body content using the body - content attribute:

bodycontent="empty | scriptless | tagdependent"

You must declare the body content of tags that do not accept a body as empty. For tags that have
a body there are two options. Body content containing custom and standard tags and HTML
text is specified as scriptless. All other types of body content (for example, SQL statements
passed to the query tag) is specified as tagdependent. If no attribute is specified, the default is
scriptless.

Declaring Tag Attributes in Tag Files

To declare the attributes of a custom tag defined in a tag file, you use the attribute directive. A
TLD has an analogous attribute element (see “Declaring Tag Attributes for Tag Handlers” on
page 252). Table 8-3 lists the attribute directive attributes.

TABLE8-3 attribute Directive Attributes

Attribute Description
description (optional) Description of the attribute. Defaults to no description.
name The unique name of the attribute being declared. A translation error results if

more than one attribute directive appears in the same translation unit with the
same name.

A translation error results if the value of a name attribute of an attribute
directive is equal to the value of the dynamic-attributes attribute of a tag
directive or the value of a name-given attribute of a variable directive.

required (optional) Whether this attribute is required (true) or optional (false).
Defaults to false.

rtexprvalue (optional) Whether the attribute’s value can be dynamically calculated at
runtime by an expression. Defaults to true. When this element is set to t rue and
the attribute definition also includes either a deferred-value or
deferred-method element then the attribute accepts both dynamic and deferred
expressions.

type (optional) The runtime type of the attribute’s value. Defaults to
java.lang.String.

deferredvalue (optional) Indicates whether the attribute accepts deferred value expressions.
Only one of deferredValue or deferredMethod can be true. If
deferredValueType is specified, the default for deferredvalue is true. Causes
a translation error if specified in a tag file with a JSP version less than 2.1.

Chapter8 - CustomTagsin JSP Pages 237

Encapsulating Reusable Content Using Tag Files

238

TABLE8-3 attribute Directive Attributes (Continued)

Attribute

Description

deferredValueType

deferredMethod

deferredMethodSignature

fragment

(optional) The type resulting from the evaluation of the attribute’s value
expression. The defaultis java.lang.String if no type is specified. If both
deferredValueType and deferredValue are specified, deferredValue must be
true. If deferredValue is true, the default of deferredValueType is
java.lang.Object. Causes a translation error specified in a tag file with a JSP
version less than 2.1.

(optional) Indicates whether the tag attribute accepts deferred method
expressions. If deferredMethod and deferredMethodSignature are specified
then deferredMethod must be true. The default of deferredMethod is true if
deferredMethodSignature is specified, otherwise the default of
deferredMethod is false. The presence of a deferred-method element in an
attribute definition precludes the inclusion of a deferred-value element.
Causes a translation error if specified in a tag file with a JSP version less than 2.1.

(optional) The signature of the method to be invoked by the expression defined
by the accompanying deferredMethod attribute. If deferredMethod is true and
this attribute is not specified, the method signature defaults to void
methodName (). Causes a translation error if specified in a tag file with a JSP
version less than 2.1.

(optional) Whether this attribute is a fragment to be evaluated by the tag handler
(true) or a normal attribute to be evaluated by the container before being passed
to the tag handler.

If this attribute is true:

You do not specify the rtexprvalue attribute. The container fixes the
rtexprvalue attribute at true.

You do not specify the type attribute. The container fixes the type attribute at
javax.servlet.jsp.tagext.JspFragment.

Defaults to false.

Declaring Tag Variables in Tag Files

Tag attributes are used to customize tag behavior much as parameters are used to customize the
behavior of object methods. In fact, using tag attributes and EL variables, it is possible to
emulate various types of parameters: IN, OUT, and nested.

To emulate IN parameters, use tag attributes. A tag attribute is communicated between the
calling page and the tag file when the tag is invoked. No further communication occurs between
the calling page and the tag file.

To emulate OUT or nested parameters, use EL variables. The variable is not initialized by the
calling page but instead is set by the tag file. Each type of parameter is synchronized with the
calling page at various points according to the scope of the variable. See “Variable
Synchronization” on page 239 for details.

The Java EE 5 Tutorial « October 2008

Encapsulating Reusable Content Using Tag Files

To declare an EL variable exposed by a tag file, you use the variable directive. A TLD has an
analogous variable element (see “Declaring Tag Variables for Tag Handlers” on page 254).
Table 8-4 lists the variable directive attributes.

TABLE8-4 variable Directive Attributes

Attribute Description
description (optional) An optional description of this variable. Defaults to no description.
name-given | Defines an EL variable to be used in the page invoking this tag. Either name-given

name-from-attribute

alias

variable-class

declare

scope

or name- from-attribute must be specified. If name - given is specified, the value is
the name of the variable. If name- from-attribute is specified, the value is the
name of an attribute whose (translation-time) value at the start of the tag
invocation will give the name of the variable.

Translation errors arise in the following circumstances:
1. Specifying neither name-given nor name- from-attribute or both.
2. If two variable directives have the same name-given.

3. If the value of a name-given attribute of a variable directive is equal to the
value of a name attribute of an attribute directive or the value of a
dynamic-attributes attribute of a tag directive.

Defines a variable, local to the tag file, to hold the value of the EL variable. The
container will synchronize this value with the variable whose name is given in
name-from-attribute.

Required when name- from-attribute is specified. A translation error results if
used without name-from-attribute.

A translation error results if the value of alias is the same as the value of a name
attribute of an attribute directive or the name-given attribute of a variable
directive.

(optional) The name of the class of the variable. The default is java.lang.String.
(optional) Whether or not the variable is declared. True is the default.

(optional) The scope of the variable. Can be either AT_BEGIN, AT_END, or NESTED.
Defaults to NESTED.

Variable Synchronization

The web container handles the synchronization of variables between a tag file and a calling
page. Table 8-5 summarizes when and how each object is synchronized according to the

object’s scope.

Chapter8 - CustomTagsin JSP Pages 239

Encapsulating Reusable Content Using Tag Files

240

TABLE8-5 Variable Synchronization Behavior

TagFile Location AT_BEGIN NESTED AT_END
Beginning Not sync. Save Not sync.
Before any fragment invocation using Tag—page Tag—page Not sync.

jsp:invoke or jsp:doBody (see “Evaluating
Fragments Passed to Tag Files” on page 242)

End Tag—page Restore Tag—page

If name-given is used to specify the variable name, then the name of the variable in the calling
page and the name of the variable in the tag file are the same and are equal to the value of
name-given.

The name-from-attribute and alias attributes of the variable directive can be used to
customize the name of the variable in the calling page while another name is used in the tag file.
When using these attributes, you set the name of the variable in the calling page from the value
of name- from-attribute at the time the tag was called. The name of the corresponding variable
in the tag file is the value of alias.

Synchronization Examples

The following examples illustrate how variable synchronization works between a tag file and its
calling page. All the example JSP pages and tag files reference the JSTL core tag library with the
prefix c. The JSP pages reference a tag file located in /WEB- INF/tags with the prefix my.

AT_BEGIN Scope In this example, the AT_BEGIN scope is used to pass
the value of the variable named x to the tag’s body
and at the end of the tag invocation.

<%-- callingpage.jsp --%>

<c:set var="x" value="1"/>

${x} <%-- (x ==1) --%
<my:example>

${x} <%-- (x == 2) --%>
</my:example>
${x} <%-- (x == 4) --%>

<%-- example.tag --%>

<%@ variable name-given="x" scope="AT BEGIN" %>
${x} <%-- (x == null) --%>

<c:set var="x" value="2"/>

<jsp:doBody/>

${x} <%-- (x == 2) --%>

<c:set var="x" value="4"/>

The Java EE 5 Tutorial « October 2008

Encapsulating Reusable Content Using Tag Files

NESTED Scope

AT_END Scope

AT BEGIN and name-from-attribute

Chapter8 - CustomTagsin JSP Pages

In this example, the NESTED scope is used to make a
variable named x available only to the tag’s body. The
tag sets the variable to 2, and this value is passed to
the calling page before the body is invoked. Because
the scope is NESTED and because the calling page also
had a variable named x, its original value, 1, is
restored when the tag completes.

<%-- callingpage.jsp --%>
<c:set var="x" value="1"/>
${x} <%-- (x ==1) --%
<my:example>

${x} <%-- (x == 2) --%
</my:example>
${x} <%-- (x ==1) --%
<%-- example.tag --%>
<%@ variable name-given="x" scope="NESTED" %>
${x} <%-- (x == null) --%>
<c:set var="x" value="2"/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>
<c:set var="x" value="4"/>

In this example, the AT_END scope is used to return a
value to the page. The body of the tag is not affected.

<%-- callingpage.jsp --%>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%
<my:example>

${x} <%-- (x == 1) --%
</my:example>
${x} <%-- (x = 4) --%>
<%-- example.tag --%>
<%@ variable name-given="x" scope="AT END" %>
${x} <%-- (x == null) --%>
<c:set var="x" value="2"/>
<jsp:doBody/>
${x} <%-- (x ==2) --%>

<c:set var="x" value="4"/>

In this example the AT_BEGIN scope is used to pass an
EL variable to the tag’s body and make to it available
to the calling page at the end of the tag invocation.
The name of the variable is specified by the value of
the attribute var. The variable is referenced by a local
name, result, in the tag file.

241

Encapsulating Reusable Content Using Tag Files

<%-- callingpage.jsp --%>

<c:set var=x v
${x} <%--

alue="1"/>

- -%>

<my:example var="x">

${x} <%-- (x
${result} <%--
<c:set var="result" value="invisible"/>
</my:example>
${x} <%--
${result} <%--

== 2) --%>

(result == null) --%>

- -%>

(result == "invisible’) --%>

<%-- example.tag --%>

<%@ attribute name="var" required="true" rtexprvalue="false"%>
<%@ variable alias="result" name-from-attribute="var"

${x} <%--

scope="AT_BEGIN" %>
null) --%>

${result} <%-- (result == null) --%>
<c:set var="x" value="ignored"/>
<c:set var="result" value="2"/>

<jsp:doBody/>

${x} <%-- (x == "ignored’) --%>

${result} <%--

(result == 2) --%>

<c:set var="result" value="4"/>

242

Evaluating Fragments Passed to Tag Files

When a tag file is executed, the web container passes it two types of fragments: fragment
attributes and the tag body. Recall from the discussion of fragment attributes that fragments are
evaluated by the tag handler as opposed to the web container. Within a tag file, you use the
jsp:invoke element to evaluate a fragment attribute and use the jsp:doBody element to
evaluate a tag file body.

The result of evaluating either type of fragment is sent to the response or is stored in an EL
variable for later manipulation. To store the result of evaluating a fragment to an EL variable,
you specify the var or varReader attribute. If var is specified, the container stores the result in
an EL variable of type String with the name specified by var. If varReader is specified, the
container stores the result in an EL variable of type java. io.Reader, with the name specified by
varReader. The Reader object can then be passed to a custom tag for further processing. A
translation error occurs if both var and varReader are specified.

An optional scope attribute indicates the scope of the resulting variable. The possible values are
page (default), request, session, or application. A translation error occurs if you use this
attribute without specifying the var or varReader attribute.

The Java EE 5 Tutorial « October 2008

Encapsulating Reusable Content Using Tag Files

Custom Tag Examples

This section introduces examples that demonstrate using custom tags.

Simple Attribute Example

The Duke’s Bookstore shipDate tag, defined in

tut-install/ javaeetutorial5/examples/web/bookstore3/web/WEB-INF/tags/shipDate. tag,
is a custom tag that has a simple attribute. The tag generates the date of a book order according
to the type of shipping requested.

<%@ taglib prefix="sc" tagdir="/WEB-INF/tags" %>
<h3><fmt:message key="ThankYou"/> ${param.cardname}.</h3>

<fmt:message key="With"/>
<fmt:message key="${param.shipping}"/>,
<fmt:message key="ShipDatelLC"/>
<sc:shipDate shipping="${param.shipping}" />

The tag determines the number of days until shipment from the shipping attribute passed to it
by the page tut-install/ javaeetutorial5/examples/web/bookstore3/web/bookreceipt. jsp.
From the number of days, the tag computes the ship date. It then formats the ship date.

n
%>

<%@ attribute name="shipping" required="true
<jsp:useBean id="now" class="java.util.Date" />
<jsp:useBean id="shipDate" class="java.util.Date" />
<c:choose>
<c:when test="${shipping == ’'QuickShip’}">
<c:set var="days" value="2" />
</c:when>
<c:when test="${shipping == ’NormalShip’}">
<c:set var="days" value="5" />
</c:when>
<c:when test="${shipping == ’SaverShip’}">
<c:set var="days" value="7" />
</c:when>
</c:choose>
<jsp:setProperty name="shipDate" property="time"
value="${now.time + 86400000 * days}" />
<fmt:formatDate value="${shipDate}" type="date"
dateStyle="full"/>.

Simple and Fragment Attribute and Variable Example

The Duke’s Bookstore catalog tag, defined in
tut-install/ javaeetutorial5/examples/web/bookstore3/web/WEB-INF/tags/catalog. tag,

Chapter8 - CustomTagsin JSP Pages 243

Encapsulating Reusable Content Using Tag Files

244

is a custom tag with simple and fragment attributes and variables. The tag renders the catalog of
abook database as an HTML table. The tag file declares that it sets variables named price and
salePrice using variable directives. The fragment normalPrice uses the variable price, and
the fragment onSale uses the variables price and salePrice. Before the tag invokes the
fragment attributes using the jsp: invoke element, the web container passes values for the
variables back to the calling page.

<%@ attribute name="bookDB" required="true"
type="database.BookDB" %>

<%@ attribute name="color" required="true" %>

<%@ attribute name="normalPrice" fragment="true

<%@ attribute name="onSale" fragment="true" %>

n
%>

<%@ variable name-given="price" %>
<%@ variable name-given="salePrice

"
%>

<center>
<table>
<c:forEach var="book" begin="0" items="${bookDB.books}">
<tr>
<c:set var="bookId" value="${book.bookId}" />
<td bgcolor="${color}">
<c:url var="url" value="/bookdetails" >
<c:param name="bookId" value="${bookId}" />
</c:url>
<
strong>${book.title} </td>
<td bgcolor="${color}" rowspan=2>
<c:set var="salePrice" value="${book.price * .85}" />
<c:set var="price" value="${book.price}" />
<c:choose>
<c:when test="${book.onSale}" >
<jsp:invoke fragment="onSale" />
</c:when>
<c:otherwise>
<jsp:invoke fragment="normalPrice"/>
</c:otherwise>
</c:choose>

 </td>
</table>
</center>

The page bookcatalog. jsp invokes the catalog tag that has the simple attributes bookDB,
which contains catalog data, and color, which customizes the coloring of the table rows. The

The Java EE 5 Tutorial « October 2008

Encapsulating Reusable Content Using Tag Files

formatting of the book price is determined by two fragment attributes, normalPrice and
onSale, that are conditionally invoked by the tag according to data retrieved from the book
database.

<sc:catalog bookDB ="${bookDB}" color="#cccccc">
<jsp:attribute name="normalPrice">
<fmt:formatNumber value="${price}" type="currency"/>
</jsp:attribute>
<jsp:attribute name="onSale">
<strike>
<fmt:formatNumber value="${price}" type="currency"/>
</strike>

<fmt:formatNumber value="${salePrice}" type="currency"/>

</jsp:attribute>
</sc:catalog>

The screen produced by
tut-install/ javaeetutorial5/examples/web/bookstore3/web/bookcatalog.jsp is shown in
Figure 8-2. You can compare it to the version in Figure 5-2.

Chapter8 - CustomTagsin JSP Pages 245

Encapsulating Reusable Content Using Tag Files

) Book Catalog - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help

@ - - @ m ||_| http: fflocalhost: 8080/bookstore3/bookeat alog; jsessi i ‘E D‘| 'v! oogle | 4 |

Duke's E Bookstore

Please choose fi'om owr selections:

My Early Years: Growing up on *7
$3075 Addto Cart

by Dhke
Web § 's for F d Profit
[e1vers for Fun an of11 a0 35 Tt G
by Jeeves f34 64 ———

Web Components for Web Developers
by Webstar Masterson

From Oak to Java: The Revolution of a Langnage 1075

$27.75 Addto Cart

: Add to Cart
by Kevin Novation o1 -SSR0 At
Java Int liate Bytecode:
ava Intermediate ecodes $2005 ——
by James Gosling f2631 ———
The Green Project: Programming for Consumer Devices $2000
Add to Cart
by Ben Thrilled fossp ——————
Duke: A Biography of the Java Evangelist
4500 Addto Cart
by ftzal Tru |
Clapyright © 2003-2007 Sun Micragystems, Ine.
Dane [/]

FIGURES-2 Book Catalog

Dynamic Attribute Example

The following code implements the tag discussed in “Dynamic Attributes” on page 230. An
arbitrary number of attributes whose values are colors are stored in a Map named by the
dynamic-attributes attribute of the tag directive. The JSTL forEach tagis used to iterate
through the Map and the attribute keys and colored attribute values are printed in a bulleted list.

246 The Java EE 5 Tutorial « October 2008

Tag Library Descriptors

<%@ tag dynamic-attributes="colorMap"s>

<c:forEach var="color" begin="0" items="${colorMap}">
${color.key} =
${color.value}</1i>
</c:forEach>

Tag Library Descriptors

If you want to redistribute your tag files or implement your custom tags with tag handlers
written in Java, you must declare the tags in a tag library descriptor (TLD). A tag library
descriptor is an XML document that contains information about a library as a whole and about
each tag contained in the library. TLDs are used by a web container to validate the tags and by
JSP page development tools.

Tag library descriptor file names must have the extension . t1d and must be packaged in the
/WEB-INF/ directory or subdirectory of the WAR file or in the /META-INF/ directory or
subdirectory of a tag library packaged in a JAR. If a tag is implemented as a tag file and is
packaged in /WEB-INF/tags/ or a subdirectory, a TLD will be generated automatically by the
web container, though you can provide one if you wish.

Most containers set the JSP version of this automatically generated TLD (called an implicit
TLD) to 2.0. Therefore, in order to take advantage of JSP 2.1 features, you must provide a TLD
that sets the JSP version to 2.1 if you don’t have a TLD already. This TLD must be named
implicit.tld and placed into the same directory as the tag files.

You set the JSP version using the version attribute of the root taglib element that of the TLD,
as shown here:

<taglib
xsi:schemalLocation=
"http://java.sun.com/xml/ns/javaee web-
jsptaglibrary 2 1.xsd"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
version="2.1">

Table 8-6 lists the subelements of the taglib element.

TABLE8-6 taglib Subelements

Element Description

description (optional) A string describing the use of the tag library.

Chapter8 - CustomTagsin JSP Pages 247

Tag Library Descriptors

248

TABLE8-6 taglib Subelements (Continued)

Element

Description

display-name
icon
tlib-version

short-name

uri
validator
listener

tag-file | tag

function

tag-extension

(optional) Name intended to be displayed by tools.
(optional) Icon that can be used by tools.
The tag library’s version.

(optional) Name that could be used by a JSP page-authoring tool to create names with a
mnemonic value.

A URI that uniquely identifies the tag library.
See “validator Element” on page 248.
See “listener Element” on page 249.

Declares the tag files or tags defined in the tag library. See “Declaring Tag Files” on page 249
and “Declaring Tag Handlers” on page 251. A tag library is considered invalid if a tag-file
element has a name subelement with the same content as a name subelement in a tag
element.

Zero or more EL functions (see “Functions” on page 165) defined in the tag library.

(optional) Extensions that provide extra information about the tag library for tools.

Top-Level Tag Library Descriptor Elements

This section describes some top-level TLD elements. Subsequent sections describe how to
declare tags defined in tag files, how to declare tags defined in tag handlers, and how to declare
tag attributes and variables.

validator Element

This element defines an optional tag library validator that can be used to validate the
conformance of any JSP page importing this tag library to its requirements. Table 8-7 lists the
subelements of the validator element.

TABLE8-7 validator Subelements

Element

Description

validator-class

init-param

The class implementing javax.servlet.jsp.tagext.TagLibraryValidator

(optional) Initialization parameters

The Java EE 5 Tutorial « October 2008

Tag Library Descriptors

listener Element

A tag library can specify some classes that are event listeners (see “Handling Servlet Life-Cycle
Events” on page 103). The listeners are listed in the TLD as listener elements, and the web
container will instantiate the listener classes and register them in a way analogous to that of
listeners defined at the WAR level. Unlike WAR-level listeners, the order in which the tag
library listeners are registered is undefined. The only subelement of the listener element is the
listener-class element, which must contain the fully qualified name of the listener class.

Declaring Tag Files

Although not required for tag files, providing a TLD allows you to share the tag across more
than one taglibrary and lets you import the tag library using a URI instead of the tagdir
attribute.

tag-file TLD Element

A tagfile is declared in the TLD using a tag- file element. Its subelements are listed in
Table 8-8.

TABLE8-8 tag-file Subelements

Element Description

description (optional) A description of the tag.

display-name (optional) Name intended to be displayed by tools.

icon (optional) Icon that can be used by tools.

name The unique tag name.

path Where to find the tag file implementing this tag, relative to the root of the web application

or the root of the JAR file for a tag library packaged in a JAR. This must begin with
/WEB-INF/tags/ if the tag file resides in the WAR, or /META-INF/tags/ if the tag file
resides in a JAR.

example (optional) Informal description of an example use of the tag.
tag-extension (optional) Extensions that provide extra information about the tag for tools.
Unpackaged Tag Files

Tag files placed in a subdirectory of /WEB-INF/tags/ do not require a TLD file and don’t have to
be packaged. Thus, to create reusable JSP code, you simply create a new tag file and place the
code inside it.

Chapter8 - CustomTagsin JSP Pages 249

Tag Library Descriptors

250

The web container generates an implicit tag library for each directory under and including
/WEB-INF/tags/. There are no special relationships between subdirectories; they are allowed
simply for organizational purposes. For example, the following web application contains three
tag libraries:

/WEB-INF/tags/
/WEB-INF/tags/a.tag
/WEB-INF/tags/b.tag
/WEB-INF/tags/foo/
/WEB-INF/tags/foo/c.tag
/WEB-INF/tags/bar/baz/
/WEB-INF/tags/bar/baz/d.tag

The implicit TLD for each library has the following values:

= tlib-version for the tag library. Defaults to 1.0.

= short-name is derived from the directory name. If the directory is /WEB- INF/tags/, the
short name is simply tags. Otherwise, the full directory path (relative to the web
application) is taken, minus the /WEB-INF/tags/ prefix. Then all / characters are replaced
with - (hyphen), which yields the short name. Note that short names are not guaranteed to
be unique.

= A tag-fileelementis considered to exist for each tag file, with the following subelements:
= The name for each is the filename of the tag file, without the . tag extension.

= The path for each is the path of the tag file, relative to the root of the web application.

So, for the example, the implicit TLD for the /WEB- INF/tags/bar/baz/ directory would be as
follows:

<taglib>
<tlib-version>1.0</tlib-version>
<short-name>bar-baz</short-name>
<tag-file>
<name>d</name>
<path>/WEB-INF/tags/bar/baz/d.tag</path>
</tag-file>
</taglib>

Despite the existence of an implicit tag library, a TLD in the web application can still create
additional tags from the same tag files. To accomplish this, you add a tag- file element with a
path that points to the tag file.

Packaged Tag Files

Tag files can be packaged in the /META-INF/tags/ directoryin a JAR file installed in the
/WEB-INF/lib/ directory of the web application. Tags placed here are typically part of a
reusable library of tags that can be used easily in any web application.

The Java EE 5 Tutorial « October 2008

Tag Library Descriptors

Tag files bundled in a JAR require a tag library descriptor. Tag files that appear in a JAR but are
not defined in a TLD are ignored by the web container.

When used in a JAR file, the path subelement of the tag- file element specifies the full path of
the tag file from the root of the JAR. Therefore, it must always begin with /META- INF/tags/.

Tag files can also be compiled into Java classes and bundled as a tag library. This is useful when
you wish to distribute a binary version of the tag library without the original source. If you
choose this form of packaging, you must use a tool that produces portable JSP code that uses
only standard APIs.

Declaring Tag Handlers

When tags are implemented with tag handlers written in Java, each tag in the library must be
declared in the TLD with a tag element. The tag element contains the tag name, the class of its
tag handler, information on the tag’s attributes, and information on the variables created by the
tag (see “Tags That Define Variables” on page 232).

Each attribute declaration contains an indication of whether the attribute is required, whether
its value can be determined by request-time expressions, the type of the attribute, and whether
the attribute is a fragment. Variable information can be given directly in the TLD or through a
tag extra info class. Table 8-9 lists the subelements of the tag element.

TABLE8-9 tag Subelements

Element Description

description (optional) A description of the tag.

display-name (optional) name intended to be displayed by tools.

icon (optional) Icon that can be used by tools.

name The unique tag name.

tag-class The fully qualified name of the tag handler class.

tei-class (optional) Subclass of javax.servlet.jsp.tagext.TagExtraInfo. See “Declaring

Tag Variables for Tag Handlers” on page 254.
body-content The body content type. See “body - content Element” on page 252.

variable (optional) Declares an EL variable exposed by the tag to the calling page. See
“Declaring Tag Variables for Tag Handlers” on page 254.

attribute Declares an attribute of the custom tag. See “Declaring Tag Attributes for Tag
Handlers” on page 252.

Chapter8 - CustomTagsin JSP Pages 251

Tag Library Descriptors

TABLE8-9 tag Subelements (Continued)

Element Description

dynamic-attributes = Whether the tag supports additional attributes with dynamic names. Defaults to
false. If true, the tag handler class must implement the
javax.servlet.jsp.tagext.DynamicAttributes interface.

example (optional) Informal description of an example use of the tag.

tag-extension (optional) Extensions that provide extra information about the tag for tools.

body-content Element

You specify the type of body that is valid for a tag by using the body - content element. This
element is used by the web container to validate that a tag invocation has the correct body
syntax and is used by page-composition tools to assist the page author in providing a valid tag
body. There are three possible values:

= tagdependent: The body of the tag is interpreted by the tag implementation itself, and is
most likely in a different language, for example, embedded SQL statements.

= empty: The body must be empty.

= scriptless: The body accepts only static text, EL expressions, and custom tags. No
scripting elements are allowed.

Declaring Tag Attributes for Tag Handlers

For each tag attribute, you must specify whether the attribute is required, whether the value can
be determined by an expression, the type of the attribute in an attribute element (optional),
and whether the attribute is a fragment. If the rtexprvalue element is true or yes, then the
type element defines the return type expected from any expression specified as the value of the
attribute. For static values, the type is always java.lang.String. An attribute is specified in a
TLD in an attribute element. Table 8-10 lists the subelements of the attribute element.

TABLE8-10 attribute Subelements

Element Description
description (optional) A description of the attribute.
name The unique name of the attribute being declared. A translation error results if more

than one attribute element appears in the same tag with the same name.

required (optional) Whether the attribute is required. The default is false.

252 The Java EE 5 Tutorial « October 2008

Tag Library Descriptors

TABLE8-10 attribute Subelements (Continued)

Element Description

rtexprvalue (optional) Whether the attribute’s value can be dynamically calculated at runtime by
an EL expression. The default is false. When this element is set to true and the
attribute definition also includes either a deferred-value or deferred-method
element then the attribute accepts both dynamic and deferred expressions.

type (optional) The runtime type of the attribute’s value. Defaults to java.lang.String if
not specified.

fragment (optional) Whether this attribute is a fragment to be evaluated by the tag handler

deferred-value

deferred-method

(true) or a normal attribute to be evaluated by the container before being passed to
the tag handler.

If this attribute is true:

You do not specify the rtexprvalue attribute. The container fixes the rtexprvalue
attribute at true.

You do not specify the type attribute. The container fixes the type attribute at
javax.servlet.jsp.tagext.JspFragment.

Defaults to false.

(optional) Indicates that the tag attribute accepts deferred value expressions. This
element includes an optional type child element, which indicates the type of object to
which the expression resolves. If no type element is included, the type is
java.lang.Object. Either the deferred-value or deferred-method element (but
not both) can be defined for the same attribute.

(optional) Indicates that the tag attribute accepts deferred method expressions. This
element includes an optional method-signature child element, which indicates the
signature of the method that the expression invokes. If no method signature is
defined, the method signature default is void methodName (). Either the
deferred-value or deferred-method element (but not both) can be defined for the
same attribute.

If a tag attribute is not required, a tag handler should provide a default value.

The tag element for a tag that outputs its body if a test evaluates to true declares that the test
attribute is required and that its value can be set by a runtime expression.

<tag>

<name>present</name>
<tag-class>condpkg.IfSimpleTag</tag-class>
<body-content>scriptless</body-content>

<attribute>

<name>test</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

Chapter8 - CustomTagsin JSP Pages 253

Tag Library Descriptors

254

</attribute>

</tag>

Declaring Tag Variables for Tag Handlers

The example described in “Tags That Define Variables” on page 232 defines an EL variable
departmentName:

<tlt:iterator var="departmentName" type="java.lang.String"
group="${myorg.departmentNames}">
<tr>
<td>
${departmentName}</td>
</tr>
</tlt:iterator>

When the JSP page containing this tag is translated, the web container generates code to
synchronize the variable with the object referenced by the variable. To generate the code, the
web container requires certain information about the variable:

= Variable name

= Variable class

= Whether the variable refers to a new or an existing object
= The availability of the variable

There are two ways to provide this information: by specifying the variable TLD subelement or
by defining a tag extra info class and including the tei-class element in the TLD (see
“TagExtraInfo Class” on page 262). Using the variable element is simpler but less dynamic.
With the variable element, the only aspect of the variable that you can specify at runtime is its
name (with the name- from-attribute element). If you provide this information in a tag extra
info class, you can also specify the type of the variable at runtime.

Table 8-11 lists the subelements of the variable element.

TABLE8-11 variable Subelements

Element Description

description (optional) A description of the variable.

The Java EE 5 Tutorial « October 2008

Tag Library Descriptors

TABLE8-11 variable Subelements (Continued)

Element

Description

name-given |
name-from-attribute

variable-class

declare

scope

Defines an EL variable to be used in the page invoking this tag. Either name-given or
name-from-attribute must be specified. If name-given is specified, the value is the
name of the variable. If name- from-attribute is specified, the value is the name of an
attribute whose (translation-time) value at the start of the tag invocation will give the
name of the variable.

Translation errors arise in the following circumstances:
® Specifying neither name-given nor name-from-attribute or both.
®m [ftwo variable elements have the same name-given.

(optional) The fully qualified name of the class of the object. java.lang.String is the
default.

(optional) Whether or not the object is declared. True is the default. A translation
error results if both declare and fragment are specified.

(optional) The scope of the variable defined. Can be either AT_BEGIN, AT_END, or
NESTED (see Table 8—12). Defaults to NESTED.

Table 8-12 summarizes a variable’s availability according to its declared scope.

TABLE8-12 Variable Availability

Value Availability

NESTED Between the start tag and the end tag.

AT_BEGIN From the start tag until the scope of any enclosing tag. If there’s no enclosing tag, then to the
end of the page.

AT_END After the end tag until the scope of any enclosing tag. If there’s no enclosing tag, then to the
end of the page.

You can define the following variable element for the t1t:iterator tag:

<tag>
<variable>

<name-given>var</name-given>

<variable-class>java.lang.String</variable-class>

<declare>true</declare>
<scope>NESTED</scope>

</variable>
</tag>

Chapter8 - CustomTagsin JSP Pages 255

Programming Simple Tag Handlers

Programming Simple Tag Handlers

256

The classes and interfaces used to implement simple tag handlers are contained in the
javax.servlet.jsp.tagext package. Simple tag handlers implement the SimpleTag interface.
Interfaces can be used to take an existing Java object and make it a tag handler. For most newly
created handlers, you would use the SimpleTagSupport classes as a base class.

The heart of a simple tag handler is a single method, doTag, which is invoked when the end
element of the tag is encountered. Note that the default implementation of the doTag method of
SimpleTagSupport does nothing.

A tag handler has access to an API that allows it to communicate with the JSP page. The entry
point to the API is the JSP context object (javax.servlet.jsp.JspContext). The JspContext object
provides access to implicit objects. PageContext extends JspContext with servlet-specific
behavior. Through these objects, a tag handler can retrieve all the other implicit objects
(request, session, and application) that are accessible from a JSP page. If the tag is nested, a tag
handler also has access to the handler (called the parent) that is associated with the enclosing
tag.

Including Tag Handlers in Web Applications

Taghandlers can be made available to a web application in two basic ways. The classes
implementing the tag handlers can be stored in an unpacked form in the /WEB- INF/classes/
subdirectory of the web application. Alternatively, if the library is distributed as a JAR, it is
stored in the /WEB-INF/1ib/ directory of the web application.

How Is a Simple Tag Handler Invoked?

The SimpleTag interface defines the basic protocol between a simple tag handler and a JSP
page’s servlet. The JSP page’s servlet invokes the setJspContext, setParent, and attribute
setting methods before calling doStartTag.

ATag t = new ATag();
t.setJSPContext(...);
t.setParent(...);
t.setAttributel(valuel);
t.setAttribute2(value2);

t.setJspBody(new JspFragment(...))
t.doTag();

The following sections describe the methods that you need to develop for each type of tag
introduced in “T'ypes of Tags” on page 229.

The Java EE 5 Tutorial « October 2008

http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/SimpleTag.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/SimpleTagSupport.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/JspContext.html

Programming Simple Tag Handlers

Tag Handlers for Basic Tags

The handler for a basic tag without a body must implement the doTag method of the SimpleTag
interface. The doTag method is invoked when the end element of the tag is encountered.

The basic tag discussed in the first section, <tt :basic />, would be implemented by the
following tag handler:

public HelloWorldSimpleTag extends SimpleTagSupport {
public void doTag() throws JspException, IOException {
getJspContext().getOut().write("Hello, world.");
}

Tag Handlers for Tags with Attributes

This section describes how to define attributes for a tag handler and how to validate attribute
values.

Defining Attributes in aTag Handler

For each tag attribute, you must define a set method in the tag handler that conforms to the
JavaBeans architecture conventions. For example, consider the tag handler for the JSTL c:if
tag:

<c:if test="¢${Clear}"s

This tag handler contains the following method:

public void setTest(boolean test) {
this.test = test;
}

As shown by the preceding example, the name of the attribute must match the name of the set
method.

Attribute Validation

The documentation for a tag library should describe valid values for tag attributes. When a JSP
page is translated, a web container will enforce any constraints contained in the TLD element
for each attribute.

The attributes passed to a tag can also be validated at translation time using the validate
method of a class derived from TagExtraInfo. This class is also used to provide information
about variables defined by the tag (see “TagExtraInfo Class” on page 262).

Chapter8 - CustomTagsin JSP Pages 257

Programming Simple Tag Handlers

258

The validate method is passed the attribute information in a TagData object, which contains
attribute-value tuples for each of the tag’s attributes. Because the validation occurs at translation
time, the value of an attribute that is computed at request time will be set to

TagData.REQUEST TIME_VALUE.

The tag <tt:twa attrl="valuel"/> has the following TLD attribute element:

<attribute>
<name>attrl</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>
</attribute>

This declaration indicates that the value of attr1l can be determined at runtime.

The following validate method checks whether the value of attrl is a valid Boolean value.
Note that because the value of attrl can be computed at runtime, validate must check
whether the tag user has chosen to provide a runtime value.

public class TwaTEI extends TagExtraInfo {
public ValidationMessage[] validate(TagData data) {
Object o = data.getAttribute("attrl");
if (o != null && o != TagData.REQUEST TIME VALUE) {
if (((String)o).toLowerCase().equals("true") ||
((String)o).tolLowerCase().equals("false"))
return null;
else
return new ValidationMessage(data.getId(),
"Invalid boolean value.");

}
else
return null;

Setting Dynamic Attributes

Simple tag handlers that support dynamic attributes must declare that they do so in the tag
element of the TLD (see “Declaring Tag Handlers” on page 251). In addition, your tag handler
must implement the setDynamicAttribute method of the DynamicAttributes interface. For
each attribute specified in the tag invocation that does not have a corresponding attribute
element in the TLD, the web container calls setDynamicAttribute, passing in the namespace of
the attribute (or nullif in the default namespace), the name of the attribute, and the value of the
attribute. You must implement the setDynamicAttribute method to remember the names and
values of the dynamic attributes so that they can be used later when doTag is executed. If the
setDynamicAttribute method throws an exception, the doTag method is not invoked for the
tag, and the exception must be treated in the same manner as if it came from an attribute setter
method.

The Java EE 5 Tutorial « October 2008

Programming Simple Tag Handlers

The following implementation of setDynamicAttribute saves the attribute names and values
in lists. Then, in the doTag method, the names and values are echoed to the response in an
HTML list.

private ArrayList keys = new ArrayList();
private ArrayList values = new ArraylList();

public void setDynamicAttribute(String uri,
String localName, Object value) throws JspException {
keys.add(localName);
values.add(value);

public void doTag() throws JspException, IOException {
JspWriter out = getJspContext().getOut();
for(int 1 = 0; i < keys.size(); i++) {
String key = (String)keys.get(i);
Object value = values.get(i);

out.println("" + key + " =" + value + "</1i>");

Setting Deferred Value Attributes and Deferred Method Attributes

For each tag attribute that accepts a deferred value expression or a deferred method expression,
the tag handler must have a method to access the value of the attribute.

The methods that access the value of a deferred value attribute method must accept a
ValueExpression object. The methods that access the value of a deferred method attribute
must accept aMethodExpression object. These methods take the form set XXX, where XXX is
the name of the attribute.

The following example shows a method that can be used to access the value of a deferred value
attribute called attributeName:

private javax.el.ValueExpression attributeName = null;

public void setAttributeName(
javax.el.ValueExpression attributeName)

this.attributeName = attributeName;

}

Deferred value attributes and deferred method attributes are primarily used by JavaServer Faces
technology. See “Getting the Attribute Values” on page 433 for an example of creating a tag
handler that processes these attributes for a JavaServer Faces application.

Chapter8 - CustomTagsin JSP Pages 259

Programming Simple Tag Handlers

260

If you have an attribute that is both dynamic and deferred (meaning that the tag attribute
definition accepts a deferred expression and has rtexprvalue set to true), then the setX
method that accesses this value must accept an Object instance and test if the Object instance is
a deferred value expression, as shown in this pseudocode:

public void setAttr(Object obj) {
if (obj instance of ValueExpression) {
// this is a deferred expression
else {
// this is an rtexpression

Tag Handlers for Tags with Bodies

A simple tag handler for a tag with a body is implemented differently depending on whether or
not the tag handler needs to manipulate the body. A tag handler manipulates the body when it
reads or modifies the contents of the body.

Tag Handler Does Not Manipulate the Body

If a tag handler needs simply to evaluate the body, it gets the body using the getIspBody
method of SimpleTag and then evaluates the body using the invoke method.

The following tag handler accepts a test parameter and evaluates the body of the tag if the test
evaluates to true. The body of the tag is encapsulated in a JSP fragment. If the test is true, the
handler retrieves the fragment using the getJspBody method. The invoke method directs all
output to a supplied writer or, if the writer is null, to the JspWriter returned by the getOut
method of the IJspContext associated with the tag handler.

public class IfSimpleTag extends SimpleTagSupport {
private boolean test;
public void setTest(boolean test) {
this.test = test;

}
public void doTag() throws JspException, IOException {
if(test){
getJspBody () .invoke(null);
}
}

The Java EE 5 Tutorial « October 2008

Programming Simple Tag Handlers

Tag Handler Manipulates the Body

If the tag handler needs to manipulate the body, the tag handler must capture the body in a
StringWriter. The invoke method directs all output to a supplied writer. Then the modified
body is written to the JspwWriter returned by the getOut method of the JspContext. Thus, a tag
that converts its body to uppercase could be written as follows:

public class SimpleWriter extends SimpleTagSupport {
public void doTag() throws JspException, IOException {
StringWriter sw = new StringWriter();
jspBody.invoke(sw);
jspContext().
getOut().println(sw.toString().toUpperCase());

Tag Handlers for Tags That Define Variables

Similar communication mechanisms exist for communication between JSP page and tag
handlers as for JSP pages and tag files.

To emulate IN parameters, use tag attributes. A tag attribute is communicated between the
calling page and the tag handler when the tag is invoked. No further communication occurs
between the calling page and the tag handler.

To emulate OUT or nested parameters, use variables with availability AT_BEGIN, AT_END, or
NESTED. The variable is not initialized by the calling page but instead is set by the tag handler.

For AT_BEGIN availability, the variable is available in the calling page from the start tag until the
scope of any enclosing tag. If there’s no enclosing tag, then the variable is available to the end of
the page. For AT_END availability, the variable is available in the calling page after the end tag
until the scope of any enclosing tag. If there’s no enclosing tag, then the variable is available to
the end of the page. For nested parameters, the variable is available in the calling page between
the start tag and the end tag.

When you develop a tag handler you are responsible for creating and setting the object
referenced by the variable into a context that is accessible from the page. You do this by using
the JspContext().setAttribute(name, value) or

JspContext.setAttribute(name,value, scope) method. You retrieve the page context using
the getJspContext method of SimpleTag.

Typically, an attribute passed to the custom tag specifies the name of the variable and the value
of the variable is dependent on another attribute. For example, the iterator tag introduced in
Chapter 5, “JavaServer Pages Technology,’ retrieves the name of the variable from the var
attribute and determines the value of the variable from a computation performed on the group
attribute.

Chapter8 - CustomTagsin JSP Pages 261

Programming Simple Tag Handlers

262

public void doTag() throws JspException, IOException {
if (iterator == null)
return;
while (iterator.hasNext()) {
getJspContext().setAttribute(var, iterator.next());
getJspBody () .invoke(null);

}

public void setVar(String var) {
this.var = var;

}

public void setGroup(Collection group) {
this.group = group;
if(group.size() > 0)

iterator = group.iterator();

}

The scope that a variable can have is summarized in Table 8-13. The scope constrains the
accessibility and lifetime of the object.

TABLE8-13 Scope of Objects

Name Accessible From Lifetime

page Current page Until the response has been sent back to the
user or the request is passed to a new page

request Current page and any included or Until the response has been sent back to the
forwarded pages user
session Current request and any subsequent The life of the user’s session

request from the same browser (subject to
session lifetime)

application Current and any future request in the same The life of the application
web application

TagExtraInfo Class

“Declaring Tag Variables for Tag Handlers” on page 254 discussed how to provide information
about tag variables in the tag library descriptor. This section describes another approach:
defining a tag extra info class. You define a tag extra info class by extending the class
javax.servlet.jsp.tagext.TagExtraInfo. A TagExtraInfo mustimplement the
getVariableInfo method to return an array of VariableInfo objects containing the following
information:

Variable name

Variable class

Whether the variable refers to a new object
The availability of the variable

The Java EE 5 Tutorial « October 2008

Programming Simple Tag Handlers

The web container passes a parameter of type javax.servlet.jsp.tagext.TagData to the
getVariableInfo method, which contains attribute-value tuples for each of the tag’s attributes.
These attributes can be used to provide the VariableInfo object with an EL variable’s name and
class.

The following example demonstrates how to provide information about the variable created by
the iterator tagin a tag extra info class. Because the name (var) and class (type) of the
variable are passed in as tag attributes, they can be retrieved using the
data.getAttributeString method and can be used to fill in the VariableInfo constructor. To
allow the variable var to be used only within the tag body, you set the scope of the object to
NESTED.

package iterator;
public class IteratorTEI extends TagExtraInfo {
public VariableInfo[] getVariableInfo(TagData data) {
String type = data.getAttributeString("type");
if (type == null)
type = "java.lang.Object"
return new VariableInfo[] {
new VariableInfo(data.getAttributeString("var"),
type,
true,
VariableInfo.NESTED)

}

The fully qualified name of the tag extra info class defined for an EL variable must be declared in
the TLD in the tei-class subelement of the tag element. Thus, the tei-class element for
IteratorTei would be as follows:

<tei-class>
iterator.IteratorTEI
</tei-class>

Cooperating Tags
Tags cooperate by sharing objects. JSP technology supports two styles of object sharing.

The first style requires that a shared object be named and stored in the page context (one of the
implicit objects accessible to JSP pages as well as tag handlers). To access objects created and
named by another tag, a tag handler uses the pageContext.getAttribute(name, scope)
method.

In the second style of object sharing, an object created by the enclosing tag handler of a group of
nested tags is available to all inner tag handlers. This form of object sharing has the advantage
that it uses a private namespace for the objects, thus reducing the potential for naming conflicts.

Chapter8 - CustomTagsin JSP Pages 263

Programming Simple Tag Handlers

264

To access an object created by an enclosing tag, a tag handler must first obtain its enclosing tag
by using the static method SimpleTagSupport. findAncestorWithClass(from,class) or the
SimpleTagSupport.getParent method. The former method should be used when a specific
nesting of tag handlers cannot be guaranteed. After the ancestor has been retrieved, a tag
handler can access any statically or dynamically created objects. Statically created objects are
members of the parent. Private objects can also be created dynamically. Such privately named
objects would have to be managed by the tag handler; one approach would be to use a Map to
store name-object pairs.

The following example illustrates a tag handler that supports both the named approach and the
private object approach to sharing objects. In the example, the handler for a query tag checks
whether an attribute named connectionId has been set. If the connectionId attribute has been
set, the handler retrieves the connection object from the page context. Otherwise, the tag
handler first retrieves the tag handler for the enclosing tag and then retrieves the connection
object from that handler.

public class QueryTag extends SimpleTagSupport {
public int doTag() throws JspException {
String cid = getConnectionId();
Connection connection;
if (cid !'= null) {
// there is a connection id, use it
connection =(Connection)pageContext.
getAttribute(cid);
} else {
ConnectionTag ancestorTag =
(ConnectionTag) findAncestorWithClass(this,
ConnectionTag.class);
if (ancestorTag == null) {
throw new JspTagException("A query without
a connection attribute must be nested
within a connection tag.");
}

connection = ancestorTag.getConnection();

}

The query tag implemented by this tag handler can be used in either of the following ways:
<tt:connection cid="con0l" ... >

</tt;é;nnection>

<tt:query id="balances" connectionId="con01">

SELECT account, balance FROM acct table
where customer number = ?

The Java EE 5 Tutorial « October 2008

Programming Simple Tag Handlers

<tt:param value="${requestScope.custNumber}" />
</tt:query>

<tt:connection ... >
<tt:query cid="balances">
SELECT account, balance FROM acct table
where customer number = ?
<tt:param value="${requestScope.custNumber}" />
</tt:query>
</tt:connection>

The TLD for the tag handler uses the following declaration to indicate that the connectionId
attribute is optional:

<tag>

<attribute>
<name>connectionId</name>
<required>false</required>
</attribute>
</tag>

Tag Handler Examples

The simple tags described in this section demonstrate solutions to two recurring problems in
developing JSP applications: minimizing the amount of Java programming in JSP pages and
ensuring a common look and feel across applications. In doing so, they illustrate many of the
styles of tags discussed in the first part of the chapter.

An Iteration Tag

Constructing page content that is dependent on dynamically generated data often requires the
use of flow control scripting statements. By moving the flow control logic to tag handlers, flow
control tags reduce the amount of scripting needed in JSP pages. Iteration is a very common
flow control function and is easily handled by a custom tag.

The discussion on using tag libraries in Chapter 5, “JavaServer Pages Technology,” introduced a
tag library containing an iterator tag. The tag retrieves objects from a collection stored in a
JavaBeans component and assigns them to an EL variable. The body of the tag retrieves
information from the variable. As long as elements remain in the collection, the iterator tag
causes the body to be reevaluated. The tag in this example is simplified to make it easy to
demonstrate how to program a custom tag. web applications requiring such functionality
should use the JSTL forEach tag, which is discussed in “Iterator Tags” on page 208.

Chapter8 - CustomTagsin JSP Pages 265

Programming Simple Tag Handlers

266

JSP Page

The index. jsp page invokes the iterator tag to iterate through a collection of department
names. Each item in the collection is assigned to the departmentName variable.

<%@ taglib uri="/tlt" prefix="tlt" %>
<html>
<head>
<title>Departments</title>
</head>
<body bgcolor="white">
<jsp:useBean id="myorg" class="myorg.Organization"/>
<table border=2 cellspacing=3 cellpadding=3>
<tr>
<td>Departments</td>
</tr>
<tlt:iterator var="departmentName" type="java.lang.String"
group="${myorg.departmentNames}">
<tr>
<td>
${departmentName}</td>
</tr>
</tlt:iterator>
</table>
</body>
</html>

Tag Handler

The collection is set in the tag handler by means of the group attribute. The tag handler retrieves
an element from the group and passes the element back to the page in the EL variable whose
name is determined by the var attribute. The variable is accessed in the calling page using the
JSP expression language. After the variable is set, the tag body is evaluated with the invoke
method.

public void doTag() throws JspException, IOException {
if (iterator == null)
return;
while (iterator.hasNext()) {
getJspContext().setAttribute(var, iterator.next());
getJspBody () .invoke(null);

}
public void setVar(String var) {
this.var = var;

}
public void setGroup(Collection group) {

The Java EE 5 Tutorial « October 2008

Programming Simple Tag Handlers

this.group = group;
if(group.size() > 0)
iterator = group.iterator();

ATemplate Tag Library

A template provides a way to separate the common elements that are part of each screen from
the elements that change with each screen of an application. Putting all the common elements
together into one file makes it easier to maintain and enforce a consistent look and feel in all the
screens. It also makes development of individual screens easier because the designer can focus
on portions of a screen that are specific to that screen while the template takes care of the
common portions.

The template is a JSP page that has placeholders for the parts that need to change with each
screen. Each of these placeholders is referred to as a parameter of the template. For example, a
simple template might include a title parameter for the top of the generated screen and a body
parameter to refer to a JSP page for the custom content of the screen.

The template uses a set of nested tags (definition, screen, and parameter) to define a table of
screen definitions and uses an insert tag to insert parameters from a screen definition into a
specific application screen.

JSP Pages

The template for the Duke’s Bookstore example,

tut-install/ javaeetutorial5/examples/web/bookstore3/web/template/template.jsp,is
shown next. This page includes a JSP page that creates the screen definition and then uses the
insert tagto insert parameters from the definition into the application screen.

<%@ taglib uri="/tutorial-template" prefix="tt" %>
<%@ page errorPage="/template/errorinclude.jsp" %>
<%@ include file="/template/screendefinitions.jsp" %>
<html>
<head>
<title>
<tt:insert definition="bookstore" parameter="title"/>
</title>
</head>
<body bgcolor="#FFFFFF">

<tt:insert definition="bookstore" parameter="banner"/>
<tt:insert definition="bookstore" parameter="body"/>
<center>Copyright © 2004 Sun Microsystems, Inc. </center>
</body>
</html>

Chapter8 - CustomTagsin JSP Pages 267

Programming Simple Tag Handlers

The

tut-install/ javaeetutorial5/examples/web/bookstore3/web/template/screendefinitions.jspf
page creates a definition for the screen specified by the request attribute
javax.servlet.forward.servlet path

<tt:definition name="bookstore"
screen="${requestScope
['javax.servlet.forward.servlet path’]}">
<tt:screen id="/bookstore">
<tt:parameter name="title" value="Duke’s Bookstore"
direct="true"/>
<tt:parameter name="banner" value="/template/banner.jsp"
direct="false"/>
<tt:parameter name="body" value="/bookstore.jsp"
direct="false"/>
</tt:screen>
<tt:screen id="/bookcatalog">
<tt:parameter name="title" direct="true">
<jsp:attribute name="value" >
<fmt:message key="TitleBookCatalog"/>
</jsp:attribute>
</tt:parameter>
<tt:parameter name="banner" value="/template/banner.jsp"
direct="false"/>
<tt:parameter name="body" value="/bookcatalog.jsp"
direct="false"/>
</tt:screen>

</tt:definition>

The template is instantiated by the Dispatcher servlet. Dispatcher first gets the requested
screen. Dispatcher performs business logic and updates model objects based on the requested
screen. For example, if the requested screen is /bookcatalog, Dispatcher determines whether
abook is being added to the cart based on the value of the Add request parameter. It sets the
price of the book if it’s on sale, and then adds the book to the cart. Finally, the servlet dispatches
the request to template. jsp:

public class Dispatcher extends HttpServlet {
@Resource
UserTransaction utx;

public void doGet(HttpServletRequest request,
HttpServletResponse response) {
String bookId = null;
Book book = null;
String clear = null;
BookDBAO bookDBAO =

268 The Java EE 5 Tutorial « October 2008

Programming Simple Tag Handlers

(BookDBAO) getServletContext().
getAttribute("bookDBAO");
HttpSession session = request.getSession();
String selectedScreen = request.getServletPath();
ShoppingCart cart = (ShoppingCart)session.
getAttribute("cart");
if (cart == null) {
cart = new ShoppingCart();
session.setAttribute("cart", cart);
}
if (selectedScreen.equals("/bookcatalog")) {
bookId = request.getParameter("Add")
if (!bookId.equals(")) {
try {
book = bookDBAO.getBook(bookId);
if (book.getOnSale()) {
double sale = book.getPrice() * .85;
Float salePrice = new Float(sale);
book.setPrice(salePrice.floatValue());
}
cart.add(bookId, book);
} catch (BookNotFoundException ex) {
// not possible

}

} else if (selectedScreen.equals("/bookshowcart")) {
bookId =request.getParameter("Remove");
if (bookId != null) {
cart.remove(bookId);
}
clear = request.getParameter("Clear");
if (clear '= null && clear.equals("clear")) {
cart.clear();
}
} else if (selectedScreen.equals("/bookreceipt")) {
// Update the inventory
try {
utx.begin();
bookDBAO. buyBooks (cart) ;
utx.commit();
} catch (Exception ex) {
try {
utx.rollback();
request.getRequestDispatcher(
"/bookordererror.jsp").
forward(request, response);
} catch(Exception e) {
System.out.println(

Chapter8 - CustomTagsin JSP Pages 269

Programming Simple Tag Handlers

270

"Rollback failed: "+e.getMessage());
e.printStackTrace();

}
}
H
try {
request.

getRequestDispatcher(
"/template/template.jsp").
forward(request, response);
} catch(Exception ex) {
ex.printStackTrace();

public void doPost(HttpServletRequest request,
HttpServletResponse response) {
request.setAttribute("selectedScreen",
request.getServletPath());
try {
request.
getRequestDispatcher(
"/template/template.jsp").
forward(request, response);
} catch(Exception ex) {
ex.printStackTrace();

Tag Handlers

The template tag library contains four tag handlers (DefinitionTag, ScreenTag,
ParameterTag, and InsertTag) that demonstrate the use of cooperating tags. DefinitionTag,
ScreenTag, and ParameterTag constitute a set of nested tag handlers that share private objects.
DefinitionTag creates a public object named bookstore thatis used by InsertTag.

In doTag,

tut-install/ javaeetutorial5/examples/web/bookstore3/src/java/com/sun/bookstore3/template/Defi
creates a private object named screens that contains a hash table of screen definitions. A screen

definition consists of a screen identifier and a set of parameters associated with the screen.

These parameters are loaded when the body of the definition tag, which contains nested screen

and parameter tags, is invoked. DefinitionTag creates a public object of class

tut-install/ javaeetutorial5/examples/web/bookstore3/src/java/com/sun/bookstore3/template/Defi
selects a screen definition from the screens object based on the URL passed in the request, and

uses this screen definition to initialize a public Definition object.

The Java EE 5 Tutorial « October 2008

Programming Simple Tag Handlers

public int doTag() {
try {

screens = new HashMap();
getJspBody().invoke(null);
Definition definition = new Definition();
PageContext context = (PageContext)getJspContext();
ArrayList params = (ArrayList) screens.get(screenId);
Iterator ir = null;
if (params !'= null) {

ir = params.iterator();

while (ir.hasNext())

definition.setParam((Parameter)ir.next());
// put the definition in the page context
context.setAttribute(definitionName, definition,
context.APPLICATION SCOPE);

}

The table of screen definitions is filled in by ScreenTag and ParameterTag from text provided
as attributes to these tags. Table 8-14 shows the contents of the screen definitions hash table for
the Duke’s Bookstore application.

TABLE8-14 Screen Definitions

ScreenID Title Banner Body

/bookstore Duke’s Bookstore /banner.jsp /bookstore. jsp
/bookcatalog Book Catalog /banner.jsp /bookcatalog.jsp
/bookdetails Book Description /banner.jsp /bookdetails.jsp
/bookshowcart Shopping Cart /banner.jsp /bookshowcart. jsp
/bookcashier Cashier /banner.jsp /bookcashier.jsp
/bookreceipt Receipt /banner. jsp /bookreceipt.jsp

If the URL passed in the request is /bookstore, the Definition object contains the items from
the first row of Table 8—14 (see Table 8-15).

TABLE8-15 Definition Object Contents for URL /bookstore

Title Banner Body

Duke’s Bookstore /banner.jsp /bookstore. jsp

The parameters for the URL /bookstore are shown in Table 8-16. The parameters specify that
the value of the title parameter, Duke’s Bookstore, should be inserted directly into the output
stream, but the values of banner and body should be included dynamically.

Chapter8 - CustomTagsin JSP Pages 271

Programming Simple Tag Handlers

TABLE 8-16 Parameters for the URL /bookstore

Parameter Name Parameter Value isDirect
title Duke’s Bookstore true
banner /banner.jsp false
body /bookstore.jsp false

tut-install/ javaeetutorial5/examples/web/bookstore3/src/java/com/sun/bookstore3/template/Inse
inserts parameters of the screen definition into the response. The doTag method retrieves the

definition object from the page context and then inserts the parameter value. If the parameter is

direct, it is directly inserted into the response; otherwise, the request is sent to the parameter,

and the response is dynamically included into the overall response.

public void doTag() throws JspTagException {
Definition definition = null;
Parameter parameter = null;
boolean directInclude = false;
PageContext context = (PageContext)getJspContext();

// get the definition from the page context
definition = (Definition)context.getAttribute(
definitionName, context.APPLICATION SCOPE);
// get the parameter
if (parameterName != null && definition != null)
parameter = (Parameter)
definition.getParam(parameterName);

if (parameter != null)
directInclude = parameter.isDirect();

try {
// if parameter is direct, print to out
if (directInclude && parameter != null)

context.getOut().print(parameter.getValue());
// if parameter is indirect,
include results of dispatching to page
else {
if ((parameter != null) &&
(parameter.getValue() != null))
context.include(parameter.getValue());
}
} catch (Exception ex) {
throw new JspTagException(ex.getMessage());

272 The Java EE 5 Tutorial « October 2008

L K R 4 CHAPTER 9

Scripting in JSP Pages

JSP scripting elements allow you to use Java programming language statements in your JSP
pages. Scripting elements are typically used to create and access objects, define methods, and
manage the flow of control. Many tasks that require the use of scripts can be eliminated by using
custom tag libraries, in particular the JSP Standard Tag Library. Because one of the goals of JSP
technology is to separate static data from the code needed to dynamically generate content, very
sparing use of JSP scripting is recommended. Nevertheless, there may be some circumstances
that require its use.

There are three ways to create and use objects in scripting elements:

= Instance and class variables of the JSP page’s servlet class are created in declarations and
accessed in scriptlets and expressions.

= Local variables of the JSP page’s servlet class are created and used in scriptlets and
expressions.

= Attributes of scope objects (see “Using Scope Objects” on page 105) are created and used in
scriptlets and expressions.

This chapter briefly describes the syntax and usage of JSP scripting elements.

The Example JSP Pages

This chapter illustrates JSP scripting elements using webclient, a version of the hellol
example introduced in Chapter 3, “Getting Started with Web Applications,” that accesses a web
service.

To deploy and run the webclient example using NetBeans IDE, follow these steps:

1. Build and deploy the JAX-WS web service MyHelloService described in “Building,
Packaging, and Deploying the Service” on page 484.

2. InNetBeans IDE, select File—Open Project.

273

The Example JSP Pages

3. Inthe Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/jaxws/
4. Select thewebclient folder.
5. Select the Open as Main Project check box and the Open Required Projects check box.
6. Click Open Project.
7. Inthe Projects tab, right-click the webclient project, and select Undeploy and Deploy.
8. To run the application, open the bookstore URL
http://localhost:8080/webclient/greeting.

To deploy and run the webclient example using ant, follow these steps:

1. Build and deploy the JAX-WS web service MyHelloService described in “Building,
Packaging, and Deploying the Service” on page 484.

2. Inaterminal window, go to tut-install/ javaeetutorial5/examples/jaxws/webclient/.

3. Runant. This target will spawn any necessary compilations, will copy files to the
tut-install/ javaeetutorial5/examples/jaxws/webclient/build/ directory, will create a
WAR file, and will copy it to the
tut-install/ javaeetutorial5/examples/jaxws/webclient/dist directory.

4. Start the Application Server.

5. To deploy the example using ant, run the following command:

ant deploy
6. To run the example, open your browser to http://localhost:8080/webclient/greeting.

To learn how to configure the example, refer to the deployment descriptor (the web . xm1 file),
which includes the following configurations:

= Adisplay-name element that specifies the name that tools use to identify the application.
= Asetof servlet elements that identify the application’s JSP file.
= A servlet-mapping element that defines the alias to the JSP file.

Note - The example assumes that the Application Server runs on the default port, 8080. If
you have changed the port, you must update the port number in the file

tut-install/ javaeetutorial5/examples/jaxws/webclient/response. jsp before building
and running the example.

274 The Java EE 5 Tutorial « October 2008

Disabling Scripting

Using Scripting

JSP technology allows a container to support any scripting language that can call Java objects. If
you wish to use a scripting language other than the default, java, you must specify it in the
language attribute of the page directive at the beginning of a JSP page:

1
%>

<%@ page language="scripting-language"

Because scripting elements are converted to programming language statements in the JSP
page’s servlet class, you must import any classes and packages used by a JSP page. If the page
language is java, you import a class or package with the import attribute of the page directive:

<%@ page import="fully-qualified-classname, packagename.*" %>

Thewebclient JSP page response. jsp uses the following page directive to import the classes
needed to access the service classes:

<%@ page import=
"helloservice.endpoint.HelloService,
helloservice.endpoint.Hello" %>

Disabling Scripting

By default, scripting in JSP pages is valid. Because scripting can make pages difficult to
maintain, some JSP page authors or page authoring groups may want to follow a methodology
in which scripting elements are not allowed.

You can disable scripting for a group of JSP pages in an application in one of two ways:

= Select the Ignore Java Script check box in the JSP Property Group node of the NetBeans IDE
web . xml editor.

= Setthescripting-invalid element of the application’s deployment descriptor to true. The
scripting-invalid element isa child of the jsp-property-group element that defines
properties for a set of JSP pages.

For information on how to define a group of JSP pages, see “Setting Properties for Groups of JSP
Pages” on page 179. When scripting is invalid, it means that scriptlets, scripting expressions,
and declarations will produce a translation error if present in any of the pages in the group.
Table 9-1 summarizes the scripting settings and their meanings.

Chapter9 « Scriptingin JSP Pages 275

JSP Declarations

TABLE9-1 Scripting Settings

JSP Configuration Scripting Encountered

Unspecified Valid

false Valid

true Translation Error
JSP Declarations

A JSP declaration is used to declare variables and methods in a page’s scripting language. The
syntax for a declaration is as follows:

<%! scripting-language-declaration %>

When the scripting language is the Java programming language, variables and methods in JSP
declarations become declarations in the JSP page’s servlet class.

Initializing and Finalizing a JSP Page

You can customize the initialization process to allow the JSP page to read persistent
configuration data, initialize resources, and perform any other one-time activities; to do so, you
override the jspInit method of the JspPage interface. You release resources using the
jspDestroy method. The methods are defined using JSP declarations.

For example, an older version of the Duke’s Bookstore application retrieved the object that
accesses the bookstore database from the context and stored a reference to the object in the
variable bookDBAOQ in the jspInit method. The variable definition and the initialization and
finalization methods jspInit and jspDestroy were defined in a declaration:

<%!
private BookDBAO bookDBAO;
public void jspInit() {
bookDBAO =
(BookDBAO) getServletContext().getAttribute("bookDB")
if (bookDBAO == null)
System.out.println("Couldn’t get database.")

-

o°

>

When the JSP page was removed from service, the jspDestroy method released the BookDBAO
variable.

276 The Java EE 5 Tutorial « October 2008

JSP Expressions

<%!
public void jspDestroy() {
bookDBAO = null;

-

o°
Vv

JSP Scriptlets

A JSP scriptlet is used to contain any code fragment that is valid for the scripting language used
in a page. The syntax for a scriptlet is as follows:

A
o°

scripting-language-statements

o°

>

When the scripting language is set to java, a scriptlet is transformed into a Java programming
language statement fragment and is inserted into the service method of the JSP page’s servlet. A
programming language variable created within a scriptlet is accessible from anywhere within
the JSP page.

In the web service version of the hello1 application, greeting. jsp contains a scriptlet to
retrieve the request parameter named username and test whether it is empty. If the i f statement
evaluates to true, the response page is included. Because the i f statement opens a block, the
HTML markup would be followed by a scriptlet that closes the block.

A
o°

String username = request.getParameter("username");
if (username != null && username.length() > 0) {

o
\%

n
%>

<%@include file="response.jsp

A
o°

}

o
\%

JSP Expressions

A JSP expression is used to insert the value of a scripting language expression, converted into a
string, into the data stream returned to the client. When the scripting language is the Java
programming language, an expression is transformed into a statement that converts the value
of the expression into a String object and inserts it into the implicit out object.

The syntax for an expression is as follows:

<%= scripting-language-expression %>

Chapter9 « Scriptingin JSP Pages 277

Programming Tags That Accept Scripting Elements

Note that a semicolon is not allowed within a JSP expression, even if the same expression has a
semicolon when you use it within a scriptlet.

In the web service version of the hellol application, response. jsp contains the following
scriptlet, which gets the proxy that implements the service endpoint interface. It then invokes
the sayHello method on the proxy, passing the user name retrieved from a request parameter:

A
o°

String resp = null;
try {

Hello hello = new HelloService().getHelloPort();

resp = hello.sayHello(request.getParameter("username"));
} catch (Exception ex) {

resp = ex.toString();

}

>

K

A scripting expression is then used to insert the value of resp into the output stream:

<h2><%= resp %>!</h2>

Programming Tags That Accept Scripting Elements

278

Tags that accept scripting elements in attribute values or in the body cannot be programmed as
simple tags; they must be implemented as classic tags. The following sections describe the TLD
elements and JSP tag extension API specific to classic tag handlers. All other TLD elements are
the same as for simple tags.

TLD Elements

You specify the character of a classic tag’s body content using the body - content element:

<body-content>empty | JSP | tagdependent</body-content>

You must declare the body content of tags that do not have a body as empty. For tags that have a
body, there are two options. Body content containing custom and core tags, scripting elements,
and HTML text is categorized as JSP. All other types of body content (for example, SQL
statements passed to the query tag) are labeled tagdependent.

Tag Handlers

The classes and interfaces used to implement classic tag handlers are contained in the
javax.servlet.jsp.tagext package. Classic tag handlers implement either the Tag, the

The Java EE 5 Tutorial « October 2008

http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/package-summary.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/Tag.html

Programming Tags That Accept Scripting Elements

IterationTag, or the BodyTag interface. Interfaces can be used to take an existing Java object and
make it a tag handler. For newly created classic tag handlers, you can use the TagSupport and
BodyTagSupport classes as base classes. These classes and interfaces are contained in the
javax.servlet.jsp.tagext package.

Tag handler methods defined by the Tag and BodyTag interfaces are called by the JSP page’s
servlet at various points during the evaluation of the tag. When the start element of a custom tag
is encountered, the JSP page’s servlet calls methods to initialize the appropriate handler and
then invokes the handler’s doStartTag method. When the end element of a custom tag is
encountered, the handler’s doEndTag method is invoked for all but simple tags. Additional
methods are invoked in between when a tag handler needs to manipulate the body of the tag.
For further information, see “Tags with Bodies” on page 280. To provide a tag handler
implementation, you must implement the methods, summarized in Table 9-2, that are invoked
at various stages of processing the tag.

TABLE9-2 TagHandler Methods

Tag Type Interface Methods

Basic Tag doStartTag, doEndTag

Attributes Tag doStartTag, doEndTag, setAttributel, ... ,N, release
Body Tag doStartTag, doEndTag, release

Body, iterative evaluation IterationTag doStartTag, doAfterBody, doEndTag, release

Body, manipulation BodyTag doStartTag, doEndTag, release, doInitBody, doAfterBody

A tag handler has access to an API that allows it to communicate with the JSP page. The entry
points to the API are two objects: the JSP context (javax.servlet.jsp.JspContext) for simple tag
handlers and the page context (javax.servlet.jsp.PageContext) for classic tag handlers.
JspContext provides access to implicit objects. PageContext extends JspContext with
HTTP-specific behavior. A tag handler can retrieve all the other implicit objects (request,
session, and application) that are accessible from a JSP page through these objects. In addition,
implicit objects can have named attributes associated with them. Such attributes are accessed
using [set|get]Attribute methods.

If the tag is nested, a tag handler also has access to the handler (called the parent) associated
with the enclosing tag.

How Is a Classic Tag Handler Invoked?

The Tag interface defines the basic protocol between a tag handler and a JSP page’s servlet. It
defines the life cycle and the methods to be invoked when the start and end tags are
encountered.

Chapter9 « Scriptingin JSP Pages 279

http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/IterationTag.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/BodyTag.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/TagSupport.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/tagext/BodyTagSupport.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/JspContext.html
http://java.sun.com/javaee/5/docs/api/javax/servlet/jsp/PageContext.html

Programming Tags That Accept Scripting Elements

280

The JSP page’s servlet invokes the setPageContext, setParent, and attribute-setting methods
before calling doStartTag. The JSP page’s servlet also guarantees that release will be invoked
on the tag handler before the end of the page.

Here is a typical tag handler method invocation sequence:

ATag t = new ATag();
.setPageContext(...);
.setParent(...);
.setAttributel(valuel);
.setAttribute2(value2);
.doStartTag();
.doEndTag();
.release();

+ + + + + + +

The BodyTag interface extends Tag by defining additional methods that let a tag handler access
its body. The interface provides three new methods:

= setBodyContent: Creates body content and adds to the tag handler
= doInitBody: Called before evaluation of the tag body
= doAfterBody: Called after evaluation of the tag body

A typical invocation sequence is as follows:

t.doStartTag();
out = pageContext.pushBody();
t.setBodyContent(out);
// perform any initialization needed after body content is set
t.doInitBody();
t.doAfterBody();
// while doAfterBody

returns EVAL BODY_ AGAIN

we

// iterate body evaluation

t.doAfterBody();
t.doEndTag();

out = pageContext.popBody();
t.release();

Tags with Bodies

A tag handler for a tag with a body is implemented differently depending on whether or not the
tag handler needs to manipulate the body. A tag handler manipulates the body when it reads or
modifies the contents of the body.

The Java EE 5 Tutorial « October 2008

Programming Tags That Accept Scripting Elements

Tag Handler Does Not Manipulate the Body

If the tag handler does not need to manipulate the body, the tag handler should implement the
Tag interface. If the tag handler implements the Tag interface and the body of the tag needs to be
evaluated, the doStartTag method must return EVAL BODY INCLUDE; otherwise it should return
SKIP_BODY.

If a tag handler needs to iteratively evaluate the body, it should implement the IterationTag
interface. The tag handler should return EVAL_BODY_AGAIN from the doAfterBody method if it
determines that the body needs to be evaluated again.

Tag Handler Manipulates the Body

If the tag handler needs to manipulate the body, the tag handler must implement BodyTag (or
must be derived from BodyTagSupport).

When a tag handler implements the BodyTag interface, it must implement the doInitBody and
the doAfterBody methods. These methods manipulate body content passed to the tag handler
by the JSP page’s servlet.

A BodyContent object supports several methods to read and write its contents. A tag handler
can use the body content’s getString or getReader method to extract information from the
body, and thewriteOut (out) method to write the body contents to an out stream. The writer
supplied to the writeOut method is obtained using the tag handler’s getPreviousOut method.

This method is used to ensure that a tag handler’s results are available to an enclosing tag
handler.

If the body of the tag needs to be evaluated, the doStartTag method must return
EVAL BODY BUFFERED; otherwise, it should return SKIP BODY.

doInitBody Method

The doInitBody method is called after the body content is set but before it is evaluated. You
generally use this method to perform any initialization that depends on the body content.

doAfterBody Method

The doAfterBody method is called after the body content is evaluated. doAfterBody must
return an indication of whether to continue evaluating the body. Thus, if the body should be
evaluated again, as would be the case if you were implementing an iteration tag, doAfterBody
should return EVAL_BODY_AGAIN; otherwise, doAfterBody should return SKIP_BODY.

The following example reads the content of the body (which contains an SQL query) and passes
it to an object that executes the query. Because the body does not need to be reevaluated,
doAfterBody returns SKIP BODY.

Chapter9 « Scriptingin JSP Pages 281

Programming Tags That Accept Scripting Elements

282

public class QueryTag extends BodyTagSupport {
public int doAfterBody() throws JspTagException {

BodyContent bc = getBodyContent();

// get the bc as string

String query = bc.getString();

// clean up

bc.clearBody();

try {
Statement stmt = connection.createStatement();
result = stmt.executeQuery(query);

} catch (SQLException e) {
throw new JspTagException("QueryTag: " +

e.getMessage());

}
return SKIP_ BODY;
}
}
release Method

A tag handler should reset its state and release any private resources in the release method.

Cooperating Tags
Tags cooperate by sharing objects. JSP technology supports two styles of object sharing.

The first style requires that a shared object be named and stored in the page context (one of the
implicit objects accessible to JSP pages as well as tag handlers). To access objects created and
named by another tag, a tag handler uses the pageContext.getAttribute(name, scope)
method.

In the second style of object sharing, an object created by the enclosing tag handler of a group of
nested tags is available to all inner tag handlers. This form of object sharing has the advantage
that it uses a private namespace for the objects, thus reducing the potential for naming conflicts.

To access an object created by an enclosing tag, a tag handler must first obtain its enclosing tag
using the static method TagSupport.findAncestorWithClass (from, class) or the
TagSupport.getParent method. The former method should be used when a specific nesting of
tag handlers cannot be guaranteed. After the ancestor has been retrieved, a tag handler can
access any statically or dynamically created objects. Statically created objects are members of
the parent. Private objects can also be created dynamically. Such objects can be stored in a tag
handler using the setValue method and can be retrieved using the getvalue method.

The following example illustrates a tag handler that supports both the named approach and the
private object approach to sharing objects. In the example, the handler for a query tag checks
whether an attribute named connectionId has been set. If the connection attribute has been

The Java EE 5 Tutorial « October 2008

Programming Tags That Accept Scripting Elements

set, the handler retrieves the connection object from the page context. Otherwise, the tag
handler first retrieves the tag handler for the enclosing tag and then retrieves the connection
object from that handler.

public class QueryTag extends BodyTagSupport {
public int doStartTag() throws JspException {
String cid = getConnectionId();
Connection connection;
if (cid !'= null) {
// there is a connection id, use it
connection =(Connection)pageContext.
getAttribute(cid);
} else {
ConnectionTag ancestorTag =
(ConnectionTag) findAncestorWithClass(this,
ConnectionTag.class);
if (ancestorTag == null) {
throw new JspTagException("A query without
a connection attribute must be nested
within a connection tag.");
}

connection = ancestorTag.getConnection();

}

The query tag implemented by this tag handler can be used in either of the following ways:
<tt:connection cid="con0l" ... >

</tt:connection>
<tt:query id="balances" connectionId="con01">
SELECT account, balance FROM acct table
where customer number = ?
<tt:param value="${requestScope.custNumber}" />
</tt:query>

<tt:connection ... >
<tt:query cid="balances">
SELECT account, balance FROM acct table
where customer number = ?
<tt:param value="${requestScope.custNumber}" />
</tt:query>
</tt:connection>

The TLD for the tag handler use the following declaration to indicate that the connectionId
attribute is optional:

Chapter9 « Scriptingin JSP Pages 283

Programming Tags That Accept Scripting Elements

284

<tag>

<attribute>
<name>connectionId</name>
<required>false</required>
</attribute>
</tag>

Tags That Define Variables

The mechanisms for defining variables in classic tags are similar to those described in

Chapter 8, “Custom Tags in JSP Pages” You must declare the variable in a variable element of
the TLD or in a tag extra info class. Use PageContext () .setAttribute(name,value) or
PageContext.setAttribute(name,value, scope) methods in the taghandler to create or
update an association between a name that is accessible in the page context and the object that is
the value of the variable. For classic tag handlers, Table 9-3 illustrates how the availability of a
variable affects when you may want to set or update the variable’s value.

TABLE9-3 Variable Availability

Value Availability In Methods

NESTED Between the start tag and the end tag doStartTag, doInitBody, and doAfterBody

AT_BEGIN From the start tag until the end of the page doStartTag, doInitBody, doAfterBody, and
doEndTag

AT END After the end tag until the end of the page ~ doEndTag

A variable defined by a custom tag can also be accessed in a scripting expression. For example,
the web service described in the preceding section can be encapsulated in a custom tag that
returns the response in a variable named by the var attribute, and then var can be accessed in a
scripting expression as follows:

<ws:hello var="response"
name="<%=request.getParameter("username")%>" />
<h2><%= response %>!</h2>

Remember that in situations where scripting is not allowed (in a tag body where the
body-content is declared as scriptless and in a page where scripting is specified to be
invalid), you wouldn’t be able to access the variable in a scriptlet or an expression. Instead, you
would have to use the JSP expression language to access the variable.

The Java EE 5 Tutorial « October 2008

L K R 4 CHAPTER 10

JavaServer Faces Technology

JavaServer Faces technology is a server-side user interface component framework for Java
technology-based web applications.

The main components of JavaServer Faces technology are as follows:

An APT for representing UI components and managing their state; handling events,
server-side validation, and data conversion; defining page navigation; supporting
internationalization and accessibility; and providing extensibility for all these features

Two JavaServer Pages (JSP) custom tag libraries for expressing UI components within a JSP
page and for wiring components to server-side objects

The well-defined programming model and tag libraries significantly ease the burden of building
and maintaining web applications with server-side Uls. With minimal effort, you can

Drop components onto a page by adding component tags

Wire component-generated events to server-side application code
Bind UI components on a page to server-side data

Construct a UI with reusable and extensible components

Save and restore Ul state beyond the life of server requests

JavaServer Faces Technology User Interface

As shown in Figure 10-1, the user interface you create with JavaServer Faces technology
(represented by myUI in the graphic) runs on the server and renders back to the client.

285

http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/index.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/tlddocs/index.html

JavaServer Faces Technology Benefits

- - - Web Container

D

Access page
HTTP Request

myform.jsp

Browser

Renders HTML
HTTP Response

FIGURE 10-1 The UI Runs on the Server

The JSP page, myform. jsp, is a JavaServer Faces page, which is a JSP page that includes
JavaServer Faces tags. It expresses the user interface components by using custom tags defined
by JavaServer Faces technology. The UI for the web application (represented by myUI in the
figure) manages the objects referenced by the JSP page. These objects include

= The UI component objects that map to the tags on the JSP page
= Anyevent listeners, validators, and converters that are registered on the components

= The JavaBeans components that encapsulate the data and application-specific functionality
of the components

This chapter gives an overview of JavaServer Faces technology. After going over some of the
primary benefits of using JavaServer Faces technology and explaining what a JavaServer Faces
application is, it describes a simple application and specifies which part of the application the
developers of each role work on. It then describes the UI component model, the navigation
model, and the backing bean features supported by JavaServer Faces technology. Finally, this
chapter uses a page from a simple application to summarize the life cycle of a JavaServer Faces

page.

JavaServer Faces Technology Benefits

286

One of the greatest advantages of JavaServer Faces technology is that it offers a clean separation
between behavior and presentation. Web applications built using JSP technology achieve this
separation in part. However, a JSP application cannot map HTTP requests to
component-specific event handling nor manage Ul elements as stateful objects on the server, as
a JavaServer Faces application can. JavaServer Faces technology allows you to build web
applications that implement the finer-grained separation of behavior and presentation that is
traditionally offered by client-side UT architectures.

The separation of logic from presentation also allows each member of a web application
development team to focus on his or her piece of the development process, and it provides a
simple programming model to link the pieces. For example, page authors with no programming
expertise can use JavaServer Faces technology UI component tags to link to server-side objects
from within a web page without writing any scripts.

The Java EE 5 Tutorial « October 2008

A Simple JavaServer Faces Application

Another important goal of JavaServer Faces technology is to leverage familiar Ul-component
and web-tier concepts without limiting you to a particular scripting technology or markup
language. Although JavaServer Faces technology includes a JSP custom tag library for
representing components on a JSP page, the JavaServer Faces technology APIs are layered
directly on top of the Servlet API, as shown in Figure 3-2. This layering of APIs enables several
important application use cases, such as using another presentation technology instead of JSP
pages, creating your own custom components directly from the component classes, and
generating output for various client devices.

Most importantly, JavaServer Faces technology provides a rich architecture for managing
component state, processing component data, validating user input, and handling events.

What Is a JavaServer Faces Application?

For the most part, a JavaServer Faces application is like any other Java web application. A typical
JavaServer Faces application includes the following pieces:

= A set of JSP pages (although you are not limited to using JSP pages as your presentation
technology)

= A set of backing beans, which are JavaBeans components that define properties and
functions for UI components on a page

= Anapplication configuration resource file, which defines page navigation rules and
configures beans and other custom objects, such as custom components

= A deployment descriptor (aweb.xml file)

= Possibly a set of custom objects created by the application developer. These objects might
include custom components, validators, converters, or listeners.

= Asetof custom tags for representing custom objects on the page
A JavaServer Faces application that includes JSP pages also uses the standard tag libraries

defined by JavaServer Faces technology for representing UI components and other objects on
the page.

A Simple JavaServer Faces Application

This section describes the general steps involved in developing a simple JavaServer Faces
application from the perspective of different development roles. These roles are:

= Page author, who creates pages by using the JavaServer Faces tag libraries.

= Application developer, who programs custom converters, validators, listeners, and backing
beans.

= Component author, who creates custom Ul components and renderers.

Chapter 10 - JavaServer Faces Technology 287

A Simple JavaServer Faces Application

288

= Application architect, who configures the application, including defining the navigation
rules, configuring custom objects, and creating deployment descriptors.

This application is quite simple, and so it does not include any custom components. See chapter
“Writing a Method to Handle a Value-Change Event” on page 409 to learn about the
responsibilities of a component writer.

Steps in the Development Process

Developing a simple JavaServer Faces application usually requires these tasks:

= Mapping the FacesServlet instance.

= Creating the pages using the Ul component and core tags.

= Defining page navigation in the application configuration resource file.
= Developing the backing beans.

= Adding managed bean declarations to the application configuration resource file.

The example used in this section is the guessNumber application, located in the

tut-install/ javaeetutorial5/examples/web/ directory. It asks you to guess a number between
0and 10, inclusive. The second page tells you whether you guessed correctly. The example also
checks the validity of your input. The system log prints Duke’s number. Figure 10-2 shows what
the first page looks like.

Hi. My name is Duke. I'm thinking of a number
from 0 to 10. Can you guess it?

| [submit |

FIGURE10-2 The greeting.jsp Page of the guessNumber Application

The source for the guessNumber application is located in the
tut-install/ javaeetutorial5/examples/web/guessNumber/ directory created when you unzip
the tutorial bundle (see Chapter 2, “Using the Tutorial Examples”).

The Java EE 5 Tutorial « October 2008

A Simple JavaServer Faces Application

To build, package, deploy, and run this example using NetBeans IDE, follow these steps:

1. InNetBeans IDE, select File—Open Project.
2. Inthe Open Project dialog, navigate to:

tut-install/ javaeetutorial5/examples/web/
3. Select the guessNumber folder.
4. Select the Open as Main Project check box.
5. Click Open Project.
6. In the Projects tab, right-click the guessNumber project, and select Undeploy and Deploy.
7. Torun the application, open the URL http://localhost:8080/guessNumber in a browser.

To build, package, and deploy this example using Ant, follow these steps:

Go to tut-install/ javaeetutorial5/examples/web/guessNumber/.

. Typeant.

1
2
3. Start the Application Server.
4. Type ant deploy.

5

. Torun the application, open the URL http://localhost:8080/guessNumber in a browser.

To learn how to configure the example, refer to the deployment descriptor (the web . xm1 file),
which includes the following configurations:

= Adisplay-name element that specifies the name that tools use to identify the application.
= Aservlet element that identifies the FacesServlet instance.

= Aservlet-mapping element that maps FacesServlet to a URL pattern.

Mapping the FacesServlet Instance

All JavaServer Faces applications must include a mapping to the FacesServlet instance in their
deployment descriptors. The FacesServlet instance accepts incoming requests, passes them to
the life cycle for processing, and initializes resources. The following piece of the guessNumber
example’s deployment descriptor performs the mapping to the FacesServlet instance:

<servlet>
<display-name>FacesServlet</display-name>
<servlet-name>FacesServlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet
</servlet-class>
<load-on-startup>1l</load-on-startup>

</servlet>

<servlet-mapping>

Chapter 10 - JavaServer Faces Technology 289

A Simple JavaServer Faces Application

290

<servlet-name>FacesServlet</servlet-name>
<url-pattern>/guess/*</url-pattern>
</servlet-mapping>

The mapping to FacesServlet shown above uses a prefix mapping to identify a JSP page as
having JavaServer Faces components. Because of this, the URL to the first JSP page of the
application must include the mapping. To accomplish this, the guessNumber example includes
an HTML page that has the URL to the first JSP page:

See “Identifying the Servlet for Life Cycle Processing” on page 461 for more information on how
to map the FacesServlet instance.

Creating the Pages

Creating the pages is the page author’s responsibility. This task involves laying out UI
components on the pages, mapping the components to beans, and adding tags that register
converters, validators, or listeners onto the components.

In this section you will build the

tut-install/ javaeetutorial5/examples/examples/web/guessNumber/web/greeting. jsp
page, the first page of the guessNumber application. As with any JSP page, you’ll need to add the
usual HTML and HEAD tags to the page:

<HTML xmlns="http://www.w3.0rg/1999/xhtml"xml:lang="en">
<HEAD> <title>Hello</title> </HEAD>

</HTML>
You’ll also need a page directive that specifies the content type:

<%@ page contentType="application/xhtml+xml" %>

Declaring the Tag Libraries

In order to use JavaServer Faces components in JSP pages, you need to give your pages access to
the two standard tag libraries, the HTML component tag library and the core tag library using
taglib declarations:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http:.//java.sun.com/jsf/core" prefix="f" %>

The first taglib declaration declares the HTML component tag library with a prefix, h. All
component tags in the page have this prefix. The core taglibrary is declared with the prefix f. All
core tags in the page have this prefix.

The Java EE 5 Tutorial « October 2008

A Simple JavaServer Faces Application

“User Interface Component Model” on page 299 includes a table that lists all the component
tags included with JavaServer Faces technology. “Adding UI Components to a Page Using the
HTML Component Tags” on page 329 discusses the tags in more detail.

Adding the viewand formTags

All JavaServer Faces pages are represented by a tree of components, called a view. The view tag
represents the root of the view. All JavaServer Faces component tags must be inside of a view
tag, which is defined in the core tag library.

The form tag represents an input form component, which allows the user to input some data
and submit it to the server, usually by clicking a button. All UI component tags that represent
editable components (such as text fields and menus) must be nested inside the form tag. In the
case of the greeting. jsp page, some of the tags contained in the form are outputText,
inputText, commandButton, and message. You can specify an ID for the form tag. This ID maps
to the associated form UI component on the server.

With the viewand formtags added, our page looks like this (minus the HTML and HEAD tags):

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<f:view>

<h:form id="helloForml">

</h:form>
</f:view>

Adding a Label Component

The outputText tag represents alabel. The greeting. jsp page has two outputText tags. One
of the tags displays the number 0. The other tag displays the number 10:

<h:outputText lang="en US"
value="#{UserNumberBean.minimum}"/>
<h:outputText value="#{UserNumberBean.maximum}"/>

The value attributes of the tags get the values from the minimum and maximum properties of
UserNumberBean using value expressions, which are used to reference data stored in other
objects, such as beans. See “Backing Beans” on page 310 for more information on value
expressions.

With the addition of the outputText tags (along with some static text), the greeting page looks
like the following:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<f:view>

<h:form id="helloForml">

Chapter 10 - JavaServer Faces Technology 291

A Simple JavaServer Faces Application

<h2>Hi. My name is Duke. I'm thinking of a number from
<h:outputText lang="en US"
value="#{UserNumberBean.minimum}"/> to
<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>
</h:form>
</f:iview>

Adding anImage

To display images on a page, you use the graphicImage tag. The url attribute of the tag specifies
the path to the image file. Let’s add Duke to the page using a graphicImage tag:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<f:view>
<h:form id="helloForml"s>
<h2>Hi. My name is Duke. I'm thinking of a number from
<h:outputText lang="en US"
value="#{UserNumberBean.minimum}"/> to
<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>
<h:graphicImage id="waveImg" url="/wave.med.gif" />
</h:form>
</f:view>

Adding a Text Field

The inputText tag represents a text field component. In the guessNumber example, this text
field takes an integer input value. The instance of this tag included in greeting. jsp has three
attributes: id, label, and value.

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}">

</h:inputText>

The id attribute corresponds to the ID of the component object represented by this tag. In this
case, an id attribute is required because the message tag (which is used to display validation
error messages) needs it to refer to the userNo component.

The label attribute specifies the name to be used by error messages to refer to the component.
In this example, label is set to User Number. As an example, if a user were to enter 23, the error
message that would be displayed is:

User Number: Validation Error: Value is greater than allowable maximum of 10.

292 The Java EE 5 Tutorial « October 2008

A Simple JavaServer Faces Application

The value attribute binds the userNo component value to the bean property
UserNumberBean.userNumber, which holds the data entered into the text field.

After adding the inputText tag, the greeting page looks like the following:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<f:view>
<h:form id="helloForml">
<h2>Hi. My name is Duke. I'm thinking of a number from
<h:outputText lang="en US"
value="#{UserNumberBean.minimum}"/> to
<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>
<h:graphicImage id="waveImg" url="/wave.med.gif" />
<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}">

</h:inputText>
</h:form>
</f:view>

See “Backing Beans” on page 310 for more information on creating beans, binding to bean
properties, referencing bean methods, and configuring beans.

See “Using Text Components” on page 332 for more information on the inputText tag.

Registering a Validator on a Text Field

By nesting the validateLongRange tag within a text field’s component’s tag, the page author
registers a LongRangeValidator onto the text field. This validator checks whether the
component’s local data is within a certain range, defined by the validateLongRange tag’s
minimumand maximum attributes.

In the case of the greeting page, you need to validate the number the user enters into the text
field. So, you add a validateLongRange tag inside the inputText tag. The maximumand minimum
attributes of the validatelLongRange tag get their values from the minimum and maximum
properties of UserNumberBean using the value expressions #{UserNumberBean.minimum} and
#{UserNumberBean.maximum}. See “Backing Beans” on page 310 for details on value
expressions.

After adding the validateLongRange tag, the page looks like this:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<f:view>

<h:form id="helloForml">

Chapter 10 - JavaServer Faces Technology 293

A Simple JavaServer Faces Application

294

<h2>Hi. My name is Duke. I'm thinking of a number from
<h:outputText lang="en US"
value="#{UserNumberBean.minimum}"/> to
<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>
<h:graphicImage id="waveImg" url="/wave.med.gif" />
<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}">
<f:validatelLongRange
minimum="#{UserNumberBean.minimum}"
maximum="#{UserNumberBean.maximum}" />
</h:inputText>
</h:form>
</f:view>

For more information on the standard validators included with JavaServer Faces technology,
see “Using the Standard Validators” on page 364.

Adding a Custom Message

JavaServer Faces technology provides standard error messages that display on the page when
conversion or validation fails. In some cases, you might need to override the standard message.
For example, if a user were to enter a letter into the text field on greeting. jsp, he or she would
see the following error message:

User Number: ’m" must be a number between -2147483648 and 2147483647 Example: 9346
This is wrong because the field really only accepts values from 0 through 10.

To override this message, you add a converterMessage attribute on the inputText tag. This
attribute references the custom error message:

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}"
converterMessage="#{ErrMsg.userNoConvert}">

</h:inputText>

The expression that converterMessage uses references the userNoConvert key of the ErrMsg
resource bundle. The application architect needs to define the message in the resource bundle
and configure the resource bundle. See “Configuring Error Messages” on page 297 for more
information on this.

See “Referencing Error Messages” on page 355 for more information on referencing error
messages.

The Java EE 5 Tutorial « October 2008

A Simple JavaServer Faces Application

Adding a Button

The commandButton tag represents the button used to submit the data entered in the text field.
The action attribute specifies an outcome that helps the navigation mechanism decide which
page to open next. “Defining Page Navigation” on page 296 discusses this further.

With the addition of the commandButton tag, the greeting page looks like the following:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

<h:form id="helloForml">
<h2>Hi. My name is Duke. I'm thinking of a number from
<h:outputText lang="en US"
value="#{UserNumberBean.minimum}"/> to
<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>
<h:graphicImage id="waveImg" url="/wave.med.gif" />
<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}">
<f:validateLongRange
minimum="#{UserNumberBean.minimum}"
maximum="#{UserNumberBean.maximum}" />
</h:inputText>
<h:commandButton id="submit"
action="success" value="Submit" />
</h:form>
</f:view>

See “Using Command Components for Performing Actions and Navigation” on page 337 for
more information on the commandButton tag.

Displaying Error Messages

A message tag is used to display error messages on a page when data conversion or validation
fails after the user submits the form. The message tagin greeting. jsp displays an error
message if the data entered in the field does not comply with the rules specified by the
LongRangeValidator implementation, whose tag is registered on the text field component.

The error message displays wherever you place the message tag on the page. The message tag’s
style attribute allows you to specify the formatting style for the message text. Its for attribute
refers to the component whose value failed validation, in this case the userNo component
represented by the inputText tag in the greeting. jsp page.

Put the message tag near the end of the page:
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<f:view>

Chapter 10 - JavaServer Faces Technology 295

A Simple JavaServer Faces Application

<h:form id="helloForml">
<h2>Hi. My name is Duke. I'm thinking of a number from
<h:outputText lang="en US"
value="#{UserNumberBean.minimum}"/> to
<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>
<h:graphicImage id="waveImg" url="/wave.med.gif" />
<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}"
converterMessage="#{ErrMsg.userNoConvert}">
<f:validatelLongRange
minimum="#{UserNumberBean.minimum}"
maximum="#{UserNumberBean.maximum}" />
</h:inputText>
<h:commandButton id="submit"
action="success" value="Submit" />
<h:message showSummary="true" showDetail="false"
style="color: red;
font-family: 'New Century Schoolbook’, serif;
font-style: oblique;
text-decoration: overline"
id="errors1"
for="userNo"/>
</h:form>
</fiview>

Now you have completed the greeting page. Assuming you have also done the response. jsp
page, you can move on to defining the page navigation rules.

Defining Page Navigation

Defining page navigation involves determining which page to go to after the user clicks a button
or a hyperlink. Navigation for the application is defined in the application configuration
resource file using a powerful rule-based system. Here is one of the navigation rules defined for
the guessNumber example:

<navigation-rule>
<from-view-id>/greeting.jsp</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/response.jsp</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/response.jsp</from-view-id>
<navigation-case>

296 The Java EE 5 Tutorial « October 2008

A Simple JavaServer Faces Application

<from-outcome>success</from-outcome>
<to-view-id>/greeting.jsp</to-view-id>
</navigation-case>
</navigation-rule>

This navigation rule states that when the button on the greeting page is clicked the application
will navigate to response. jsp if the navigation system is given a logical outcome of success.

In the case of the Guess Number example, the logical outcome is defined by the action attribute
of the UICommand component that submits the form:

<h:commandButton id="submit" action="success"
value="Submit" />

To learn more about how navigation works, see “Navigation Model” on page 308.

Configuring Error Messages

In case the standard error messages don’t meet your needs, you can create new ones in resource
bundles and configure the resource bundles in your application configuration resource file. The
guessNumber example has one custom converter message, as described in “Adding a Custom
Message” on page 294.

This message is stored in the resource bundle, ApplicationMessages.properties:

userNoConvert=The value you entered is not a number.

The resource bundle is configured in the application configuration file:

<application>
<resource-bundle>
<base-name>guessNumber.ApplicationMessages</base-name>
<var>ErrMsg</var>
</resource-bundle>
</application>

The base-name element indicates the fully-qualified name of the resource bundle. The var
element indicates the name by which page authors refer to the resource bundle with the
expression language. Here is the inputText tag again:

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}"
converterMessage="#{ErrMsg.userNoConvert}">

</h:inputText>

The expression on the converterMessage attribute references the userNoConvert key of the
ErrMsg resource bundle.

Chapter 10 - JavaServer Faces Technology 297

A Simple JavaServer Faces Application

298

See “Registering Custom Error Messages” on page 450 for more information on configuring
custom error messages.

Developing the Beans

Developing beans is one responsibility of the application developer. A typical JavaServer Faces
application couples a backing bean with each page in the application. The backing bean defines
properties and methods that are associated with the UI components used on the page.

The page author binds a component’s value to a bean property using the component tag’s value
attribute to refer to the property. Recall that the userNo component on the greeting. jsp page
references the userNumber property of UserNumberBean:

<h:inputText id="userNo" label="User Number"
value="#{UserNumberBean.userNumber}">

</h:inputText>
Here is the userNumber backing bean property that maps to the data for the userNo component:
Integer userNumber = null;

public void setUserNumber(Integer user number) {
userNumber = user_number;

}
public Integer getUserNumber() {
return userNumber;
}
public String getResponse() {
if(userNumber '= null &&
userNumber.compareTo(randomInt) == 0) {
return "Yay! You got it!"
} else {
return "Sorry, "+userNumber+" is incorrect."

}

See “Backing Beans” on page 310 for more information on creating backing beans.

Adding Managed Bean Declarations

After developing the backing beans to be used in the application, you need to configure them in
the application configuration resource file so that the JavaServer Faces implementation can
automatically create new instances of the beans whenever they are needed.

The Java EE 5 Tutorial « October 2008

User Interface Component Model

The task of adding managed bean declarations to the application configuration resource file is
the application architect’s responsibility. Here is a managed bean declaration for
UserNumberBean:

<managed-bean>
<managed-bean-name>UserNumberBean</managed-bean-name>
<managed-bean-class>
guessNumber.UserNumberBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>minimum</property-name>
<property-class>long</property-class>
<value>0</value>
</managed-property>
<managed-property>
<property-name>maximum</property-name>
<property-class>long</property-class>
<value>10</value>
</managed-property>
</managed-bean>

This declaration configures UserNumberBean so that its minimum property is initialized to 0, its
maximum property is initialized to 10, and it is added to session scope when it is created.

A page author can use the unified EL to access one of the bean’s properties, like this:

<h:outputText value="#{UserNumberBean.minimum}"/>

For more information on configuring beans, see “Configuring a Bean” on page 311.

User Interface Component Model

JavaServer Faces Ul components are configurable, reusable elements that compose the user
interfaces of JavaServer Faces applications. A component can be simple, such as a button, or
compound, such as a table, which can be composed of multiple components.

JavaServer Faces technology provides a rich, flexible component architecture that includes the
following:

= A set of UIComponent classes for specifying the state and behavior of UI components
= Arendering model that defines how to render the components in various ways

= Aneventand listener model that defines how to handle component events

= A conversion model that defines how to register data converters onto a component

= A validation model that defines how to register validators onto a component

Chapter 10 - JavaServer Faces Technology 299

User Interface Component Model

300

This section briefly describes each of these pieces of the component architecture.

User Interface Component Classes

JavaServer Faces technology provides a set of Ul component classes and associated behavioral
interfaces that specify all the UI component functionality, such as holding component state,
maintaining a reference to objects, and driving event handling and rendering for a set of
standard components.

The component classes are completely extensible, allowing component writers to create their
own custom components. See Chapter 13, “Creating Custom UI Components,” for an example
of a custom image map component.

All JavaServer Faces UI component classes extend UIComponentBase, which defines the default
state and behavior of a Ul component. The following set of UI component classes is included
with JavaServer Faces technology:

= UIColumn:Represents asingle column of data in a UIData component.
= UICommand: Represents a control that fires actions when activated.

= UIData:Representsa data binding to a collection of data represented by a DataModel
instance.

= UIForm: Encapsulatesa group of controls that submit data to the application. This
component is analogous to the form tag in HTML.

= UIGraphic: Displays animage.

= UIInput: Takes datainputfrom a user. This classis a subclass of UIOutput.
= UIMessage: Displays alocalized message.

m UIMessages: Displays a set of localized messages.

= UIOutput: Displays data output on a page.

= UIPanel: Manages the layout of its child components.

= UIParameter: Represents substitution parameters.

m UISelectBoolean: Allows a user to set a boolean value on a control by selecting or
deselecting it. This class is a subclass of ULInput.

m UISelectItem: Representsa singleitem in a set of items.
= UISelectItems: Representsan entire set of items.

= UISelectMany: Allows a user to select multiple items from a group of items. This class is a
subclass of UTInput.

= UISelectOne: Allows a user to select one item from a group of items. This class is a subclass
of UIInput.

= UIViewRoot: Represents the root of the component tree.

The Java EE 5 Tutorial « October 2008

User Interface Component Model

In addition to extending UIComponentBase, the component classes also implement one or more
behavioral interfaces, each of which defines certain behavior for a set of components whose
classes implement the interface.

These behavioral interfaces are as follows:

m ActionSource: Indicates that the component can fire an action event. This interface is
intended for use with components based on JavaServer Faces technology 1.1_01 and earlier
versions.

= ActionSource2: Extends ActionSource, and therefore provides the same functionality.
However, it allows components to use the unified EL when referencing methods that handle
action events.

= EditableValueHolder: Extends ValueHolder and specifies additional features for editable
components, such as validation and emitting value-change events.

= NamingContainer: Mandates that each component rooted at this component have a unique
ID.

= StateHolder: Denotes that a component has state that must be saved between requests.

= ValueHolder: Indicates that the component maintains a local value as well as the option of
accessing data in the model tier.

UICommand implements ActionSource2 and StateHolder. UIOutput and component classes
that extend UIOutput implement StateHolder and ValueHolder. UIInput and component
classes that extend UIInput implement EditableValueHolder, StateHolder, and
ValueHolder. UIComponentBase implements StateHolder. See the JavaServer Faces
Technology 1.2 API Specification for more information on these interfaces.

Only component writers will need to use the component classes and behavioral interfaces
directly. Page authors and application developers will use a standard UI component by
including a tag that represents it on a JSP page. Most of the components can be rendered in
different ways on a page. For example, a UICommand component can be rendered as a button or a
hyperlink.

The next section explains how the rendering model works and how page authors choose how to
render the components by selecting the appropriate tags.

Chapter 10 - JavaServer Faces Technology 301

http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/javax/faces/component/package-summary.html
http://java.sun.com/javaee/javaserverfaces/1.2/docs/api/javax/faces/component/package-summary.html

User Interface Component Model

Component Rendering Model

The JavaServer Faces component architecture is designed such that the functionality of the
components is defined by the component classes, whereas the component rendering can be
defined by a separate renderer. This design has several benefits, including:

= Component writers can define the behavior of a component once but create multiple
renderers, each of which defines a different way to render the component to the same client
or to different clients.

= Page authors and application developers can change the appearance of a component on the
page by selecting the tag that represents the appropriate combination of component and
renderer.

A render kit defines how component classes map to component tags that are appropriate for a
particular client. The JavaServer Faces implementation includes a standard HTML render kit
for rendering to an HTML client.

The render kit defines a set of Renderer classes for each component that it supports. Each
Renderer class defines a different way to render the particular component to the output defined
by the render kit. For example, a UISelectOne component has three different renderers. One of
them renders the component as a set of radio buttons. Another renders the component as a
combo box. The third one renders the component as a list box.

Each JSP custom tag defined in the standard HTML render kit is composed of the component
functionality (defined in the UIComponent class) and the rendering attributes (defined by the
Renderer class). For example, the two tags in Table 10-1 represent a UICommand component
rendered in two different ways.

TABLE10-1 UICommand Tags

Tag Rendered As
commandButton
Login
commandLink .
hyperlink

The command part of the tags shown in Table 10-1 corresponds to the UICommand class,
specifying the functionality, which is to fire an action. The button and hyperlink parts of the
tags each correspond to a separate Renderer class, which defines how the component appears
on the page.

302 The Java EE 5 Tutorial « October 2008

User Interface Component Model

The JavaServer Faces implementation provides a custom tag library for rendering components
in HTML. It supports all the component tags listed in Table 10-2. To learn how to use the tags
in an example, see “Adding UI Components to a Page Using the HTML Component Tags” on

page 329.

TABLE10-2 The UI Component Tags

Tag Functions Rendered As Appearance
column Represents a column of datain A column of data in an A column in a table
aUIData component. HTML table
commandButton Submits a form to the An HTML <input A button
application. type=type> element,
where the type value can
be submit, reset, or
image
commandLink Links to another page or An HTML <a href> A hyperlink
location on a page. element
dataTable Represents a data wrapper. An HTML <table> A table that can be
element updated dynamically
form Represents an input form. The An HTML <form> No appearance
inner tags of the form receive element
the data that will be submitted
with the form.
graphicImage Displays an image. An HTML element Animage
inputHidden Allows a page author to An HTML <input No appearance
include a hidden variableina type=hidden> element
page.
inputSecret Allows a user to inputa string An HTML <input A text field, which
without the actual string type=password>element displays a row of
appearing in the field. characters instead of
the actual string
entered
inputText Allows a user to inputa string. An HTML <input A text field
type=text> element
inputTextarea Allows a user to enter a An HTML <textarea> A multi-row text field
multiline string. element
message Displays alocalized message. ~ An HTML tagif A textstring
styles are used
messages Displays localized messages. A set of HTML A text string

tags if styles are used

Chapter 10 - JavaServer Faces Technology

303

User Interface Component Model

304

TABLE10-2 The UI Component Tags (Continued)
Tag Functions Rendered As Appearance
outputFormat Displays alocalized message. Plain text Plain text
outputLabel Displays a nested component ~ An HTML <label> Plain text
as alabel for a specified input element
field.
outputLink Links to another page or An HTML <a> element A hyperlink
location on a page without
generating an action event.
outputText Displays a line of text. Plain text Plain text
panelGrid Displays a table. AnHTML <table> A table
element with <tr>and
<td> elements
panelGroup Groups a set of components Arowinatable

selectBooleanCheckbox

selectItem

selectItems

selectManyCheckbox

selectManyListbox

selectManyMenu

selectOneListbox

selectOneMenu

selectOneRadio

under one parent.

Allows a user to change the
value of a Boolean choice.

Represents one item in a list of
items ina UISelectOne
component.

Represents a list of items in a
UISelectOne component.

Displays a set of check boxes
from which the user can select
multiple values.

Allows a user to select multiple
items from a set of items, all
displayed at once.

Allows a user to select multiple
items from a set of items.

Allows a user to select one
item from a set of items, all
displayed at once.

Allows a user to select one
item from a set of items.

Allows a user to select one
item from a set of items.

An HTML <input

type=checkbox> element.

An HTML <option>
element

Alist of HTML <option>

elements

A set of HTML <input>

elements of type checkbox

An HTML <select>
element

An HTML <select>
element

An HTML <select>
element

An HTML <select>
element

An HTML <input
type=radio> element

A check box

No appearance

No appearance

A set of check boxes

Alist box

A scrollable combo
box

Alist box

A scrollable combo
box

A set of radio buttons

The Java EE 5 Tutorial « October 2008

User Interface Component Model

Conversion Model

A JavaServer Faces application can optionally associate a component with server-side object
data. This object is a JavaBeans component, such as a backing bean. An application gets and sets
the object data for a component by calling the appropriate object properties for that
component.

When a component is bound to an object, the application has two views of the component’s
data:

= The model view, in which data is represented as data types, such as int or long.

= The presentation view, in which data is represented in a manner that can be read or
modified by the user. For example, a java.util.Date might be represented as a text string
in the format mm/dd/yy or as a set of three text strings.

The JavaServer Faces implementation automatically converts component data between these
two views when the bean property associated with the component is of one of the types
supported by the component’s data. For example, ifa UISelectBoolean component is
associated with a bean property of type java.lang.Boolean, the JavaServer Faces
implementation will automatically convert the component’s data from String to Boolean. In
addition, some component data must be bound to properties of a particular type. For example, a
UISelectBoolean component must be bound to a property of type boolean or
java.lang.Boolean.

Sometimes you might want to convert a component’s data to a type other than a standard type,
or you might want to convert the format of the data. To facilitate this, JavaServer Faces
technology allows you to register a Converter implementation on UIOutput components and
components whose classes subclass UIOutput. If you register the Converter implementation on
a component, the Converter implementation converts the component’s data between the two
views.

You can either use the standard converters supplied with the JavaServer Faces implementation
or create your own custom converter.

To create and use a custom converter in your application, three things must happen:

= The application developer must implement the Converter class. See “Creating a Custom
Converter” on page 395.

= The application architect must register the Converter with the application. See “Registering
a Custom Converter” on page 453.

= The page author must refer to the Converter object from the tag of the component whose
data must be converted. See “Using a Custom Converter” on page 377.

Chapter 10 - JavaServer Faces Technology 305

User Interface Component Model

306

Event and Listener Model

The JavaServer Faces event and listener model is similar to the JavaBeans event model in that it
has strongly typed event classes and listener interfaces that an application can use to handle
events generated by Ul components.

An Event object identifies the component that generated the event and stores information
about the event. To be notified of an event, an application must provide an implementation of
the Listener class and must register it on the component that generates the event. When the
user activates a component, such as by clicking a button, an event is fired. This causes the
JavaServer Faces implementation to invoke the listener method that processes the event.

JavaServer Faces technology supports three kinds of events: value-change events, action events,
and data-model events.

An action event occurs when the user activates a component that implements ActionSource.
These components include buttons and hyperlinks.

A value-change event occurs when the user changes the value of a component represented by
UIInput orone ofits subclasses. An example is selecting a check box, an action that results in
the component’s value changing to true. The component types that can generate these types of
events are the UIInput, UISelectOne, UISelectMany, and UISelectBoolean components.
Value-change events are fired only if no validation errors were detected.

Depending on the value of the immediate property (see “The immediate Attribute” on page 330)
of the component emitting the event, action events can be processed during the invoke
application phase or the apply request values phase, and value-change events can be processed
during the process validations phase or the apply request values phase.

A data-model event occurs when a new row of a UIData component is selected. The discussion
of data-model events is an advanced topic. It is not covered in this tutorial but may be discussed
in future versions of this tutorial.

There are two ways to cause your application to react to action events or value-change events
emitted by a standard component:

= Implement an event listener class to handle the event and register the listener on the
component by nesting either a valueChangeListener tag or an actionListener taginside
the component tag.

= Implement a method of a backing bean to handle the event and refer to the method with a
method expression from the appropriate attribute of the component’s tag.

See “Implementing an Event Listener” on page 397 for information on how to implement an
event listener. See “Registering Listeners on Components” on page 362 for information on how
to register the listener on a component.

The Java EE 5 Tutorial « October 2008

User Interface Component Model

See “Writing a Method to Handle an Action Event” on page 408 and “Writing a Method to
Handle a Value-Change Event” on page 409 for information on how to implement backing bean
methods that handle these events.

See “Referencing a Backing Bean Method” on page 373 for information on how to refer to the
backing bean method from the component tag.

When emitting events from custom components, you must implement the appropriate Event
class and manually queue the event on the component in addition to implementing an event
listener class or a backing bean method that handles the event. “Handling Events for Custom
Components” on page 431 explains how to do this.

Validation Model

JavaServer Faces technology supports a mechanism for validating the local data of editable
components (such as text fields). This validation occurs before the corresponding model data is
updated to match the local value.

Like the conversion model, the validation model defines a set of standard classes for performing
common data validation checks. The JavaServer Faces core tag library also defines a set of tags
that correspond to the standard Validator implementations. See Table 11-7 for a list of all the
standard validation classes and corresponding tags.

Most of the tags have a set of attributes for configuring the validator’s properties, such as the
minimum and maximum allowable values for the component’s data. The page author registers
the validator on a component by nesting the validator’s tag within the component’s tag.

The validation model also allows you to create your own custom validator and corresponding
tag to perform custom validation. The validation model provides two ways to implement
custom validation:

= ImplementaValidator interface that performs the validation. See “Implementing the
Validator Interface” on page 401 for more information.

= Implement a backing bean method that performs the validation. See “Writing a Method to
Perform Validation” on page 408 for more information.

If you are implementing a Validator interface, you must also:

= Register the Validator implementation with the application. See “Registering a Custom
Validator” on page 452 for more information.

= Create a custom tag or use a validator tag to register the validator on the component. See
“Creating a Custom Tag” on page 404 for more information.

If you are implementing a backing bean method to perform validation, you also must reference
the validator from the component tag’s validator attribute. See “Referencing a Method That
Performs Validation” on page 375 for more information.

Chapter 10 - JavaServer Faces Technology 307

Navigation Model

Navigation Model

308

The JavaServer Faces navigation model makes it easy to define page navigation and to handle
any additional processing needed to choose the sequence in which pages are loaded.

As defined by JavaServer Faces technology, navigation is a set of rules for choosing the next page
to be displayed after a button or hyperlink is clicked. These rules are defined by the application
architect in the application configuration resource file (see “Application Configuration
Resource File” on page 439) using a small set of XML elements.

To handle navigation in the simplest application, you simply

= Define the rules in the application configuration resource file.

= Refer to an outcome String from the button or hyperlink component’s action attribute.
This outcome String is used by the JavaServer Faces implementation to select the
navigation rule.

The Guess Number example uses this kind of simple navigation. Here is an example navigation
rule from the guessNumber application described in “Defining Page Navigation” on page 296:

<navigation-rule>
<from-view-id>/greeting.jsp</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/response.jsp</to-view-id>
</navigation-case>
</navigation-rule>

This rule states that when the button component on greeting. jsp is activated, the application
will navigate from the greeting. j sp page to the

tut-install/ javaeetutorial5/examples/web/guessNumber/web/response. jsp page if the
outcome referenced by the button component’s tag is success. Here is the commandButton tag
from greeting. jsp that specifies a logical outcome of success:

<h:commandButton id="submit" action="success"
value="Submit" />

As the example demonstrates, each navigation-rule element defines how to get from one page
(specified in the from-view-id element) to the other pages of the application. The
navigation-rule elements can contain any number of navigation-case elements, each of
which defines the page to open next (defined by to-view-id) based on alogical outcome
(defined by from-outcome).

In more complicated applications, the logical outcome can also come from the return value of
an action method in a backing bean. This method performs some processing to determine the
outcome. For example, the method can check whether the password the user entered on the
page matches the one on file. If it does, the method might return success; otherwise, it might

The Java EE 5 Tutorial « October 2008

Navigation Model

return failure. An outcome of failure might result in the logon page being reloaded. An
outcome of success might cause the page displaying the user’s credit card activity to open. If
you want the outcome to be returned by a method on a bean, you must refer to the method
using a method expression, using the action attribute, as shown by this example:

<h:commandButton id="submit"
action="#{userNumberBean.getOrderStatus}" value="Submit" />

When the user clicks the button represented by this tag, the corresponding component
generates an action event. This event is handled by the default ActionListener instance, which
calls the action method referenced by the component that triggered the event. The action
method returns a logical outcome to the action listener.

The listener passes the logical outcome and a reference to the action method that produced the
outcome to the default NavigationHandler. The NavigationHandler selects the page to
display next by matching the outcome or the action method reference against the navigation
rules in the application configuration resource file by the following process:

1. TheNavigationHandler selects the navigation rule that matches the page currently
displayed.

2. It matches the outcome or the action method reference it received from the default
ActionListener with those defined by the navigation cases.

3. Ittries to match both the method reference and the outcome against the same navigation
case.

4. Ifthe previous step fails, the navigation handler attempts to match the outcome.
Finally, the navigation handler attempts to match the action method reference if the

previous two attempts failed.

When the NavigationHandler achieves a match, the render response phase begins. During this
phase, the page selected by the NavigationHandler will be rendered.

For more information on how to define navigation rules, see “Configuring Navigation Rules”
on page 453.

For more information on how to implement action methods to handle navigation, see “Writing
a Method to Handle an Action Event” on page 408.

For more information on how to reference outcomes or action methods from component tags,
see “Referencing a Method That Performs Navigation” on page 374.

Chapter 10 - JavaServer Faces Technology 309

Backing Beans

Backing Beans

310

A typical JavaServer Faces application includes one or more backing beans, each of which is a
JavaServer Faces managed bean that is associated with the UI components used in a particular
page. Managed beans are JavaBeans components (see “JavaBeans Components” on page 167)
that you can configure using the managed bean facility, which is described in “Configuring
Beans” on page 441. This section introduces the basic concepts on creating, configuring, and
using backing beans in an application.

Creating a Backing Bean Class

In addition to defining a no-arg constructor, as all JavaBeans components must do, a backing
bean class also defines a set of Ul component properties and possibly a set of methods that
perform functions for a component.

Each of the component properties can be bound to one of the following:

A component’s value
A component instance
A converter instance
A listener instance

A validator instance

The most common functions that backing bean methods perform include the following:

= Validating a component’s data

= Handling an event fired by a component

= Performing processing to determine the next page to which the application must navigate

As with all JavaBeans components, a property consists of a private data field and a set of
accessor methods, as shown by this code from the Guess Number example:

Integer userNumber = null;

public void setUserNumber(Integer user number) {
userNumber = user number;

}

public Integer getUserNumber() {
return userNumber;

}
public String getResponse() {

}

Because backing beans follow JavaBeans component conventions, you can reference beans
you've already written from your JavaServer Faces pages.

The Java EE 5 Tutorial « October 2008

Backing Beans

When a bean property is bound to a component’s value, it can be any of the basic primitive and
numeric types or any Java object type for which the application has access to an appropriate
converter. For example, a property can be of type Date if the application has access to a
converter that can convert the Date type to a String and back again. See “Writing Bean
Properties” on page 381 for information on which types are accepted by which component tags.

When a bean property is bound to a component instance, the property’s type must be the same
as the component object. For example, if a UISelectBoolean is bound to the property, the
property must accept and return a UISelectBoolean object.

Likewise, if the property is bound to a converter, validator, or listener instance then the
property must be of the appropriate converter, validator, or listener type.

For more information on writing beans and their properties, see “Writing Bean Properties” on
page 381.

Configuring aBean

JavaServer Faces technology supports a sophisticated managed bean creation facility, which
allows application architects to do the following:

Configure simple beans and more complex trees of beans

Initialize bean properties with values

Place beans in a particular scope

Expose the beans to the unified EL so that page authors can access them

An application architect configures the beans in the application configuration resource file. To
learn how to configure a managed bean, see “Configuring Beans” on page 441. The managed
bean configuration used by the Guess Number example is the following:

<managed-bean>
<managed-bean-name>UserNumberBean</managed-bean-name>
<managed-bean-class>
guessNumber.UserNumberBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>minimum</property-name>
<property-class>long</property-class>
<value>0</value>
</managed-property>
<managed-property>
<property-name>maximum</property-name>
<property-class>long</property-class>
<value>10</value>
</managed-property>
</managed-bean>

Chapter 10 - JavaServer Faces Technology 311

Backing Beans

312

The JavaServer Faces implementation processes this element on application startup time. When
UserNumberBean is first referenced from the page, the JavaServer Faces implementation
initializes it and sets the values of the properties, maximum and minimum. The bean is then stored
in session scope if no instance exists. As such, the bean is available for all pages in the
application.

A page author can then access the bean properties from the component tags on the page using
the unified EL, as shown here:

<h:outputText value="#{UserNumberBean.minimum}"/>

The part of the expression before the . matches the name defined by the managed-bean-name
element. The part of the expression after the . matches the name defined by the property-name
element corresponding to the same managed -bean declaration.

Notice that the application configuration resource file does not configure the userNumber
property. Any property that does not have a corresponding managed-property element will be
initialized to whatever the constructor of the bean class has the instance variable set to. The next
section explains more about using the unified EL to reference backing beans.

For more information on configuring beans using the managed bean creation Facility, see
“Configuring Beans” on page 441.

Using the Unified EL to Reference Backing Beans

To bind UI component values and objects to backing bean properties or to reference backing
bean methods from UI component tags, page authors use the unified expression language (EL)
syntax defined by JSP 2.1. As explained in “Unified Expression Language” on page 146, some of
the features this language offers are:

m Deferred evaluation of expressions
= The ability to use a value expression to both read and write data
= Method expressions

These features are all especially important for supporting the sophisticated UI component
model offered by JavaServer Faces technology.

Deferred evaluation of expressions is important because the JavaServer Faces life cycle is split
into separate phases so that component event handling, data conversion and validation, and
data propagation to external objects are all performed in an orderly fashion. The
implementation must be able to delay the evaluation of expressions until the proper phase of
the life cycle has been reached. Therefore, its tag attributes always use deferred evaluation
syntax, which is distinguished by the #{} delimiters. “The Life Cycle of a JavaServer Faces Page”
on page 314 describes the life cycle in detail.

In order to store data in external objects, almost all JavaServer Faces tag attributes use lvalue
value expressions, which are expressions that allow both getting and setting data on external
objects.

The Java EE 5 Tutorial « October 2008

Backing Beans

Finally, some component tag attributes accept method expressions that reference methods that
handle component events, or validate or convert component data.

To illustrate a JavaServer Faces tag using the unified EL, let’s suppose that the userNo tag of the
guessNumber application referenced a method rather than using LongRangeValidator to
perform the validation of user input :

<h:inputText id="userNo"
value="#{UserNumberBean.userNumber}"
validator="#{UserNumberBean.validate}" />

This tag binds the userNo component’s value to the UserNumberBean . userNumber backing bean
property using an lvalue expression. It uses a method expression to refer to the
UserNumberBean.validate method, which performs validation of the component’s local value.
The local value is whatever the user enters into the field corresponding to this tag. This method
is invoked when the expression is evaluated, which is during the process validation phase of the
life cycle.

Nearly all JavaServer Faces tag attributes accept value expressions. In addition to referencing
bean properties, value expressions can also reference lists, maps, arrays, implicit objects, and
resource bundles.

Another use of value expressions is binding a component instance to a backing bean property.
A page author does this by referencing the property from the binding attribute:

<inputText binding="#{UserNumberBean.userNoComponent}" />

Those component tags that use method expressions are UIInput component tags and
UICommand component tags. See sections “Using Text Components” on page 332 and “Using
Command Components for Performing Actions and Navigation” on page 337 for more
information on how these component tags use method expressions.

In addition to using expressions with the standard component tags, you can also configure your
custom component properties to accept expressions by creating ValueExpression or
MethodExpression instances for them. See “Creating Custom Component Classes” on page 421
and “Enabling Component Properties to Accept Expressions” on page 426 for more information
on enabling your component’s attributes to support expressions.

To learn more about using expressions to bind to backing bean properties, see “Binding
Component Values and Instances to External Data Sources” on page 367.

For information on referencing backing bean methods from component tags, see “Referencing
a Backing Bean Method” on page 373.

Chapter 10 - JavaServer Faces Technology 313

The Life Cycle of a JavaServer Faces Page

The Life Cycle of a JavaServer Faces Page

314

The life cycle of a JavaServer Faces page is somewhat similar to that of a JSP page: The client
makes an HTTP request for the page, and the server responds with the page translated to
HTML. However, the JavaServer Faces life cycle differs from the JSP life cycle in that it is split up
into multiple phases in order to support the sophisticated UI component model. This model
requires that component data be converted and validated, component events be handled, and
component data be propagated to beans in an orderly fashion.

A JavaServer Faces page is also different from a JSP page in that it is represented by a tree of UI
components, called a view. During the life cycle, the JavaServer Faces implementation must
build the view while considering state saved from a previous submission of the page. When the
client submits a page, the JavaServer Faces implementation performs several tasks, such as
validating the data input of components in the view and converting input data to types specified
on the server side.

The JavaServer Faces implementation performs all these tasks as a series of steps in the
JavaServer Faces request-response life cycle. Figure 10-3 illustrates these steps.

Response Response
Complete > Complete |
Faces
Request Restore Apply Process Process Process
View Requests Events Validations Events
Render
Response Response Response

Complete Complete
v [> [v
p
< Render Process Invoke Process LIJ\/‘I)gc?etz(le
Faces | Response Events Application Events Values
Response \\
Conversion Errors/
Render Response Validation/
Conversion Errors/ e

Render Response

FIGURE 10-3 JavaServer Faces Standard Request-Response Life Cycle

The life cycle handles both kinds of requests: initial requests and postbacks. When a user makes
an initial request for a page, he or she is requesting the page for the first time. When a user
executes a postback, he or she submits the form contained on a page that was previously loaded

The Java EE 5 Tutorial « October 2008

The Life Cycle of a JavaServer Faces Page

into the browser as a result of executing an initial request. When the life cycle handles an initial
request, it only executes the restore view and render response phases because there is no user
input or actions to process. Conversely, when the life cycle handles a postback, it executes all of
the phases.

Usually, the first request for a JavaServer Faces pages comes in as a result of clicking a hyperlink
on an HTML page that links to the JavaServer Faces page. To render a response that is another
JavaServer Faces page, the application creates a new view and stores it in the FacesContext
instance, which represents all of the contextual information associated with processing an
incoming request and creating a response. The application then acquires object references
needed by the view and calls FacesContext. renderResponse, which forces immediate
rendering of the view by skipping to the “Render Response Phase” on page 318 of the life cycle,
as is shown by the arrows labelled Render Response in the diagram.

Sometimes, an application might need to redirect to a different web application resource, such
as aweb service, or generate a response that does not contain JavaServer Faces components. In
these situations, the developer must skip the rendering phase (“Render Response Phase” on
page 318) by calling FacesContext. responseComplete. This situation is also shown in the
diagram, this time with the arrows labelled Response Complete.

The most common situation is that a JavaServer Faces component submits a request for another
JavaServer Faces page. In this case, the JavaServer Faces implementation handles the request
and automatically goes through the phases in the life cycle to perform any necessary
conversions, validations, and model updates, and to generate the response.

This rest of this section explains each of the life cycle phases using the guessNumber example.

The details of the life cycle explained in this section are primarily intended for developers who
need to know information such as when validations, conversions, and events are usually
handled and what they can do to change how and when they are handled. Page authors don’t
necessarily need to know the details of the life cycle.

Restore View Phase

When a request for a JavaServer Faces page is made, such as when a link or a button is clicked,
the JavaServer Faces implementation begins the restore view phase.

During this phase, the JavaServer Faces implementation builds the view of the page, wires event
handlers and validators to components in the view, and saves the view in the FacesContext
instance, which contains all the information needed to process a single request. All the
application’s component tags, event handlers, converters, and validators have access to the
FacesContext instance.

If the request for the page is an initial request, the JavaServer Faces implementation creates an
empty view during this phase and the life cycle advances to the render response phase, during
which the empty view is populated with the components referenced by the tags in the page.

Chapter 10 - JavaServer Faces Technology 315

The Life Cycle of a JavaServer Faces Page

316

If the request for the page is a postback, a view corresponding to this page already exists. During
this phase, the JavaServer Faces implementation restores the view by using the state information
saved on the client or the server.

The view for the greeting. jsp page of the guessNumber example would have the UTView
component at the root of the tree, with helloFormas its child and the rest of the JavaServer
Faces UI components as children of helloForm.

Apply Request Values Phase

After the component tree is restored, each component in the tree extracts its new value from the
request parameters by using its decode method. The value is then stored locally on the
component. If the conversion of the value fails, an error message associated with the
component is generated and queued on FacesContext. This message will be displayed during
the render response phase, along with any validation errors resulting from the process
validations phase.

In the case of the userNo component on the greeting. jsp page, the value is whatever the user
entered in the field. Because the object property bound to the component has an Integer type,
the JavaServer Faces implementation converts the value from a String to an Integer.

If any decode methods or event listeners called renderResponse on the current FacesContext
instance, the JavaServer Faces implementation skips to the render response phase.

If events have been queued during this phase, the JavaServer Faces implementation broadcasts
the events to interested listeners.

If some components on the page have their immediate attributes (see “The immediate
Attribute” on page 330) set to true, then the validation, conversion, and events associated with
these components will be processed during this phase.

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call
FacesContext.responseComplete.

At the end of this phase, the components are set to their new values, and messages and events
have been queued.

Process Validations Phase

During this phase, the JavaServer Faces implementation processes all validators registered on
the components in the tree. It examines the component attributes that specify the rules for the
validation and compares these rules to the local value stored for the component.

If the local value is invalid, the JavaServer Faces implementation adds an error message to the
FacesContext instance, and the life cycle advances directly to the render response phase so that
the page is rendered again with the error messages displayed. If there were conversion errors
from the apply request values phase, the messages for these errors are also displayed.

The Java EE 5 Tutorial « October 2008

The Life Cycle of a JavaServer Faces Page

If any validate methods or event listeners called renderResponse on the current
FacesContext, the JavaServer Faces implementation skips to the render response phase.

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call
FacesContext.responseComplete.

If events have been queued during this phase, the JavaServer Faces implementation broadcasts
them to interested listeners.

In the case of the greeting. jsp page, the JavaServer Faces implementation processes the
standard validator registered on the userNo inputText tag. It verifies that the data the user
entered in the text field is an integer in the range 0 to 10. If the data is invalid or if conversion
errors occurred during the apply request values phase, processing jumps to the render response
phase, during which the greeting. jsp page is rendered again, with the validation and
conversion error messages displayed in the component associated with the message tag.

Update Model Values Phase

After the JavaServer Faces implementation determines that the data is valid, it can walk the
component tree and set the corresponding server-side object properties to the components’
local values. The JavaServer Faces implementation will update only the bean properties pointed
at by an input component’s value attribute. If the local data cannot be converted to the types
specified by the bean properties, the life cycle advances directly to the render response phase so
that the page is re-rendered with errors displayed. This is similar to what happens with
validation errors.

If any updateModels methods or any listeners called renderResponse on the current
FacesContext instance, the JavaServer Faces implementation skips to the render response
phase.

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call
FacesContext.responseComplete.

If events have been queued during this phase, the JavaServer Faces implementation broadcasts
them to interested listeners.

At this stage, the userNo property of the UserNumberBean is set to the local value of the
userNumber component.

Invoke Application Phase

During this phase, the JavaServer Faces implementation handles any application-level events,
such as submitting a form or linking to another page.

Chapter 10 - JavaServer Faces Technology 317

The Life Cycle of a JavaServer Faces Page

318

At this point, if the application needs to redirect to a different web application resource or
generate a response that does not contain any JavaServer Faces components, it can call
FacesContext.responseComplete.

If the view being processed was reconstructed from state information from a previous request
and if a component has fired an event, these events are broadcast to interested listeners.

The greeting. jsp page from the guessNumber example has one application-level event
associated with the UICommand component. When processing this event, a default
ActionListener implementation retrieves the outcome, success, from the component’s
action attribute. The listener passes the outcome to the default NavigationHandler. The
NavigationHandler matches the outcome to the proper navigation rule defined in the
application’s application configuration resource file to determine which page needs to be
displayed next. See “Configuring Navigation Rules” on page 453 for more information on
managing page navigation. The JavaServer Faces implementation then sets the response view to
that of the new page. Finally, the JavaServer Faces implementation transfers control to the
render response phase.

Render Response Phase

During this phase, the JavaServer Faces implementation delegates authority for rendering the
page to the JSP container if the application is using JSP pages. If this is an initial request, the
components represented on the page will be added to the component tree as the JSP container
executes the page. If this is not an initial request, the components are already added to the tree
so they needn’t be added again. In either case, the components will render themselves as the JSP
container traverses the tags in the page.

If the request is a postback and errors were encountered during the apply request values phase,
process validations phase, or upd